Next Article in Journal
Mitochondrial Dynamics and Mitophagy in Skeletal Muscle Health and Aging
Next Article in Special Issue
Role of the Renin–Angiotensin–Aldosterone and Kinin–Kallikrein Systems in the Cardiovascular Complications of COVID-19 and Long COVID
Previous Article in Journal
An Experimental Workflow for Studying Barrier Integrity, Permeability, and Tight Junction Composition and Localization in a Single Endothelial Cell Monolayer: Proof of Concept
Previous Article in Special Issue
Innate Immune Response to SARS-CoV-2 Infection: From Cells to Soluble Mediators
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Mitochondrial Modulations, Autophagy Pathways Shifts in Viral Infections: Consequences of COVID-19

1
Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA
2
Department of Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA
3
Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer 305817, Rajasthan, India
4
Department of Yoga, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer 305817, Rajasthan, India
5
Departmen of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda 151001, Punjab, India
6
Department of Pharmacology, All India Institute of Medical Sciences, Bathinda 151001, Punjab, India
*
Authors to whom correspondence should be addressed.
Authors equally contributed.
Int. J. Mol. Sci. 2021, 22(15), 8180; https://doi.org/10.3390/ijms22158180
Submission received: 9 July 2021 / Revised: 24 July 2021 / Accepted: 24 July 2021 / Published: 30 July 2021
(This article belongs to the Special Issue Coronavirus Disease (COVID-19): Pathophysiology)

Abstract

:
Mitochondria are vital intracellular organelles that play an important role in regulating various intracellular events such as metabolism, bioenergetics, cell death (apoptosis), and innate immune signaling. Mitochondrial fission, fusion, and membrane potential play a central role in maintaining mitochondrial dynamics and the overall shape of mitochondria. Viruses change the dynamics of the mitochondria by altering the mitochondrial processes/functions, such as autophagy, mitophagy, and enzymes involved in metabolism. In addition, viruses decrease the supply of energy to the mitochondria in the form of ATP, causing viruses to create cellular stress by generating ROS in mitochondria to instigate viral proliferation, a process which causes both intra- and extra-mitochondrial damage. SARS-COV2 propagates through altering or changing various pathways, such as autophagy, UPR stress, MPTP and NLRP3 inflammasome. Thus, these pathways act as potential targets for viruses to facilitate their proliferation. Autophagy plays an essential role in SARS-COV2-mediated COVID-19 and modulates autophagy by using various drugs that act on potential targets of the virus to inhibit and treat viral infection. Modulated autophagy inhibits coronavirus replication; thus, it becomes a promising target for anti-coronaviral therapy. This review gives immense knowledge about the infections, mitochondrial modulations, and therapeutic targets of viruses.

1. Introduction

Mitochondria are membrane-bound cell organelles which produce energy in the form of adenosine triphosphate (ATP). Mitochondria regulate various intracellular functions like metabolism, bioenergetics, cell death, innate immune signaling, and cellular homeostasis [1].
Mitochondrial dynamics and mitochondria, selective autophagy, or mitophagy, work to maintain mitochondrial quality control [2]. By altering mitochondrial dynamics, viruses influence innate immune signaling [which is mediated through the mitochondrial antiviral signaling (MAVS) protein], as well as favoring their propagation by taking advantage of mitochondrial metabolite.

1.1. Mitochondrial Dynamics

The mitochondrial dynamics network involves two cycles, mitochondrial fission and Mitochondrial Fusion, to help maintain the functional capacity of mitochondria by distribution of mitochondrial contents, energy conductance, and responsiveness to cellular cues. Thus, mitochondrial dynamics govern their communication and interaction with other cellular organelles.

1.1.1. Mitochondrial Fission

Mitochondrial fission is required to create new mitochondria, segregate damaged parts of the mitochondria from the dynamic mitochondrial network and remove damaged mitochondria via the mitochondria-selective autophagy process. Dynamin-1 like protein (Drp1) recruitment into mitochondria and its activity is regulated by different processes such as phosphorylation, nitrosylation, and summoylation to initiate mitochondrial fission. In mammals at least three proteins are required for mitochondrial fission: dynamin-related protein 1 (Drp1), Fis1 mitochondrial fission 1 protein [Fis1), and mitochondrial fission factor (MFF) [3,4]. Drp1 contains three domains: the dynamic like central domain, C-terminal GTPase effector domain, and N-terminal GTPase domain. Full GTPase efficiency and mitochondrial fission requires intermolecular interaction between the GTPase domain and GTPase effector domain [5]. By network lengthening, MFF releases the Drp1 foci from the mitochondrial outer membrane, whereas, with the help of mitochondrial fission and the physical interaction between MFF and Drp1, MFF overexpression stimulates mitochondrial fission [6].

1.1.2. Mitochondrial Fusion

Mitochondrial Fusion mechanisms involve various steps such as outer mitochondrial membrane (OMM) fusion, and inner mitochondrial membrane (IMM) fusion through integral membrane GTPase proteins such as Mitofusin 1 and 2 (Mfn1 and Mfn2), and optic atrophy 1 (OPA1), respectively. The proteins Mfn1 and Mfn2 are located on the opposite fusion membranes and anchored into the outer membrane with the N-terminal GTPase domain and a predicted coiled coil protruding into cytosol to form homo or hetro-oligomeric complex in trans. The OPA1 protein is located on adjacent fusion membrane and is involved in inner-mitochondrial membrane fusion as well as mitochondria cristae remodeling, apoptosis, and bioenergetics. The OPA1 protein works with Mfn1 to promote mitochondrial fusion. Mitochondrial fusion isolates dysfunctional and damaged mitochondria from the functional network via the joining of healthy discreate mitochondria with the functional network.

1.1.3. Role of Mitochondrial Dynamics in Antiviral Signaling

By balancing between two opposite processes, mitochondrial fission and fusion, mammalian cells maintain the overall shapes of their mitochondria. The Fis1 protein has a TM domain with the help of the C-terminal of mitochondria anchored into the mitochondrial outer membrane [3]. Drp1 does not prevent localized mitochondria via the knockdown of Fis1 with RNA interference [7]. By network lengthening, MFF release the Drp1 foci from the mitochondrial outer membrane, whereas, with the help of mitochondrial fission and the physical interaction between the mitochondrial fission factor (MFF) and Drp1, MFF overexpression stimulates mitochondrial fission [6].
The proteins Mfn1, Mfn2, and OPA are involved in mitochondrial dynamics maintenance, [8,9]. For mitochondrial fusion, OPA1 needs Mfn1 [10] and forms an oligomer that regulates mitochondrial cristae morphology and therefore completely unharnesses the cytochrome C oxidase throughout the process of cell death [9,11,12]. The process of RLR communication reserves the interaction between Mfn2 and MAVS in high-molecular mass complexes [13]. Once a virus infects the mitochondria, Mfn2 murine embryonic cells (MEFs) improve MAVS communication, whereas overexpression of Mfn2 blocks NF-kB and the IRF-3 activation downstream of RIG-I, MDA-5, and MAVS [14]. After the manipulation of its expression level, Mfn1 produces different phenotypes, which indicate that Mfn2 has a unique role in regulating MAVS signaling, which is independent of its function in mitochondrial fusion.
Efficient RLR signaling requires the interaction of MAVS with Mfn1, whereas MFF1 or DRP1, as an inhibitor of fusion, decreases virus-induced NF-kB and IRF-3 activation [15]. After the depletion of Drp1 and Fis1 in the cells, there is an increase in RLR signaling, and the elongation of the mitochondrial network promotes mitochondrial–endoplasmic reticulum interaction during the viral infection, enhancing the association of MAVS with a sting to augment RLR signaling [15].
MAM is a major site of MAVS signaling which links the endoplasmic reticulum to the mitochondria [16], where Mfn2 may inhibit MAVS [17]. After the activation of RLR, both IRF-3 and IKB- α phosphorylate, which degrades the main 75K Da isoform of MAVS resulting in the release of Mfn1 to promote mitochondrial fusion/elongation [15]. Thus, MAVS acts as a regulator of the Mfn1 function. After mitofusion-deficient MFFs [both Mfn1 and Mfn2 proteins), heterogenous mitochondrial membrane potential (MMP) occurs, which reduces MAVS signaling, resulting in a decrease in RLR-dependent antiviral responses.
When cells treated with a chemical uncoupling compound, mitochondrial membrane potential decreases RLR signaling to NF-KB and IRF-3 as well as lowering the production of type 1 IFN [18]. Upon viral infection, decreased MMP might quickly thwart the MAVS complex’s structural rearrangement [18]. Inhibition of ATP synthesis does not inhibit MAVS-mediated signaling, excluding the hypothesis that MAVS, localized at the mitochondrial surface, is not attributed to an energetic requirement to transduce the signal. Mfn1 and Mfn2 have opposite roles in innate viral immunity, whereas they play a similar role in mitochondrial fusion [19].
In the absence of infection, the innate immune system is physiologically activated and produces inflammation, also known as chronic low-grade inflammation [20], which includes genetic susceptibility, cellular senescence, impaired autophagy, dysfunctional mitochondria, changes in microbiota composition, and oxidative stress [21,22,23].
In healthy mitochondria, about 90% of energy demand is provided by mitochondria through ATP generation [24]. The imbalance between ATP supply and demand causes mitochondrial dysfunction.
Mitochondrial fission includes Drp1 and Fis1, whereas mitochondrial fusion includes Mfn1, Mfn2, and OPA1. The deletion of the Drp1 gene causes mitochondrial enlargement, the increased opening of the mitochondrial permeability transition pore (MPTP), apoptosis, and lethal dilated cardiomyopathy (DCM) [25] by inhibiting mitochondrial fission, whereas deletion of Mfn1 and Mfn2 disrupts mitochondrial structure and respiratory chain function [26]. An imbalance between mitochondrial fusion and fission compromises mitochondrial integrity during aging [27,28,29]. Mitochondrial from aged C. elegans is indicated by a significantly enlarged and swollen ultrastructure, which is accompanied by decreasing O2 consumption, increasing carbonylated proteins and decreasing mitochondrial SOD activity [30].
Drp1 knockdown triggers NLRP-3 inflammasome assembly and activates caspase1 & IL-β [31].
The depolarization of membrane and mitochondrial damage is caused by PINK1 (PTEN-induced kinase 1), which accumulates on the outer membrane of the mitochondria, mediates phosphorylation, and activates parkin (E3 ubiquitin ligase) for the ubiquitination of the mitochondrial protein of Mfn-2 [32], resulting in damaged mitochondria interacting with an LC3-positive phagosome for degradation in the lysosome. Thus, if this process is impaired, it leads to mitochondrial dysfunction and cell death [33,34]. The deficiency of parkin increases MMP loss, ROS production, and mtDNA release, which triggers NLRP-3 and elevates the activation of IL-1B and caspase, contributing to age-related pathologies [35,36]. Upregulation of parkin expression and enhanced mitophagy inhibits NLRP-3 inflammasome assembly and activates downstream signaling molecules that promote cell survival [37].

