A Clean and Tunable Mussel-Inspired Coating Technology by Enzymatic Deposition of Pseudo-Polydopamine (ψ-PDA) Thin Films from Tyramine
Abstract
:1. Introduction
2. Results and Discussion
2.1. Tyrosinase-Controlled Oxidation of Tyramine: Films Deposition
2.2. Kinetic of Films Deposition: Quartz Crystal Microbalance Methodology
2.3. Morphological Characterization
2.4. Electrochemical Properties
2.5. Structural Characterization
2.6. Antioxidant Activity
2.7. Tyrosinase-Loaded Alginate
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
PDA | Polydopamine |
MALDI-MS | Matrix-assisted laser desorption/ionization–mass spectrometry |
DPPH | 2,2-diphenyl-1-picrylhydrazyl |
TPTZ | 2,4,6-tri(2-pyridyl)-s-triazine |
AFM | Atomic force microscopy |
DLS | Dynamic light scattering |
WCA | Water contact angle |
CV | Cyclic voltammetry |
References
- Ryu, J.H.; Messersmith, P.B.; Lee, H. Polydopamine surface chemistry: a decade of discovery. ACS Appl. Mater. Interfaces 2018, 10, 7523–7540. [Google Scholar] [CrossRef]
- Ball, V. Polydopamine nanomaterials: Recent advances in synthesis methods and applications. Front. Bioeng. Biotechnol. 2018, 6, 109. [Google Scholar] [CrossRef] [Green Version]
- Mai, V.C.; Das, P.; Zhou, J.; Lim, T.T.; Duan, H. Mussel-inspired dual-superlyophobic biomass membranes for selective oil/water separation. Adv. Mater. Interfaces 2020, 7, 1901756. [Google Scholar] [CrossRef]
- Lyu, Q.; Hsueh, N.; Chai, C.L.L. The chemistry of bioinspired catechol(amine)-based coatings. ACS Biomater. Sci. Eng. 2019, 5, 2708–2724. [Google Scholar] [CrossRef]
- Bae, H.; Kim, D.; Seo, M.; Jin, I.K.; Jeon, S.-B.; Lee, H.M.; Jung, S.-H.; Jang, B.C.; Son, G.; Yu, K.; et al. Bioinspired polydopamine-based resistive-switching memory on cotton fabric for wearable neuromorphic device applications. Adv. Mater. Technol. 2019, 4, 1900151. [Google Scholar] [CrossRef]
- Lim, C.; Huang, J.; Kim, S.; Lee, H.; Zeng, H.; Hwang, D.S. Nanomechanics of poly(catecholamine) coatings in aqueous solutions. Angew. Chem. Int. Ed. 2016, 55, 3342–3346. [Google Scholar] [CrossRef]
- Ruiz-Molina, D.; Saiz Poseu, J.; Busque, F.; Nador, F.; Mancebo, J. The chemistry behind catechol-based adhesion. Angew. Chem. Int. Ed. 2018, 58, 696–714. [Google Scholar]
- Salomäki, M.; Marttila, L.; Kivelä, H.; Ouvinen, T.; Lukkari, J.O. Effect of pH and oxidant on the first steps of polydopamine formation: a thermodynamic approach. J. Phys. Chem. B 2018, 122, 6314–6327. [Google Scholar] [CrossRef]
- Ponzio, F.; Barthès, J.; Bour, J.; Michel, M.; Bertani, P.; Hemmerlé, J.; d’Ischia, M.; Ball, V. Oxidant control of polydopamine surface chemistry in acids: a mechanism-based entry to superhydrophilic-superoleophobic coatings. Chem. Mater. 2016, 28, 4697–4705. [Google Scholar] [CrossRef]
- Alfieri, M.L.; Panzella, L.; Oscurato, S.L.; Salvatore, M.; Avolio, R.; Errico, M.E.; Maddalena, P.; Napolitano, A.; d’Ischia, M. The chemistry of polydopamine film formation: the amine-quinone interplay. Biomimetics 2018, 3, 26. [Google Scholar] [CrossRef] [Green Version]
- Suárez-García, S.; Sedó, J.; Saiz-Poseu, J.; Ruiz-Molina, D. Copolymerization of a catechol and a diamine as a versatile polydopamine-like platform for surface functionalization: the case of a hydrophobic coating. Biomimetics 2017, 2, 22. [Google Scholar] [CrossRef] [Green Version]