1.2. Autophagy

Autophagy is a self-destructive process which involves the removal of dysfunctional and unnecessary cellular components through various steps such as Omegasomes and the initiation of isolation membrane; elongation of isolation membrane and formation of autophagosomes; and autophagosome-lysosome fusion and degradation (Figure 1).

1.2.1. Omegasomes and the Initiation of Isolation Membrane:

Through the mTOR-signaling pathway, the ULK1-Atg13-FIP200-Atg101 kinase complex activates autophagic signaling and forms omegasomes. Under the starvation condition, double FYVE domain-containing protien1(DFCP1) is localized to PI [3] P on an omegasome whereas, under nutrient-rich conditions, DFCP1 is localized to ER and Golgi. The formation of DFCP1-positive omegasomes is regulated by the Atg14-VPs34-beclin1 PI3-kinase complex. Inside the ring of the omegasome, an isolation membrane is formed, and the Atg12-Atg5/Atg16 complex is localized to this isolation membrane [38,39,40]. By decreasing the level of PI [3] P [41,42], 2 PI [3] P, phosphates such as jumpy/MT/MR14 and MTMR3 negatively regulate the formation of omegasomes and the isolation membrane.

1.2.2. Elongation of the Isolation Membrane and the Formation of Autophagosomes

The isolation membrane engulfs cytoplasmic components and elongates. At the later stage of the elongation of the isolation membrane, LC3-11 is localized to both sides of the isolation membrane. It closes the membrane to form an autophagosome resulting in the Atg12-Atg5/Atg16 complex, dissociated from the autophagosome [40]. Moreover, LC3-II, Rab32, and Rab33 also involve the elongation of the isolation membrane [43,44].

1.2.3. Autophagosome-Lysosome Fusion and Degradation

The outer membrane of the autophagosome fuses with the lysosome to form autolysosome, which requires Rab7 [45,46]. This fusion is positively regulated by the UVRAG-VPS34-Beclin1 PI3-Kinase complex while negatively regulated by the Rubicone-UVRAG-VPS34-Beclin1 PI3-Kinase complex [47,48,49,50,51]. Lysosome hydrolase in autolysosome involves cathepsin, and lipases degrade the intra-autophagosomal content, while cathepsin alone degrades LC3-II on the intra-autophagosomal surface [52,53].
Coronaviruses such as SARS-Co, SARS-CoV-2, MERS-CoV, and MHV, etc., induce as well as inhibit autophagy. Modulated autophagy inhibits coronavirus replication; thus, it becomes a promising target for anticoronaviral treatments (Table 1).
Autophagy inducers antagonize coronavirus replication, whereas autophagy inhibitors disorganize the Golgi and prevent amohisome/autophagosome-lysosome fusion resulting in blocking the vesicle trafficking system [59,75,76].
In the mammalian cell, autophagy is categorized into three types: macro-autophagy, micro-autophagy, and chaperone-mediated autophagy (Figure 2), on the basis that these types differ in their routes to the lysosome [77]. Both macro-autophagy and micro-autophagy are non-selective degradations of protein, lipid, and organelles, whereas chaperone-mediated autophagy is a selective protein degradation. Chaperone-mediated autophagy has a specific-signal sequence called KFERQ, which depends on the molecular chaperone (Heat schock coganate 70) Hsc70.
Autophagy induced by three different levels of ER stress and the unfolded protein receptor (UPR) which branches to EIF2AK3/PERK, ERN/IRE1 and/or the ATF6 signaling pathway (Figure 3).
Autophagy conserved the eukaryotic process of cytoplasmic degradation which was activated under different conditions of starvation and endoplasmic reticulum [ER] stress to maintain cellular homeostasis as well as to achieve the complete autophagic flux (Figure 4).

1.3. Mitophagy

Mitophagy is selective autophagy process in mitochondria which includes the rapid removal of dysfunctional or damaged mitochondria through two different pathways such as damage-induced mitophagy (Figure 5) and development-induced mitophagy (Figure 6).
In healthy mitochondria, PINK1 contains a mitochondrial target sequence (MTS), which translocates to mitochondria and is imported to the IMM by translocase of the outer mitochondrial membrane (OMM) and inner mitochondrial membrane (TIM). Following this, PINK1 is degraded by downstream proteolytic events.
In damaged mitochondria, loose-membrane potential accommodates TIM and TOM activity resulting in the stabilization of PINK1 on the OMM of damaged mitochondria [78,79], and engages parkin ubiquitin ligase, which is activated by phosphorylation and deubiquitination. Therefore, PINK1 and parkin selectively tagged damaged mitochondria with a ubiquitin chain engulfed by phagophore to forma mitophagosome. As a result, this mitophagosome fused with the lysosome and damaged mitochondria that were delivered to the lysosome. Activated PINK1 requires the recruitment of optineurin (OPTN) and NDP52, whereas parkin does not require autophagy recruitment. PINK1 generates phospho-ubiquitin, which serves as a unique signature for the recruitment of the mitophagy receptor protein and parkin to build the ubiquitin chain for signal amplification [80].
Parkin/PINK1 also promotes TB1 activation and enhances ubiquitin chain building [81,82].

The Pathological Role of Mitophagy Development

Mitophagy destructs paternal mitochondria in fertilized oocytes. During fertilization in mammals, paternal sperm-born mitochondria (ubiquitin+) enter the ooplasm and are degraded by the ubiquitin–proteasome system [83].
In mammals, Nix selectively removes paternal mitochondria. Many ubiquitinated membranous organelles (MOs) degrad paternal mitochondria with the help of autophagy [84]. During aging, the autophagy gene and related proteins decrease in humans and mice [85,86,87]. A condition such as caloric restriction delays the aging-related degeneration process by activating autophagy. Mitophagy decreases ROS production and removes dysfunctional mitochondria [88]. Autophagy acts as a tumor suppressor in human cancers such as breast, prostate, and ovarian cancer, where the autophagy gene Beclin1 is deleted [89]. Thus, the loss of autophagy enhances tumorigenesis. Autophagy is positively regulated by tumor-suppressor genes such as Lkt, AMPK, and Pten [90,91,92,93]. In limited nutrients or oxygen in tumor tissues, autophagy acts as a buffer to metabolic stress.
Mutation in PINK1 and parkin causes Parkinson’s disease. Alzheimer’s disease occurs due to mitochondrial dysfunction and defective cytochrome [94] as β-amyloid fragments target mitochondria, whereas in HD (Huntington’s Disease) occurs due to dysregulated PGC1-α, which is an important transcription factor for mitochondrial biogenesis [95]. Moreover, aging causes mitochondrial dysfunction and weaknesses in skeletal muscle functions due to the deterioration of mitochondrial signaling. Improvement in mitochondrial function enhances immunity which prevents the spreading of viruses. Targeting mitochondrial dynamics and processes may be beneficial for treatments against COVID-19 and other viruses [96,97].

1.4. The Relation between Mitochondrial Fission and Fusion, Apoptosis and Mitophagy

In normal conditions, mitochondrial preserve their overall shape and function via maintaining a balance between mitochondrial fusion and fission. Mitochondrial fusion fuses healthy mitochondria with functional tubular mitochondrial network by isolating dysfunctional mitochondria, whereas mitochondrial fission increases the total number of mitochondria. During viral infection, the balance between mitochondrial fusion and fission is disturbed which leads to mitophagy, whereas in cases of more pronounced damage it leads to mitochondrial-dependent apoptotic cell death (Figure 7). Thus, viruses modulate various functions like autophagy and mitophagy to propagate their replication during viral infection (Table 2). We will continue to develop effective therapeutic strategies for virotherapy by understanding role of autophagy from the perspective of individual viruses.

2. Viruses and Their Effects on Mitochondrial Metabolites

In the host cell, viruses use building blocks such as lipids and amino acids for their virion progeny production, whereas energy causes processes such as viral assembly and release [113,114,115]. Moreover, mitochondria have evolved antiviral counter measures. Viruses mainly influence two different mitochondrial metabolic pathways such as the β-oxidation of fatty acids and the Tricarboxylic acid cycle or Krebs Cycle (Figure 7). Mitochondria are clustered around the replication sites of several viruses and decrease the supply routes for energy and metabolites, resulting in increased viral progeny viruses. In a viral infection, viruses generate cellular stress, which causes mitochondrial redistribution.
Slow-replicating viruses target the mitochondria by maintaining cellular energy homeostasis to ensure efficient replication and an extended lifecycle, also avoiding programmed cell death. In contrast, fast-replicating viruses easily cope with cellular metabolic dysfunction.

2.1. Regulation of Ca2+ Homeostasis by Viruses in Host Cells

Involved in various cellular process, Ca2+ acts as secondary messenger. Among different mechanisms, Ca2+ can enter through voltage-dependent anion channels [VDAC), also known as mitochondrial porins in outer membrane, into the mitochondrial intermembrane space [116,117]. This channel regulates Ca2+ entry and metabolites based on mitochondrial membrane potential (MMP). Ions such as Na+, H+, and Ca2+ exchange across the mitochondrial membrane resulting in decreased MMP, which depends upon the electron transport chain (ETC). The permeability transition pore (PTP) regulates Ca2+ efflux via a “flickering” mechanism. In Ca2+ overload, the PTP are opened for a longer duration which causes the destruction of mitochondrial functions. In the inner-mitochondrial membrane, oxidative stress, Ca2+ overload, and ATP depletion induce the formation of a non-specific permeability transition pore (PTP), which is also responsible for damage to the MMP. Moreover, viruses regulate MMP in the host cells. The MMP value varies from species to species and organ to organ, based on mitochondrial function, protein composition, and the amount of oxidative phosphorylation activity required in that organ of the body [118].
At the early stage of virus infection, viruses prevent apoptosis from resulting in the prevention of the host immune response and promote cell replication. On the opposite side, at a later stage of virus infection, viruses induce apoptosis and release the progeny virions for dissemination to the surrounding cells.

2.2. Role of Viruses in Modulating Mitochondrial Antiviral Immunity

Viruses attack cells to generate interferon via activating a variety of signal transduction pathways. Pathogen-associated receptors (PRRs) such as the toll-like receptor (TLRs), nucleotide oligomerization domain (NOD) like receptor [NLRs), and retinoic acid-inducible gene (RIG-I) like receptor (RLRs), recognize the pathogen-associated molecular atoms (PAMPs) of viruses which are present inside the cell. PRRs directly activate immune cells [119].
Mitochondria are associated with RLRs such as the melanoma differentiation-associated gene 5 (Mda-5) and retinoic acid-inducible gene I [RIG-I), which recognize the dsRNA. RIG-I has two terminuses. The N-terminus contains caspase activation and recruitment domains (CARDs) and includes proteins such as mitochondrial antiviral signaling (MAVS), IFN-β promoter stimulator 1 (IPS-1), virus-induced signaling adaptor (VISA), or the CARD adaptor-inducing IFN-β (CARDIF) protein. On the other hand, the C-terminus includes RNA helicase activity [120] which binds to unmodified RNA produced by a viral polymerase in an ATPase-dependent manner, resulting in the exposure of its CARD domain and activating a downstream effector which leads to the formation of enhanceosome-triggering [121] NF-kB production.
Mitochondrial Antiviral Signaling (MAVS) contains a proline-rich region on the N terminal CARD and the hydrophobic transmembrane (TM) on the C-terminal, which targets the protein in the mitochondrial outer membrane [122]. Thus, it plays an essential role in antiviral defense in the cells. The overexpression of MAVS activates NF-kB and IRF-3, which produce type 1 interferon responses. By interacting MAVS with VDAC [123] preventing apoptosis and the opening of MPTP, the virus cleaves the MAVS from the mitochondrial outer membrane and reduces interferon response [124,125].
For example:
  • HCV cleaves MAVS in amino acids (508) and paralyzes the host defense against HCV;
  • The flaviviridae GB virus B, NH3/4A protein cleaves MAVS and prevents any interferon product [126]. MAVS is associated with RLRs which produce type 1 interferon [IFNs] and pro-inflammatory cytokines [127] that act against the pathogen interferon regulatory factor (IRF) and produce type 1 IFN in the cytoplasm [128,129]. Peroxisomal MAVS are involved in the induction of IFN-stimulated genes like encoding viperin [130].

2.3. AMPK Governs Autophagy and Mitochondrial Homeostatsis

The AMP-activated protein kinase (AMPK) complex consists of different subunits including a catalytic α-subunit and two regulatory subunits, β and γ. The AMPK complex senses low cellular ATP levels to increase growth control nodes and the phosphorylation of specific enzymes which produce ATP or lower ATP consumption. AMPK plays an important role in multiple biosynthetic pathways under low cellular energy levels via direct and indirect targeting of the functions of different protein targets of AMPK (Figure 8).

2.4. Role of SRV2 in Mitochondrial Dynamics

Ras val-2 (SRV2) is a pro-fission protein that promotes interaction between Drp1 and mitochondria [131], then oligomerizes Drp1 around mitochondria to form a ring and cut the mitochondria into several fragments. Thus, it has a vital role in mitochondrial shape and fission [132]. The protein SRV2 also increases the expression of F-actin (as stress fiber) and it provides an adhesive force which helps Drp1 to complete mitochondrial contraction [133,134] which facilates mediated mitochondrial fission [135]. Macro phase stimulating 1 (Mst 1) is a key factor in the Hippo signaling pathway. The loss of Mst 1 maintained mitochondrial homeostasis [136] by the attenuation of renal ischemia-reperfusion injury as well as in cardiomyocytes, improving mitochondrial performance by autophagy and enhanced cardiomyocyte viability. Additionally, Mst 1 has a role in SRV2-related mitochondrial fission.

2.4.1. SRV2 in Various Functions of Mitochondria

Mitochondrial fission is promoted by the LPS-mediated upregulation of SRV2 [137,138]. Loss of SRV2 attenuates mitochondrial fission, protects cardiomyocytes against LPS-induced stress, and improves cell survival and sustained cardiomyocyte function [139].
SRV2 overexpression promotes mitochondrial fission and leads to cardiomyocyte death and mitochondrial damage [140]. Thus, the loss of SRV2 exerts an antioxidative effect in cardiomyocytes by inhibiting mitochondrial fission.
With regard to mitochondrial ETC activity, the knockdown of SRV2, LPS, and FCCP have similar effects and decrease ETC transcription. The inhibition of mitochondrial fission prevents the LPS-induced dysregulation of cardiomyocyte energy metabolism [141,142,143].

2.4.2. Relationship between Mitochondria, Oxidative Stress, and Inflammation in COVID-19

The protein ROS increases via inflammatory cytokines, such as TNF-alpha in mitochondria, and directly stimulates a generation of pro-inflammatory cytokines [144]. The ROS in mitochondria is modulated by IL-6 and IL-10. Mitochondrial metabolism is altered through intracellular cascades, which are triggered by inflammatory mediators and immune sentinels. The serum of patients with COVID-19 contains cytokines like TNF- alpha and IL-6, which obstruct mitochondrial oxidative phosphorylation, ATP production, and produce ROS in the cell [145,146]. These ROS-altered mitochondrial dynamics permeabilize the mitochondrial membrane and ultimately cause cell death. Additionally, ROS production and mitochondrial content (such as mtDNA) are released into the cytosol and the extracellular environment [147,148]. After this, ROS activates NLRP3 inflammasomes and produces pro-inflammatory cytokines such as IL-1beta and induces the production of IL-6 via inflammasome-independent transcriptional regulation [145,146,149,150]. Thus, ROS contributes to mitochondrial dysfunction (Figure 9 and Figure 10). Cytokines can indicate COVID-19 disease severity. Patients with COVID-19 have a large number of pro-inflammatory cytokines (CXCL-8, IL-6, CCL3, CCL4, and IL-12) due to human alveolar epithelial cells with dysfunctional mitochondria [151]. Thus, these cells impair repair responses and reduce responsiveness to corticosteroid (Figure 10).

2.5. Different Pathways to Reposition Common Approved Drugs against COVID-19

The World Health Organization reported that most repositioned drugs modulators, under clinical investigation against COVID-19, act through different pathways such as UPR, autophagy, the NLRP3 inflammasome, and mitochondrial permeability transition pores [MPTP] (Table 3).

3. Expert Opinion

Mitochondria are membrane-bound cell organelles which produce energy in the form of adenosine triphosphate (ATP) as well as regulating various intracellular functions like metabolism, bioenergetics, cell death, innate immune signaling, and cellular homeostasis. Mitochondria are self-governed by mitochondrial dynamics and mitochondria-selective autophagy or mitophagy. During infection, viruses altered mitochondrial dynamics in order to modulate mitochondria-mediated antiviral immune responses via the alteration of mitochondrial events such as autophagy, mitophagy, and cellular metabolism to facilitate their proliferation.
The pro-fission protein of SRV2 activates mitochondrial fission via the loss of MMP, the ROS-overloading suppression antioxidant system, the depletion of cellular ATP, the release of the apoptotic factor, the activation of the caspase family, and NLRP3 inflammasomes. The protein SRV2 also promotes mitochondria-associated cardiomyocyte apoptosis to cause cardiomyocyte death and mitochondrial damage. The World Health Organization reported that most repositioned drugs modulators, under clinical investigation against COVID-19, act through different pathways such as UPR, autophagy, the NLRP3 inflammasome, and mitochondrial permeability transition pores (MPTP) to inhibit SARS-COV2 propagation. Analysis of the functional significance of mitochondrial dynamics and viral pathogenesis will open up new possibilities for the therapeutic design of approaches to combat viral infections and associated diseases.

Author Contributions

Conceptualization, S.P.S., methodology, P.G., N.K., S.K.P.; software, P.G., N.K., S.K.P., A.K.; validation, S.P.S., S.A. and A.K.; formal analysis, S.P.S.; investigation, A.K.; resources, S.P.S.; data curation, S.P.S.; writing—original draft preparation, S.P.S., P.G.; writing—review and editing, S.P.S., S.A., P.G.; visualization, A.K.; supervision, S.P.S.; project administration, S.P.S., S.A., P.G.; funding acquisition, S.A. All authors have read and agreed to the published version of the manuscript.

Funding

SA is supported by grant support from NHLBI (RO1HL076801) and NIDCR (RO1DE014079).