- Du, X.; Li, L.; Li, J.; Yang, C.; Frenkel, N.; Welle, A.; Heissler, S.; Nefedov, A.; Grunze, M.; Levkin, P.A. UV-triggered dopamine polymerization: control of polymerization, surface coating, and photopatterning. Adv. Mater. 2014, 26, 8029–8033. [Google Scholar] [CrossRef]
- Ball, V.; Del Frari, D.; Toniazzo, V.; Ruch, D. Kinetics of polydopamine film deposition as a function of ph and dopamine concentration: insights in the polydopamine deposition mechanism. J. Colloid Interface Sci. 2012, 386, 366–372. [Google Scholar] [CrossRef] [PubMed]
- Bernsmann, F.; Ball, V.; Addiego, F.; Ponche, A.; Michel, M.; Gracio, J.J.; Toniazzo, V.; Ruch, D. Dopamine-melanin film deposition depends on the used oxidant and buffer solution. Langmuir 2011, 27, 2819–2825. [Google Scholar] [CrossRef]
- Lee, B.P.; Messersnith, P.B.; Israelachvili, J.N.; Waite, J.H. Mussel-inspired adhesives and coatings. Annu. Rev. Mater. Res. 2011, 41, 99–132. [Google Scholar] [CrossRef] [Green Version]
- Vatankhah-Varnosfaderani, M.; Hu, X.; Li, Q.; Adelnia, H.; Ina, M.; Sheiko, S.S. Universal coatings based on zwitterionic-dopamine copolymer microgels. ACS Appl. Mater. Interfaces 2018, 10, 20869–20875. [Google Scholar] [CrossRef]
- Iacomino, M.; Alfieri, M.L.; Crescenzi, O.; d’Ischia, M.; Napolitano, A. A Unimolecular variant of the fluorescence turn-on oxidative coupling of catecholamines with resorcinols. ACS Omega 2019, 4, 1541–1548. [Google Scholar] [CrossRef]
- Alfieri, M.L.; Panzella, L.; Oscurato, S.L.; Salvatore, M.; Avolio, R.; Errico, M.E.; Maddalena, P.; Napolitano, Ball, V.; d’Ischia, M. Hexamethylenediamine-mediated polydopamine film deposition: inhibition by resorcinol as a strategy for mapping quinone targeting mechanisms. Frontiers 2019, 7, 407. [Google Scholar] [CrossRef]
- Kim, J.Y.; Kim, W.I.; Youn, W.; Seo, J.; Kim, B.J.; Lee, J.K.; Choi, I.S. Enzymatic film formation of nature-derived phenolic amines. Nanoscale 2018, 10, 13351–13355. [Google Scholar] [CrossRef]
- Zhong, Q.-Z.; Richardson, J.J.; Li, S.; Zhang, W.; Ju, Y.; Li, J.; Pan, S.; Chen, J.; Caruso, F. Expanding the toolbox of metal–phenolic networks via enzyme-mediated assembly. Angew. Chem. Int. Ed. 2019, 59, 1711–1717. [Google Scholar] [CrossRef]
- Jus, S.; Kokol, V.; Guebitz, G.M. Tyrosinase-catalysed coating of wool fibers with different protein-based biomaterials. J. Biomater. Sci. Polym. Ed. 2009, 20, 253–269. [Google Scholar] [CrossRef]
- Richter, M.; Schulenburg, C.; Jankowska, D.; Heck, T.; Faccio, G. Novel materials through nature’s catalysts. Mater. Today 2015, 18, 459–467. [Google Scholar] [CrossRef]
- Guazzaronia, M.; Crestini, C.; Saladino, R. Layer-by-layer coated tyrosinase: an efficient and selective synthesis of catechols. Bioorg. Med. Chem. 2012, 20, 157–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rolff, M.; Schottenheim, J.; Decker, H.; Tuczek, F. Copper-O2 reactivity of tyrosinase models towards external monophenolic substrates: Molecular mechanism and comparison with the enzyme. Chem. Soc. Rev. 2011, 40, 4077–4098. [Google Scholar] [CrossRef]