Acknowledgments

We thank all the authors for carefully reading the manuscript and providing their valuable inputs.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Bratic, I.; Trifunovic, A. Mitochondrial energy metabolism and ageing. Biochim. Biophys. Acta (BBA) Bioenerg. 2010, 1797, 961–967. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  2. Westermann, B. Mitochondrial fusion and fission in cell life and death. Nat. Rev. Mol. Cell Biol. 2010, 11, 872–884. [Google Scholar] [CrossRef]
  3. James, D.I.; Parone, P.A.; Mattenberger, Y.; Martinou, J.-C. hFis1, a Novel Component of the Mammalian Mitochondrial Fission Machinery. J. Biol. Chem. 2003, 278, 36373–36379. [Google Scholar] [CrossRef] [Green Version]
  4. Smirnova, E.; Shurland, D.-L.; Ryazantsev, S.N.; Van Der Bliek, A.M. A Human Dynamin-related Protein Controls the Distribution of Mitochondria. J. Cell Biol. 1998, 143, 351–358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  5. Zhu, P.-P.; Patterson, A.; Stadler, J.; Seeburg, D.P.; Sheng, M.; Blackstone, C. Intra- and Intermolecular Domain Interactions of the C-terminal GTPase Effector Domain of the Multimeric Dynamin-like GTPase Drp1. J. Biol. Chem. 2004, 279, 35967–35974. [Google Scholar] [CrossRef] [Green Version]
  6. Otera, H.; Wang, C.; Cleland, M.M.; Setoguchi, K.; Yokota, S.; Youle, R.J.; Mihara, K. Mff is an essential factor for mitochondrial recruitment of Drp1 during mitochondrial fission in mammalian cells. J. Cell Biol. 2010, 191, 1141–1158. [Google Scholar] [CrossRef] [Green Version]
  7. Lee, Y.-J.; Jeong, S.-Y.; Karbowski, M.; Smith, C.L.; Youle, R.J. Roles of the Mammalian Mitochondrial Fission and Fusion Mediators Fis1, Drp1, and Opa1 in Apoptosis. Mol. Biol. Cell 2004, 15, 5001–5011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  8. Chen, H.; Detmer, S.A.; Ewald, A.J.; Griffin, E.E.; Fraser, S.E.; Chan, D.C. Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J. Cell Biol. 2003, 160, 189–200. [Google Scholar] [CrossRef] [PubMed]
  9. Olichon, A.; Baricault, L.; Gas, N.; Guillou, E.; Valette, A.; Belenguer, P.; Lenaers, G. Loss of OPA1 Perturbates the Mitochondrial Inner Membrane Structure and Integrity, Leading to Cytochrome c Release and Apoptosis. J. Biol. Chem. 2003, 278, 7743–7746. [Google Scholar] [CrossRef] [Green Version]
  10. Cipolat, S.; De Brito, O.M.; Zilio, B.D.; Scorrano, L. OPA1 requires mitofusin 1 to promote mitochondrial fusion. Proc. Natl. Acad. Sci. USA 2004, 101, 15927–15932. [Google Scholar] [CrossRef] [Green Version]
  11. Arnoult, D.; Grodet, A.; Lee, Y.-J.; Estaquier, J.; Blackstone, C. Release of OPA1 during Apoptosis Participates in the Rapid and Complete Release of Cytochrome c and Subsequent Mitochondrial Fragmentation. J. Biol. Chem. 2005, 280, 35742–35750. [Google Scholar] [CrossRef] [Green Version]
  12. Frezza, C.; Cipolat, S.; De Brito, O.M.; Micaroni, M.; Beznoussenko, G.V.; Rudka, T.; Bartoli, D.; Polishuck, R.S.; Danial, N.N.; De Strooper, B.; et al. OPA1 Controls Apoptotic Cristae Remodeling Independently from Mitochondrial Fusion. Cell 2006, 126, 177–189. [Google Scholar] [CrossRef] [Green Version]
  13. Yasukawa, K.; Oshiumi, H.; Takeda, M.; Ishihara, N.; Yanagi, Y.; Seya, T.; Kawabata, S.-I.; Koshiba, T. Mitofusin 2 Inhibits Mitochondrial Antiviral Signaling. Sci. Signal. 2009, 2, ra47. [Google Scholar] [CrossRef]
  14. Biacchesi, S.; LeBerre, M.; Lamoureux, A.; Louise, Y.; Lauret, E.; Boudinot, P.; Brémont, M. Mitochondrial Antiviral Signaling Protein Plays a Major Role in Induction of the Fish Innate Immune Response against RNA and DNA Viruses. J. Virol. 2009, 83, 7815–7827. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  15. Castanier, C.; Garcin, D.; Vazquez, A.; Arnoult, D. Mitochondrial dynamics regulate the RIG-I-like receptor antiviral pathway. EMBO Rep. 2010, 11, 133–138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  16. Horner, S.M.; Liu, H.M.; Park, H.S.; Briley, J.; Gale, J.M.J. Mitochondrial-associated endoplasmic reticulum membranes (MAM) form innate immune synapses and are targeted by hepatitis C virus. Proc. Natl. Acad. Sci. USA 2011, 108, 14590–14595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  17. de Brito, O.M.; Scorrano, L. Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature 2008, 456, 605–610. [Google Scholar] [CrossRef] [PubMed]
  18. Koshiba, T.; Yasukawa, K.; Yanagi, Y.; Kawabata, S.-I. Mitochondrial Membrane Potential Is Required for MAVS-Mediated Antiviral Signaling. Sci. Signal. 2011, 4, ra7. [Google Scholar] [CrossRef]
  19. Chan, D.C. Mitochondria: Dynamic Organelles in Disease, Aging, and Development. Cell 2006, 125, 1241–1252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  20. Franceschi, C.; Garagnani, P.; Parini, P.; Giuliani, C.; Santoro, A. Inflammaging: A new immune–metabolic viewpoint for age-related diseases. Nat. Rev. Endocrinol. 2018, 14, 576–590. [Google Scholar] [CrossRef] [PubMed]
  21. Bellumkonda, L.; Tyrrell, D.; Hummel, S.L.; Goldstein, D. Pathophysiology of heart failure and frailty: A common inflammatory origin? Aging Cell 2017, 16, 444–450. [Google Scholar] [CrossRef]
  22. Cannatà, A.; Marcon, G.; Cimmino, G.; Camparini, L.; Ciucci, G.; Sinagra, G.; Loffredo, F.S. Role of circulating factors in cardiac aging. J. Thorac. Dis. 2017, 9, S17–S29. [Google Scholar] [CrossRef] [Green Version]
  23. Franceschi, C.; Campisi, J. Chronic Inflammation (Inflammaging) and Its Potential Contribution to Age-Associated Diseases. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2014, 69 (Suppl. S1), S4–S9. [Google Scholar] [CrossRef] [PubMed]
  24. Marín-García, J.; Akhmedov, A.T. Mitochondrial dynamics and cell death in heart failure. Hear. Fail. Rev. 2016, 21, 123–136. [Google Scholar] [CrossRef]
  25. Song, M.; Mihara, K.; Chen, Y.; Scorrano, L.; Dorn, G.W. Mitochondrial Fission and Fusion Factors Reciprocally Orchestrate Mitophagic Culling in Mouse Hearts and Cultured Fibroblasts. Cell Metab. 2015, 21, 273–286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  26. Chen, Y.; Liu, Y.; Dorn, G.W. Mitochondrial Fusion is Essential for Organelle Function and Cardiac Homeostasis. Circ. Res. 2011, 109, 1327–1331. [Google Scholar] [CrossRef] [PubMed]
  27. Miyamoto, S. Autophagy and cardiac aging. Cell Death Differ. 2019, 26, 653–664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  28. Seo, A.Y.; Joseph, A.-M.; Dutta, D.; Hwang, J.C.Y.; Aris, J.P.; Leeuwenburgh, C. New insights into the role of mitochondria in aging: Mitochondrial dynamics and more. J. Cell Sci. 2010, 123, 2533–2542. [Google Scholar] [CrossRef] [Green Version]
  29. Wu, N.N.; Zhang, Y.; Ren, J. Mitophagy, Mitochondrial Dynamics, and Homeostasis in Cardiovascular Aging. Oxidative Med. Cell. Longev. 2019, 2019, 1–15. [Google Scholar] [CrossRef] [Green Version]
  30. Yasuda, K.; Ishii, T.; Suda, H.; Akatsuka, A.; Hartman, P.S.; Goto, S.; Miyazawa, M.; Ishii, N. Age-related changes of mitochondrial structure and function in Caenorhabditis elegans. Mech. Ageing Dev. 2006, 127, 763–770. [Google Scholar] [CrossRef]
  31. Park, S.; Won, J.-H.; Hwang, I.; Hong, S.; Lee, H.K.; Yu, J.-W. Defective mitochondrial fission augments NLRP3 inflammasome activation. Sci. Rep. 2015, 5, 15489. [Google Scholar] [CrossRef] [Green Version]
  32. Thai, P.N.; Seidlmayer, L.K.; Miller, C.; Ferrero, M.; Ii, G.W.D.; Schaefer, S.; Bers, D.M.; Dedkova, E.N. Mitochondrial Quality Control in Aging and Heart Failure: Influence of Ketone Bodies and Mitofusin-Stabilizing Peptides. Front. Physiol. 2019, 10, 382. [Google Scholar] [CrossRef] [Green Version]
  33. Shires, S.E.; Gustafsson, Å.B. Mitophagy and heart failure. J. Mol. Med. Berl. 2015, 93, 253–262. [Google Scholar] [CrossRef] [Green Version]
  34. Morciano, G.; Patergnani, S.; Bonora, M.; Pedriali, G.; Tarocco, A.; Bouhamida, E.; Marchi, S.; Ancora, G.; Anania, G.; Wieckowski, M.R.; et al. Mitophagy in Cardiovascular Diseases. J. Clin. Med. 2020, 9, 892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  35. Kang, Y.; Zhang, H.; Zhao, Y.; Wang, Y.; Wang, W.; He, Y.; Zhang, W.; Zhang, W.; Zhu, X.; Zhou, Y.; et al. Telomere Dysfunction Disturbs Macrophage Mitochondrial Metabolism and the NLRP3 Inflammasome through the PGC-1α/TNFAIP3 Axis. Cell Rep. 2018, 22, 3493–3506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  36. Van Beek, A.A.; Van den Bossche, J.; Mastroberardino, P.G.; de Winther, M.P.J.; Leenen, P.J.M. Metabolic Alterations in Aging Macrophages: Ingredients for Inflammaging? Trends Immunol. 2019, 40, 113–127. [Google Scholar] [CrossRef] [PubMed]
  37. He, Q.; Li, Z.; Meng, C.; Wu, J.; Zhao, Y. Parkin-Dependent Mitophagy is Required for the Inhibition of ATF4 on NLRP3 Inflammasome Activation in Cerebral Ischemia-Reperfusion Injury in Rats. Cells 2019, 8, 897. [Google Scholar] [CrossRef] [Green Version]
  38. Kuma, A.; Mizushima, N.; Ishihara, N.; Ohsumi, Y. Formation of the approximately 350-kDa Apg12-Apg5.Apg16 multimeric complex, mediated by Apg16 oligomerization, is essential for autophagy in yeast. J. Biol. Chem. 2002, 277, 18619–18625. [Google Scholar] [CrossRef] [Green Version]
  39. Mizushima, N.; Kuma, A.; Kobayashi, Y.; Yamamoto, A.; Matsubae, M.; Takao, T.; Natsume, T.; Ohsumi, Y.; Yoshimori, T. Mouse Apg16L, a novel WD-repeat protein, targets to the autophagic isolation membrane with the Apg12-Apg5 conjugate. J. Cell Sci. 2003, 116, 1679–1688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  40. Mizushima, N.; Yamamoto, A.; Hatano, M.; Kobayashi, Y.; Kabeya, Y.; Suzuki, K.; Tokuhisa, T.; Ohsumi, Y.; Yoshimori, T. Dissection of Autophagosome Formation Using Apg5-Deficient Mouse Embryonic Stem Cells. J. Cell Biol. 2001, 152, 657–668. [Google Scholar] [CrossRef] [Green Version]
  41. Taguchi-Atarashi, N.; Hamasaki, M.; Matsunaga, K.; Omori, H.; Ktistakis, N.T.; Yoshimori, T.; Noda, T. Modulation of Local PtdIns3P Levels by the PI Phosphatase MTMR3 Regulates Constitutive Autophagy. Traffic 2010, 11, 468–478. [Google Scholar] [CrossRef]
  42. Vergne, I.; Roberts, E.; Elmaoued, R.A.; Tosch, V.; Delgado, M.A.; Proikas-Cezanne, T.; Deretic, V. Control of autophagy initiation by phosphoinositide 3-phosphatase Jumpy. EMBO J. 2009, 28, 2244–2258. [Google Scholar] [CrossRef]
  43. Hirota, Y.; Tanaka, Y. A small GTPase, human Rab32, is required for the formation of autophagic vacuoles under basal conditions. Cell. Mol. Life Sci. 2009, 66, 2913–2932. [Google Scholar] [CrossRef]
  44. Itoh, T.; Fujita, N.; Kanno, E.; Yamamoto, A.; Yoshimori, T.; Fukuda, M. Golgi-resident Small GTPase Rab33B Interacts with Atg16L and Modulates Autophagosome Formation. Mol. Biol. Cell 2008, 19, 2916–2925. [Google Scholar] [CrossRef] [Green Version]
  45. Gutierrez, M.G.; Munafó, D.B.; Berón, W.; Colombo, M.I. Rab7 is required for the normal progression of the autophagic pathway in mammalian cells. J. Cell Sci. 2004, 117, 2687–2697. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  46. Jäger, S.; Bucci, C.; Tanida, I.; Ueno, T.; Kominami, E.; Saftig, P.; Eskelinen, E.-L. Role for Rab7 in maturation of late autophagic vacuoles. J. Cell Sci. 2004, 117, 4837–4848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  47. Itakura, E.; Kishi, C.; Inoue, K.; Mizushima, N. Beclin 1 Forms Two Distinct Phosphatidylinositol 3-Kinase Complexes with Mammalian Atg14 and UVRAG. Mol. Biol. Cell 2008, 19, 5360–5372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  48. Liang, C.; Feng, P.; Ku, B.; Dotan, I.; Canaani, D.; Oh, B.-H.; Jung, J.U. Autophagic and tumour suppressor activity of a novel Beclin1-binding protein UVRAG. Nat. Cell Biol. 2006, 8, 688–698. [Google Scholar] [CrossRef]
  49. Matsunaga, K.; Saitoh, T.; Tabata, K.; Omori, H.; Satoh, T.; Kurotori, N.; Maejima, I.; Shirahama-Noda, K.; Ichimura, T.; Isobe, T.; et al. Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages. Nat. Cell Biol. 2009, 11, 385–396. [Google Scholar] [CrossRef] [PubMed]
  50. Takahashi, Y.; Coppola, D.; Matsushita, N.; Cualing, H.D.; Sun, M.; Sato, Y.; Liang, C.; Jung, J.U.; Cheng, J.Q.; Mul, J.J.; et al. Bif-1 interacts with Beclin 1 through UVRAG and regulates autophagy and tumorigenesis. Nat. Cell Biol. 2007, 9, 1142–1151. [Google Scholar] [CrossRef]
  51. Zhong, Y.; Wang, Q.; Li, X.; Yan, Y.; Backer, J.M.; Chait, B.T.; Heintz, N.; Yue, Z. Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1–phosphatidylinositol-3-kinase complex. Nat. Cell Biol. 2009, 11, 468–476. [Google Scholar] [CrossRef] [PubMed]
  52. Tanida, I.; Ueno, T.; Kominami, E. LC3 and Autophagy. In Methods in Molecular Biology; Springer Science and Business Media LLC: Tokyo, Japan, 2008; Volume 445, pp. 77–88. [Google Scholar]
  53. Tanida, I.; Wakabayashi, M.; Kanematsu, T.; Minematsu-Ikeguchi, N.; Sou, Y.-S.; Hirata, M.; Ueno, T.; Kominami, E. Lysosomal Turnover of GABARAP-Phospholipid Conjugate is Activated During Differentiation of C2C12 Cells to Myotubes without Inactivation of the mTor Kinase-Signaling Pathway. Autophagy 2006, 2, 264–271. [Google Scholar] [CrossRef] [Green Version]
  54. Caly, L.; Druce, J.D.; Catton, M.G.; Jans, D.A.; Wagstaff, K.M. The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antivir. Res. 2020, 178, 104787. [Google Scholar] [CrossRef] [PubMed]
  55. Dou, Q.; Chen, H.-N.; Wang, K.; Yuan, K.; Lei, Y.; Li, K.; Lan, J.; Chen, Y.; Huang, Z.; Xie, N.; et al. Ivermectin Induces Cytostatic Autophagy by Blocking the PAK1/Akt Axis in Breast Cancer. Cancer Res. 2016, 76, 4457–4469. [Google Scholar] [CrossRef] [Green Version]
  56. Wang, M.; Cao, R.; Zhang, L.; Yang, X.; Liu, J.; Xu, M.; Shi, Z.; Hu, Z.; Zhong, W.; Xiao, G. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 2020, 30, 269–271. [Google Scholar] [CrossRef]
  57. Wang, X.; Shen, C.; Liu, Z.; Peng, F.; Chen, X.; Yang, G.; Zhang, D.; Yin, Z.; Ma, J.; Zheng, Z.; et al. Nitazoxanide, an antiprotozoal drug, inhibits late-stage autophagy and promotes ING1-induced cell cycle arrest in glioblastoma. Cell Death Dis. 2018, 9, 1–15. [Google Scholar] [CrossRef] [PubMed]
  58. Yao, X.; Ye, F.; Zhang, M.; Cui, C.; Huang, B.; Niu, P.; Liu, X.; Zhao, L.; Dong, E.; Song, C.; et al. In Vitro Antiviral Activity and Projection of Optimized Dosing Design of Hydroxychloroquine for the Treatment of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Clin. Infect. Dis. 2020, 71, 732–739. [Google Scholar] [CrossRef] [Green Version]
  59. Mauthe, M.; Orhon, I.; Rocchi, C.; Zhou, X.; Luhr, M.; Hijlkema, K.-J.; Coppes, R.P.; Engedal, N.; Mari, M.; Reggiori, F. Chloroquine inhibits autophagic flux by decreasing autophagosome-lysosome fusion. Autophagy 2018, 14, 1435–1455. [Google Scholar] [CrossRef]
  60. Wu, C.-Y.; Jan, J.-T.; Ma, S.-H.; Kuo, C.-J.; Juan, H.-F.; Cheng, Y.-S.E.; Hsu, H.-H.; Huang, H.-C.; Wu, D.; Brik, A.; et al. Small molecules targeting severe acute respiratory syndrome human coronavirus. Proc. Natl. Acad. Sci. USA 2004, 101, 10012–10017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  61. Klein, B.P.; Wörndl, K.; Lütz-Meindl, U.; Kerschbaum, H.H. Perturbation of intracellular K+ homeostasis with valinomycin promotes cell death by mitochondrial swelling and autophagic processes. Apoptosis 2011, 16, 1101–1117. [Google Scholar] [CrossRef] [PubMed]
  62. Zhu, J.; Yu, W.; Liu, B.; Wang, Y.; Shao, J.; Wang, J.; Xia, K.; Liang, C.; Fang, W.; Zhou, C.; et al. Escin induces caspase-dependent apoptosis and autophagy through the ROS/p38 MAPK signalling pathway in human osteosarcoma cells in vitro and in vivo. Cell Death Dis. 2017, 8, e3113. [Google Scholar] [CrossRef] [Green Version]
  63. Keyaerts, E.; Vijgen, L.; Maes, P.; Neyts, J.; Van Ranst, M. In vitro inhibition of severe acute respiratory syndrome coronavirus by chloroquine. Biochem. Biophys. Res. Commun. 2004, 323, 264–268. [Google Scholar] [CrossRef]
  64. Vincent, M.J.; Bergeron, E.; Benjannet, S.; Erickson, B.R.; Rollin, P.E.; Ksiazek, T.G.; Seidah, N.G.; Nichol, S.T. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol. J. 2005, 2, 69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  65. Gassen, N.C.; Niemeyer, D.; Muth, D.; Corman, V.M.; Martinelli, S.; Gassen, A.; Hafner, K.; Papies, J.; Mösbauer, K.; Zellner, A.; et al. SKP2 attenuates autophagy through Beclin1-ubiquitination and its inhibition reduces MERS-Coronavirus infection. Nat. Commun. 2019, 10, 5770. [Google Scholar] [CrossRef] [PubMed]
  66. Malik, S.A.; Orhon, I.; Morselli, E.; Criollo, A.; Shen, S.; Mariño, G.; Ben Younès, A.; Bénit, P.; Rustin, P.; Maiuri, M.C.; et al. BH3 mimetics activate multiple pro-autophagic pathways. Oncogene 2011, 30, 3918–3929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  67. Martinet, W.; Verheye, S.; De Meyer, G. Everolimus-Induced mTOR Inhibition Selectively Depletes Macrophages in Atherosclerotic Plaques by Autophagy. Autophagy 2007, 3, 241–244. [Google Scholar] [CrossRef] [Green Version]
  68. Kindrachuk, J.; Ork, B.; Hart, B.; Mazur, S.; Holbrook, M.R.; Frieman, M.B.; Traynor, D.; Johnson, R.F.; Dyall, J.; Kuhn, J.H.; et al. Antiviral Potential of ERK/MAPK and PI3K/AKT/mTOR Signaling Modulation for Middle East Respiratory Syndrome Coronavirus Infection as Identified by Temporal Kinome Analysis. Antimicrob. Agents Chemother. 2015, 59, 1088–1099. [Google Scholar] [CrossRef] [Green Version]
  69. Noda, T.; Ohsumi, Y. Tor, a phosphatidylinositol kinase homologue, controls autophagy in yeast. J. Biol. Chem. 1998, 273, 3963–3966. [Google Scholar] [CrossRef] [Green Version]
  70. Blommaart, E.F.C.; Krause, U.; Schellens, J.P.M.; Vreeling-Sindelarova, H.; Meijer, A.J. The Phosphatidylinositol 3-Kinase Inhibitors Wortmannin and LY294002 Inhibit Autophagy in Isolated Rat Hepatocytes. J. Biol. Inorg. Chem. 1997, 243, 240–246. [Google Scholar] [CrossRef] [Green Version]
  71. Zhu, J.-H.; Horbinski, C.; Guo, F.; Watkins, S.; Uchiyama, Y.; Chu, C. Regulation of Autophagy by Extracellular Signal-Regulated Protein Kinases During 1-Methyl-4-Phenylpyridinium-Induced Cell Death. Am. J. Pathol. 2007, 170, 75–86. [Google Scholar] [CrossRef] [Green Version]