- Ramsden, C.A.; Riley, P.A. Tyrosinase: the four oxidation states of the active site and their relevance to enzymatic activation, oxidation and inactivation. Bioorg. Med. Chem. 2014, 22, 2388–2395. [Google Scholar] [CrossRef]
- Sauerbrey, G.Z. The use of quartz oscillators for weighing thin layers and for microweighing. Z. Phys. 1959, 155, 206–222. [Google Scholar] [CrossRef]
- Micillo, R.; Iacomino, M.; Perfetti, M.; Panzella, L.; Koike, K.; D’Errico, G.; d’Ischia, M.; Napolitano, A. Unexpected impact of esterification on the antioxidant activity and (photo)stability of a eumelanin from 5,6-dihydroxyindole-2-carboxylic acid. Pigment. Cell Melanoma Res. 2018, 31, 475–483. [Google Scholar] [CrossRef]
- Kissinger, P.T.; Heineman, W.R. Cyclic voltammetry. J. Chem. Educ. 1983, 60, 702–706. [Google Scholar] [CrossRef]
- Goupy, P.; Dufour, C.; Loonis, M.; Dangles, O. Quantitative kinetic analysis of hydrogen transfer reactions from dietary polyphenols to the DPPH radical. J. Agric. Food Chem. 2003, 51, 615–622. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [Green Version]
ψ-PDA Films | 1 U | 5 U | 20 U | 50 U | 100 U | T-PDA Film | 20 U |
---|---|---|---|---|---|---|---|
Thickness (nm) | 3.5 | 11.9 | 42.4 | 39.5 | 15.7 | 36.9 |
Film | Thickness (nm) | Roughness (nm) | Water Contact Angle (deg) |
---|---|---|---|
ψ-PDA 100 U/mL | 58 ± 4 | 12.8 | 22.3 |
ψ-PDA 50 U/mL | 63.3 ± 5 | 28.7 | 17.1 |
ψ-PDA 20 U/mL | 87 ± 7 | 45.5 | 28.6 |
T-PDA 20 U/mL | 25.3 ± 8 | 113.5 | 32.1 |
5 U | 20 U | 100 U | |
---|---|---|---|
DLS (nm) | 57.45 ± 18 | 129.4 ± 28 | 149.3 ± 52 |
ψ-PDA film Benchmark: Tyramine (137 g/mol) | T-PDA film Benchmark: Dopamine (153 g/mol) | ||
---|---|---|---|
Observed Peaks (Clusters) | MW of Molecular Species | Observed Peaks (Clusters) | MW of Molecular Species |
573 (Na+), 589 (K+) | 550 | ||
615 (Na+), 631 (K+) | 592 | ||
619 (Na+), 635 (K+) | 596 | ||
625 (H+), 647 (Na+), 663 (K+) | 624 | ||
637(Na+), 653 (K+) | 614 | ||
653 (H+), 675 (Na+), 691 (K+) | 652 | ||
657(Na+), 673 (K+) | 634 | ||
679 (Na+), 695 (K+) | 656 | ||
719 (Na+), 735 (K+) | 696 | ||
741 (Na+), 757 (K+) | 718 | ||
747 (Na+), 763 (K+) | 724 | ||
769 (Na+), 785 (K+) | 746 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alfieri, M.L.; Panzella, L.; Arntz, Y.; Napolitano, A.; Ball, V.; d’Ischia, M. A Clean and Tunable Mussel-Inspired Coating Technology by Enzymatic Deposition of Pseudo-Polydopamine (ψ-PDA) Thin Films from Tyramine. Int. J. Mol. Sci. 2020, 21, 4873. https://doi.org/10.3390/ijms21144873
Alfieri ML, Panzella L, Arntz Y, Napolitano A, Ball V, d’Ischia M. A Clean and Tunable Mussel-Inspired Coating Technology by Enzymatic Deposition of Pseudo-Polydopamine (ψ-PDA) Thin Films from Tyramine. International Journal of Molecular Sciences. 2020; 21(14):4873. https://doi.org/10.3390/ijms21144873
Chicago/Turabian StyleAlfieri, Maria Laura, Lucia Panzella, Youri Arntz, Alessandra Napolitano, Vincent Ball, and Marco d’Ischia. 2020. "A Clean and Tunable Mussel-Inspired Coating Technology by Enzymatic Deposition of Pseudo-Polydopamine (ψ-PDA) Thin Films from Tyramine" International Journal of Molecular Sciences 21, no. 14: 4873. https://doi.org/10.3390/ijms21144873