  72. Reggiori, F.; Monastyrska, I.; Verheije, M.H.; Calì, T.; Ulasli, M.; Bianchi, S.; Bernasconi, R.; de Haan, C.A.; Molinari, M. Coronaviruses Hijack the LC3-I-Positive EDEMosomes, ER-Derived Vesicles Exporting Short-Lived ERAD Regulators, for Replication. Cell Host Microbe 2010, 7, 500–508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  73. Prentice, E.; Jerome, W.G.; Yoshimori, T.; Mizushima, N.; Denison, M.R. Coronavirus Replication Complex Formation Utilizes Components of Cellular Autophagy. J. Biol. Chem. 2004, 279, 10136–10141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  74. Seglen, P.O.; Gordon, P.B. 3-Methyladenine: Specific inhibitor of autophagic/lysosomal protein degradation in isolated rat hepatocytes. Proc. Natl. Acad. Sci. USA 1982, 79, 1889–1892. [Google Scholar] [CrossRef] [Green Version]
  75. Klionsky, D.J.; Elazar, Z.; Seglen, P.O.; Rubinsztein, D.C. Does bafilomycin A1block the fusion of autophagosomes with lysosomes? Autophagy 2008, 4, 849–850. [Google Scholar] [CrossRef] [Green Version]
  76. Itakura, E.; Kishi-Itakura, C.; Mizushima, N. The Hairpin-type Tail-Anchored SNARE Syntaxin 17 Targets to Autophagosomes for Fusion with Endosomes/Lysosomes. Cell 2012, 151, 1256–1269. [Google Scholar] [CrossRef] [Green Version]
  77. Cuervo, A.M.; Dice, J.F. A Receptor for the Selective Uptake and Degradation of Proteins by Lysosomes. Sciences 1996, 273, 501–503. [Google Scholar] [CrossRef]
  78. Meissner, C.; Lorenz, H.; Weihofen, A.; Selkoe, D.J.; Lemberg, M.K. The mitochondrial intramembrane protease PARL cleaves human Pink1 to regulate Pink1 trafficking. J. Neurochem. 2011, 117, 856–867. [Google Scholar] [CrossRef] [PubMed]
  79. Narendra, D.P.; Jin, S.M.; Tanaka, A.; Suen, D.-F.; Gautier, C.A.; Shen, J.; Cookson, M.R.; Youle, R.J. PINK1 is Selectively Stabilized on Impaired Mitochondria to Activate Parkin. PLoS Biol. 2010, 8, e1000298. [Google Scholar] [CrossRef] [Green Version]
  80. Lazarou, M.; Sliter, D.A.; Kane, L.A.; Sarraf, S.A.; Wang, C.; Burman, J.L.; Sideris, D.P.; Fogel, A.I.; Youle, R.J. The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature 2015, 524, 309–314. [Google Scholar] [CrossRef] [Green Version]
  81. Heo, J.M.; Ordureau, A.; Paulo, J.A.; Rinehart, J.; Harper, J.W. The PINK1-PARKIN Mitochondrial Ubiquitylation Pathway Drives a Program of OPTN/NDP52 Recruitment and TBK1 Activation to Promote Mitophagy. Mol. Cell. 2015, 60, 7–20. [Google Scholar] [CrossRef] [Green Version]
  82. Matsumoto, G.; Shimogori, T.; Hattori, N.; Nukina, N. TBK1 controls autophagosomal engulfment of polyubiquitinated mitochondria through p62/SQSTM1 phosphorylation. Hum. Mol. Genet. 2015, 24, 4429–4442. [Google Scholar] [CrossRef] [Green Version]
  83. Sutovsky, P.; Van Leyen, K.; McCauley, T.; Day, B.N.; Sutovsky, M. Degradation of paternal mitochondria after fertilization: Implications for heteroplasmy, assisted reproductive technologies and mtDNA inheritance. Reprod. Biomed. Online 2004, 8, 24–33. [Google Scholar] [CrossRef]
  84. Rawi, S.; Louvet-Vallée, S.; Djeddi, A.; Sachse, M.; Culetto, E.; Hajjar, C.; Boyd, L.; Legouis, R.; Galy, V. Postfertilization Autophagy of Sperm Organelles Prevents Paternal Mitochondrial DNA Transmission. Science 2011, 334, 1144–1147. [Google Scholar] [CrossRef] [PubMed]
  85. Zhang, C.; Cuervo, A.M. Restoration of chaperone-mediated autophagy in aging liver improves cellular maintenance and hepatic function. Nat. Med. 2008, 14, 959–965. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  86. Lipinski, M.M.; Zheng, B.; Lu, T.; Yan, Z.; Py, B.F.; Ng, A.; Li, C.; Yankner, B.A.; Scherzer, C.R.; Yuan, J. Genome-wide analysis reveals mechanisms modulating autophagy in normal brain aging and in Alzheimer’s disease. Proc. Natl. Acad. Sci. USA 2010, 107, 14164–14169. [Google Scholar] [CrossRef] [Green Version]
  87. Wang, J.; Ahn, I.; Fischer, T.D.; Byeon, J.; Dunn, W.A.; Behrns, K.E.; Leeuwenburgh, C.; Kim, J. Autophagy Suppresses Age-Dependent Ischemia and Reperfusion Injury in Livers of Mice. Gastroenterology 2011, 141, 2188–2199.e6. [Google Scholar] [CrossRef] [Green Version]
  88. Lemasters, J.J. Selective Mitochondrial Autophagy, or Mitophagy, as a Targeted Defense Against Oxidative Stress, Mitochondrial Dysfunction, and Aging. Rejuvenation Res. 2005, 8, 3–5. [Google Scholar] [CrossRef] [PubMed]
  89. Aita, V.M.; Liang, X.H.; Murty, V.V.; Pincus, D.L.; Yu, W.; Cayanis, E.; Kalachikov, S.; Gilliam, T.C.; Levine, B. Cloning and genomic organization of beclin 1, a candidate tumor suppressor gene on chromosome 17q21. Genomics 1999, 59, 59–65. [Google Scholar] [CrossRef]
  90. Cully, M.; You, H.; Levine, A.J.; Mak, T.W. Beyond PTEN mutations: The PI3K pathway as an integrator of multiple inputs during tumorigenesis. Nat. Rev. Cancer 2006, 6, 184–192. [Google Scholar] [CrossRef]
  91. Liang, J.; Shao, S.H.; Xu, Z.-X.; Hennessy, B.; Ding, Z.; Larrea, M.; Kondo, S.; Dumont, D.J.; Gutterman, J.U.; Walker, C.L.; et al. The energy sensing LKB1–AMPK pathway regulates p27kip1 phosphorylation mediating the decision to enter autophagy or apoptosis. Nat. Cell Biol. 2007, 9, 218–224. [Google Scholar] [CrossRef]
  92. Degtyarev, M.; De Mazière, A.; Orr, C.; Lin, J.; Lee, B.B.; Tien, J.Y.; Prior, W.W.; Dijk, S.v.; Wu, H.; Gray, D.C.; et al. Akt inhibition promotes autophagy and sensitizes PTEN-null tumors to lysosomotropic agents. J. Cell Biol. 2008, 183, 101–116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  93. Hezel, A.F.; Bardeesy, N. LKB1; linking cell structure and tumor suppression. Oncogene 2008, 27, 6908–6919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  94. Maurer, I.; Zierz, S.; Möller, H. A selective defect of cytochrome c oxidase is present in brain of Alzheimer disease patients. Neurobiol. Aging 2000, 21, 455–462. [Google Scholar] [CrossRef]
  95. Cui, L.; Jeong, H.; Borovecki, F.; Parkhurst, C.N.; Tanese, N.; Krainc, D. Transcriptional Repression of PGC-1α by Mutant Huntingtin Leads to Mitochondrial Dysfunction and Neurodegeneration. Cell 2006, 127, 59–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  96. Casuso, R.A.; Huertas, J.R. The emerging role of skeletal muscle mitochondrial dynamics in exercise and ageing. Ageing Res. Rev. 2020, 58, 101025. [Google Scholar] [CrossRef] [PubMed]
  97. Casuso, R.A.; Huertas, J.R. Mitochondrial Functionality in Inflammatory Pathology-Modulatory Role of Physical Activity. Life 2021, 11, 61. [Google Scholar] [CrossRef]
  98. Horner, S.M.; Gale, M.J. Regulation of hepatic innate immunity by hepatitis C virus. Nat. Med. 2013, 19, 879–888. [Google Scholar] [CrossRef] [Green Version]
  99. Datan, E.; Roy, S.G.; Germain, G.; Zali, N.; McLean, J.E.; Golshan, G.; Harbajan, S.; Lockshin, R.A.; Zakeri, Z. Dengue-induced autophagy, virus replication and protection from cell death require ER stress (PERK) pathway activation. Cell Death Dis. 2016, 7, e2127. [Google Scholar] [CrossRef] [Green Version]
  100. Liang, Q.; Luo, Z.; Zeng, J.; Chen, W.; Foo, S.-S.; Lee, S.-A.; Ge, J.; Wang, S.; Glodman, S.A.; Zlokovic, B.V.; et al. Zika Virus NS4A and NS4B Proteins Deregulate Akt-mTOR Signaling in Human Fetal Neural Stem Cells to Inhibit Neurogenesis and Induce Autophagy. Cell Stem Cell 2016, 19, 663–671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  101. Joubert, P.-E.; Werneke, S.W.; De La Calle, C.; Guivel-Benhassine, F.; Giodini, A.; Peduto, L.; Levine, B.; Schwartz, O.; Lenschow, D.J.; Albert, M.L. Chikungunya virus–induced autophagy delays caspase-dependent cell death. J. Exp. Med. 2012, 209, 1029–1047. [Google Scholar] [CrossRef] [PubMed]
  102. Lee, Y.-R.; Lei, H.-Y.; Liu, M.-T.; Wang, J.-R.; Chen, S.-H.; Jiang-Shieh, Y.-F.; Lin, Y.-S.; Yeh, T.-M.; Liu, C.-C.; Liu, H.-S. Autophagic machinery activated by dengue virus enhances virus replication. Virology 2008, 374, 240–248. [Google Scholar] [CrossRef] [Green Version]
  103. McLean, J.E.; Wudzinska, A.; Datan, E.; Quaglino, D.; Zakeri, Z. Flavivirus NS4A-induced Autophagy Protects Cells against Death and Enhances Virus Replication. J. Biol. Chem. 2011, 286, 22147–22159. [Google Scholar] [CrossRef] [Green Version]
  104. Zhu, L.; Mou, C.; Yang, X.; Lin, J.; Yang, Q. Mitophagy in TGEV infection counteracts oxidative stress and apoptosis. Oncotarget 2016, 7, 27122–27141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  105. Meng, G.; Xia, M.; Wang, D.; Chen, A.; Wang, Y.; Wang, H.; Yu, D.; Wei, J. Mitophagy promotes replication of oncolytic Newcastle disease virus by blocking intrinsic apoptosis in lung cancer cells. Oncotarget 2014, 5, 6365–6374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  106. Barbier, V.; Lang, D.; Valois, S.; Rothman, A.; Medin, C.L. Dengue virus induces mitochondrial elongation through impairment of Drp1-triggered mitochondrial fission. Virology 2017, 500, 149–160. [Google Scholar] [CrossRef] [PubMed]
  107. Yu, C.-Y.; Liang, J.-J.; Li, J.-K.; Lee, Y.-L.; Chang, B.-L.; Su, C.-I.; Huang, W.-J.; Lai, M.M.C.; Lin, Y.-L. Dengue Virus Impairs Mitochondrial Fusion by Cleaving Mitofusins. PLoS Pathog. 2015, 11, e1005350. [Google Scholar] [CrossRef] [Green Version]
  108. Zamarin, D.; Garcia-Sastre, A.; Xiao, X.; Wang, R.; Palese, P. Influenza Virus PB1-F2 Protein Induces Cell Death through Mitochondrial ANT3 and VDAC1. PLoS Pathog. 2005, 1, e4. [Google Scholar] [CrossRef]
  109. Kim, S.-J.; Syed, G.; Siddiqui, A. Hepatitis C Virus Induces the Mitochondrial Translocation of Parkin and Subsequent Mitophagy. PLoS Pathog. 2013, 9, e1003285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  110. Gou, H.; Zhao, M.; Xu, H.; Yuan, J.; He, W.; Zhu, M.; Ding, H.; Yi, L.; Chen, J. CSFV induced mitochondrial fission and mitophagy to inhibit apoptosis. Oncotarget 2017, 8, 39382–39400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  111. Ding, B.; Zhang, L.; Li, Z.; Zhong, Y.; Tang, Q.; Qin, Y.; Chen, M. The Matrix Protein of Human Parainfluenza Virus Type 3 Induces Mitophagy that Suppresses Interferon Responses. Cell Host Microbe 2017, 21, 538–547.e4. [Google Scholar] [CrossRef] [Green Version]
  112. Xia, M.; Meng, G.; Jiang, A.; Chen, A.; Dahlhaus, M.; Gonzalez, P.; Beltinger, C.; Wei, J. Mitophagy switches cell death from apoptosis to necrosis in NSCLC cells treated with oncolytic measles virus. Oncotarget 2014, 5, 3907–3918. [Google Scholar] [CrossRef]
  113. Dasgupta, A.; Wilson, D.W. ATP depletion blocks herpes simplex virus DNA packaging and capsid maturation. J. Virol. 1999, 73, 2006–2015. [Google Scholar] [CrossRef] [Green Version]
  114. Hui, E.K.-W.; Nayak, D.P. Role of ATP in Influenza Virus Budding. Virology 2001, 290, 329–341. [Google Scholar] [CrossRef]
  115. Tritel, M.; Resh, M.D. The Late Stage of Human Immunodeficiency Virus Type 1 Assembly Is an Energy-Dependent Process. J. Virol. 2001, 75, 5473–5481. [Google Scholar] [CrossRef] [Green Version]
  116. Green, D.R.; Reed, J.C. Mitochondria and Apoptosis. Science 1998, 281, 1309. [Google Scholar] [CrossRef]
  117. Liu, Y.; Gao, L.; Xue, Q.; Li, Z.; Wang, L.; Chen, R.; Liu, M.; Wen, Y.; Guan, M.; Li, Y.; et al. Voltage-dependent anion channel involved in the mitochondrial calcium cycle of cell lines carrying the mitochondrial DNA A4263G mutation. Biochem. Biophys. Res. Commun. 2011, 404, 364–369. [Google Scholar] [CrossRef] [PubMed]
  118. Hüttemann, M.; Lee, I.; Pecinova, A.; Pecina, P.; Przyklenk, K.; Doan, J.W. Regulation of oxidative phosphorylation, the mitochondrial membrane potential, and their role in human disease. J. Bioenerg. Biomembr. 2008, 40, 445–456. [Google Scholar] [CrossRef] [PubMed]
  119. Gradzka, I. Mechanisms and regulation of the programmed cell death. Postępy Biochem. 2006, 52, 157–165. [Google Scholar]
  120. Yoneyama, M.; Kikuchi, M.; Natsukawa, T.; Shinobu, N.; Imaizumi, T.; Miyagishi, M.; Taira, K.; Akira, S.; Fujita, T. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat. Immunol. 2004, 5, 730–737. [Google Scholar] [CrossRef] [PubMed]
  121. Maniatis, T.; Falvo, J.V.; Kim, T.H.; Kim, T.K.; Lin, C.H.; Parekh, B.S.; Wathelet, M.G. Structure and function of the interferon-beta enhanceosome. Cold Spring Harb. Symp. Quant. Biol. 1998, 63, 609–620. [Google Scholar] [CrossRef]
  122. Seth, R.B.; Sun, L.; Ea, C.K.; Chen, Z.J. Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3. Cell 2005, 122, 669–682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  123. Meylan, E.; Curran, J.; Hofmann, K.; Moradpour, D.; Binder, M.; Bartenschlager, R.; Tschopp, J. Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus. Nat. Cell Biol. 2005, 437, 1167–1172. [Google Scholar] [CrossRef] [PubMed]
  124. Retracted article: MAVS protects cells from apoptosis by negatively regulating VDAC1. Mol. Cell Biochem. 2013, 375, 219.
  125. Li, X.D.; Sun, L.; Seth, R.B.; Pineda, G.; Chen, Z.J. Hepatitis C virus protease NS3/4A cleaves mitochondrial antiviral signaling protein off the mitochondria to evade innate immunity. Proc. Natl. Acad. Sci. USA 2005, 102, 17717–17722. [Google Scholar] [CrossRef] [Green Version]
  126. Chen, Z.; Benureau, Y.; Rijnbrand, R.; Yi, J.; Wang, T.; Warter, L.; Lanford, R.E.; Weinman, S.A.; Lemon, S.M.; Martin, A.; et al. GB virus B disrupts RIG-I signaling by NS3/4A-mediated cleavage of the adaptor protein MAVS. J. Virol. 2007, 81, 964–976. [Google Scholar] [CrossRef] [Green Version]
  127. Yamada, S.; Shimojima, M.; Narita, R.; Tsukamoto, Y.; Kato, H.; Saijo, M.; Fujita, T. RIG-I-Like Receptor and Toll-Like Receptor Signaling Pathways Cause Aberrant Production of Inflammatory Cytokines/Chemokines in a Severe Fever with Thrombocytopenia Syndrome Virus Infection Mouse Model. J. Virol. 2018, 92, e02246-17. [Google Scholar] [CrossRef] [Green Version]
  128. Hou, F.; Sun, L.; Zheng, H.; Skaug, B.; Jiang, Q.X.; Chen, Z.J. MAVS forms functional prion-like aggregates to activate and propagate antiviral innate immune response. Cell 2011, 146, 448–461. [Google Scholar] [CrossRef] [Green Version]
  129. Xu, H.; He, X.; Zheng, H.; Huang, L.J.; Hou, F.; Yu, Z.; Michael, J.D.L.C.; Brian, B.; Zhang, X.; Chen, Z.J.; et al. Structural basis for the prion-like MAVS filaments in antiviral innate immunity. eLife 2014, 3, e01489. [Google Scholar] [CrossRef] [PubMed]
  130. Dixit, E.; Boulant, S.; Zhang, Y.; Lee, A.S.; Odendall, C.; Shum, B.; Hacohen, N.; Chen, Z.; Whelan, S.; Fransen, M.; et al. Peroxisomes Are Signaling Platforms for Antiviral Innate Immunity. Cell 2010, 141, 668–681. [Google Scholar] [CrossRef] [Green Version]
  131. Ibáñez Cabellos, J.S.; Pérez-Machado, G.; Seco-Cervera, M.; Berenguer-Pascual, E.; García-Giménez, J.; Pallardó, F. Acute telomerase components depletion triggers oxidative stress as an early event previous to telomeric shortening. Redox Biol. 2017, 14, 398–408. [Google Scholar] [CrossRef]
  132. Cao, J.; Wang, X.; Dai, T.; Wu, Y.; Zhang, M.; Cao, R.; Zhang, R.; Wang, G.; Jiang, R.; Zhou, B.P.; et al. Twist promotes tumor metastasis in basal-like breast cancer by transcriptionally upregulating ROR1. Theranostics 2018, 8, 2739–2751. [Google Scholar] [CrossRef]
  133. Galluzzi, L.; Vitale, I.; Aaronson, S.A.; Abrams, J.M.; Adam, D.; Agostinis, P.; Alnemri, E.S.; Altucci, L.; Amelio, I.; Andrews, D.W.; et al. Molecular mechanisms of cell death: Recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 2018, 25, 486–541. [Google Scholar] [CrossRef] [PubMed]
  134. Liu, L.; Jin, X.; Hu, C.-F.; Zhang, Y.-P.; Zhou, Z.; Li, R.; Shen, C.-X. Amphiregulin enhances cardiac fibrosis and aggravates cardiac dysfunction in mice with experimental myocardial infarction partly through activating EGFR-dependent pathway. Basic Res. Cardiol. 2018, 113, 12. [Google Scholar] [CrossRef] [PubMed]
  135. Itteboina, R.; Ballu, S.; Sivan, S.K.; Manga, V. Molecular docking, 3D-QSAR, molecular dynamics, synthesis and anticancer activity of tyrosine kinase 2 (TYK 2) inhibitors. J. Recept. Signal Transduct. 2018, 38, 462–474. [Google Scholar] [CrossRef] [PubMed]
  136. Aanhane, E.; Schulkens, I.A.; Heusschen, R.; Castricum, K.; Leffler, H.; Griffioen, A.W.; Thijssen, V.L. Different angioregulatory activity of monovalent galectin-9 isoforms. Angiogenesis 2018, 21, 545–555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  137. Audia, J.P.; Yang, X.-M.; Crockett, E.S.; Housley, N.; Haq, E.U.; O’Donnell, K.; Cohen, M.V.; Downey, J.M.; Alvarez, D.F. Caspase-1 inhibition by VX-765 administered at reperfusion in P2Y12 receptor antagonist-treated rats provides long-term reduction in myocardial infarct size and preservation of ventricular function. Basic Res. Cardiol. 2018, 113, 32. [Google Scholar] [CrossRef] [PubMed]
  138. Erland, L.A.E.; Yasunaga, A.; Li, I.T.S.; Murch, S.J.; Saxena, P.K. Direct visualization of location and uptake of applied melatonin and serotonin in living tissues and their redistribution in plants in response to thermal stress. J. Pineal Res. 2018, 66, e12527. [Google Scholar] [CrossRef] [Green Version]
  139. Ko, A.; Han, S.Y.; Choi, C.H.; Cho, H.; Lee, M.-S.; Kim, S.-Y.; Song, J.S.; Hong, K.-M.; Lee, H.-W.; Hewitt, S.M.; et al. Oncogene-induced senescence mediated by c-Myc requires USP10 dependent deubiquitination and stabilization of p14ARF. Cell Death Differ. 2018, 25, 1050–1062. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  140. Jain, R.; Mintern, J.D.; Tan, I.; Dewson, G.; Strasser, A.; Gray, D.H.D. How do thymic epithelial cells die? Cell Death Differ. 2018, 25, 1002–1004. [Google Scholar] [CrossRef] [Green Version]
  141. Dickinson, J.D.; Sweeter, J.M.; Warren, K.J.; Ahmad, I.; De Deken, X.; Zimmerman, M.C.; Brody, S.L. Autophagy regulates DUOX1 localization and superoxide production in airway epithelial cells during chronic IL-13 stimulation. Redox Biol. 2018, 14, 272–284. [Google Scholar] [CrossRef] [PubMed]
  142. Köhler, D.; Bibli, S.-I.; Klammer, L.P.; Roth, J.M.; Lehmann, R.; Fleming, I.; Granja, T.F.; Straub, A.; Benz, P.M.; Rosenberger, P. Phosphorylation of vasodilator-stimulated phosphoprotein contributes to myocardial ischemic preconditioning. Basic Res. Cardiol. 2018, 113, 11. [Google Scholar] [CrossRef]
  143. Gandarillas, A.; Molinuevo, R.; Sanz-Gómez, N. Mammalian endoreplication emerges to reveal a potential developmental timer. Cell Death Differ. 2018, 25, 471–476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  144. Li, X.; Fang, P.; Mai, J.; Choi, E.T.; Wang, H.; Yang, X.-F. Targeting mitochondrial reactive oxygen species as novel therapy for inflammatory diseases and cancers. J. Hematol. Oncol. 2013, 6, 19. [Google Scholar] [CrossRef] [Green Version]
  145. Jo, E.-K.; Kim, J.K.; Shin, D.-M.; Sasakawa, C. Molecular mechanisms regulating NLRP3 inflammasome activation. Cell. Mol. Immunol. 2016, 13, 148–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  146. Naik, E.; Dixit, V.M. Mitochondrial reactive oxygen species drive proinflammatory cytokine production. J. Exp. Med. 2011, 208, 417–420. [Google Scholar] [CrossRef] [PubMed]
  147. Twig, G.; Shirihai, O.S. The Interplay Between Mitochondrial Dynamics and Mitophagy. Antioxid. Redox Signal. 2011, 14, 1939–1951. [Google Scholar] [CrossRef] [Green Version]
  148. Mittal, M.; Siddiqui, M.R.; Tran, K.; Reddy, S.P.; Malik, A.B. Reactive Oxygen Species in Inflammation and Tissue Injury. Antioxid. Redox Signal. 2014, 20, 1126–1167. [Google Scholar] [CrossRef] [Green Version]
  149. West, A.P.; Khoury-Hanold, W.; Staron, M.; Tal, M.; Pineda, C.M.; Lang, S.M.; Bestwick, M.; Duguay, B.A.; Raimundo, N.; MacDuff, D.A.; et al. Mitochondrial DNA stress primes the antiviral innate immune response. Nat. Cell Biol. 2015, 520, 553–557. [Google Scholar] [CrossRef] [Green Version]
  150. Nakahira, K.; Haspel, J.A.; Rathinam, V.A.; Lee, S.-J.; Dolinay, T.; Lam, H.C.; Englert, J.A.; Rabinovitch, M.; Cernadas, M.; Kim, H.P.; et al. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat. Immunol. 2011, 12, 222–230. [Google Scholar] [CrossRef] [Green Version]
  151. Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet 2020, 395, 1054–1062. [Google Scholar] [CrossRef]
  152. Thellung, S.; Corsaro, A.; Nizzari, M.; Barbieri, F.; Florio, T. Autophagy Activator Drugs: A New Opportunity in Neuroprotection from Misfolded Protein Toxicity. Int. J. Mol. Sci. 2019, 20, 901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  153. Szewczyk, A.; Wojtczak, L. Mitochondria as a pharmacological target. Pharmacol. Rev. 2002, 54, 101–127. [Google Scholar] [CrossRef] [Green Version]
  154. Javadov, S.; Karmazyn, M. Mitochondrial Permeability Transition Pore Opening as an Endpoint to Initiate Cell Death and as a Putative Target for Cardioprotection. Cell. Physiol. Biochem. 2006, 20, 1–22. [Google Scholar] [CrossRef] [PubMed]
  155. Kondapuram, S.K.; Sarvagalla, S.; Coumar, M.S. Targeting autophagy with small molecules for cancer therapy. J. Cancer Metastasis Treat. 2019, 2019. [Google Scholar] [CrossRef]
  156. Minamino, T.; Komuro, I.; Kitakaze, M. Endoplasmic Reticulum Stress As a Therapeutic Target in Cardiovascular Disease. Circ. Res. 2010, 107, 1071–1082. [Google Scholar] [CrossRef]
  157. Xu, S.; Li, X.; Liu, Y.; Xia, Y.; Chang, R.; Zhang, C. Inflammasome inhibitors: Promising therapeutic approaches against cancer. J. Hematol. Oncol. 2019, 12, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  158. Jung, T.W.; Choi, K.M. Pharmacological Modulators of Endoplasmic Reticulum Stress in Metabolic Diseases. Int. J. Mol. Sci. 2016, 17, 192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  159. Amen, O.M.; Sarker, S.D.; Ghildyal, R.; Arya, A. Endoplasmic Reticulum Stress Activates Unfolded Protein Response Signaling and Mediates Inflammation, Obesity, and Cardiac Dysfunction: Therapeutic and Molecular Approach. Front. Pharmacol. 2019, 10, 977. [Google Scholar] [CrossRef] [Green Version]
  160. Zahid, A.; Li, B.; Kombe, A.J.K.; Jin, T.; Tao, J. Pharmacological Inhibitors of the NLRP3 Inflammasome. Front. Immunol. 2019, 10, 2538. [Google Scholar] [CrossRef] [Green Version]
  161. Rivas, A.; Vidal, R.L.; Hetz, C. Targeting the unfolded protein response for disease intervention. Expert Opin. Ther. Targets 2015, 19, 1–16. [Google Scholar] [CrossRef]
  162. Zhang, L.; Yu, J.; Pan, H.; Hu, P.; Hao, Y.; Cai, W.; Zhu, H.; Yu, A.D.; Xie, X.; Ma, D.; et al. Small molecule regulators of autophagy identified by an image-based high-throughput screen. Proc. Natl. Acad. Sci. USA 2007, 104, 19023–19028. [Google Scholar] [CrossRef] [Green Version]
  163. Vakifahmetoglu-Norberg, H.; Xia, H.-G.; Yuan, J. Pharmacologic agents targeting autophagy. J. Clin. Investig. 2015, 125, 5–13. [Google Scholar] [CrossRef] [Green Version]
  164. Shaw, S.Y.; Tran, K.; Castoreno, A.B.; Peloquin, J.M.; Lassen, K.G.; Khor, B.; Aldrich, L.; Tan, P.H.; Graham, D.B.; Kuballa, P.; et al. Selective Modulation of Autophagy, Innate Immunity, and Adaptive Immunity by Small Molecules. ACS Chem. Biol. 2013, 8, 2724–2733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  165. Vucicevic, L.; Misirkic-Marjanovic, M.; Harhaji-Trajkovic, L.; Maric, N.; Trajkovic, V. Mechanisms and therapeutic significance of autophagy mdulation by antipsychotic drugs. Cell Stress 2018, 2, 282–291. [Google Scholar] [CrossRef]
  166. Christ, M.G.; Clement, A.M.; Behl, C. The Sigma-1 Receptor at the Crossroad of Proteostasis, Neurodegeneration, and Autophagy. Trends Neurosci. 2020, 43, 79–81. [Google Scholar] [CrossRef] [PubMed]
  167. Hayashi, T.; Tsai, S.-Y.; Mori, T.; Fujimoto, M.; Su, T.-P. Targeting ligand-operated chaperone sigma-1 receptors in the treatment of neuropsychiatric disorders. Expert Opin. Ther. Targets 2011, 15, 557–577. [Google Scholar] [CrossRef] [Green Version]
  168. Albayrak, Y.; Hashimoto, K. Sigma-1 Receptor Agonists and Their Clinical Implications in Neuropsychiatric Disorders. Adv. Exp. Med. Biol. 2017, 964, 153–161. [Google Scholar] [CrossRef] [PubMed]
  169. Liere, P.; Pianos, A.; Oudinet, J.-P.; Schumacher, M.; Akwa, Y. Differential effects of the 18-kDa translocator protein (TSPO) ligand etifoxine on steroidogenesis in rat brain, plasma and steroidogenic glands: Pharmacodynamic studies. Psychoneuroendocrinology 2017, 83, 122–134. [Google Scholar] [CrossRef]
  170. Costa, B.; Cavallini, C.; Da Pozzo, E.; Taliani, S.; Da Settimo, F.; Martini, C. The Anxiolytic Etifoxine Binds to TSPO Ro5-4864 Binding Site with Long Residence Time Showing a High Neurosteroidogenic Activity. ACS Chem. Neurosci. 2017, 8, 1448–1454. [Google Scholar] [CrossRef] [PubMed]
  171. Panda, P.K.; Fahrner, A.; Vats, S.; Seranova, E.; Sharma, V.; Chipara, M.; Desai, P.; Torresi, J.; Rosenstock, T.; Kumar, D.; et al. Chemical Screening Approaches Enabling Drug Discovery of Autophagy Modulators for Biomedical Applications in Human Diseases. Front. Cell Dev. Biol. 2019, 7, 38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  172. Tsaytler, P.; Harding, H.; Ron, D.; Bertolotti, A. Selective Inhibition of a Regulatory Subunit of Protein Phosphatase 1 Restores Proteostasis. Science 2011, 332, 91–94. [Google Scholar] [CrossRef]
  173. Pérez-Arancibia, R.; Rivas, A.; Hetz, C.; Pérez, R. (off)Targeting UPR signaling: The race toward intervening ER proteostasis. Expert Opin. Ther. Targets 2017, 22, 97–100. [Google Scholar] [CrossRef] [PubMed]
  174. Allen, G.F.G.; Toth, R.; James, J.; Ganley, I. Loss of iron triggers PINK1/Parkin-independent mitophagy. EMBO Rep. 2013, 14, 1127–1135. [Google Scholar] [CrossRef] [PubMed]
  175. Renna, M.; Jimenez-Sanchez, M.; Sarkar, S.; Rubinsztein, D.C. Chemical Inducers of Autophagy That Enhance the Clearance of Mutant Proteins in Neurodegenerative Diseases. J. Biol. Chem. 2010, 285, 11061–11067. [Google Scholar] [CrossRef] [Green Version]
  176. Goodall, M.L.; Wang, T.; Martin, K.R.; Kortus, M.G.; Kauffman, A.L.; Trent, J.M.; Gately, S.; MacKeigan, J.P. Development of potent autophagy inhibitors that sensitize oncogenic BRAF V600E mutant melanoma tumor cells to vemurafenib. Autophagy 2014, 10, 1120–1136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  177. Khurana, A.; Roy, D.; Kalogera, E.; Mondal, S.; Wen, X.; He, X.; Dowdy, S.; Shridhar, V. Quinacrine promotes autophagic cell death and chemosensitivity in ovarian cancer and attenuates tumor growth. Oncotarget 2015, 6, 36354–36369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  178. Liu, L.; Li, C.-J.; Lu, Y.; Zong, X.-G.; Luo, C.; Sun, J.; Guo, L.-J. Baclofen mediates neuroprotection on hippocampal CA1 pyramidal cells through the regulation of autophagy under chronic cerebral hypoperfusion. Sci. Rep. 2015, 5, srep14474. [Google Scholar] [CrossRef] [Green Version]
  179. Ferrari-Toninelli, G.; Maccarinelli, G.; Uberti, D.L.; Buerger, E.; Memo, M. Mitochondria-targeted antioxidant effects of S(-) and R(+) pramipexole. BMC Pharmacol. 2010, 10, 2. [Google Scholar] [CrossRef] [Green Version]
  180. Takayasu, Y.; Nakaki, J.; Kawasaki, T.; Koda, K.; Ago, Y.; Baba, A.; Matsuda, T. Edaravone, a Radical Scavenger, Inhibits Mitochondrial Permeability Transition Pore in Rat Brain. J. Pharmacol. Sci. 2007, 103, 434–437. [Google Scholar] [CrossRef] [Green Version]
  181. Huang, Y.; Jiang, H.; Chen, Y.; Wang, X.; Yang, Y.; Tao, J.; Deng, X.; Liang, G.; Zhang, H.; Jiang, W.; et al. Tranilast directly targets NLRP 3 to treat inflammasome-driven diseases. EMBO Mol. Med. 2018, 10, e8689. [Google Scholar] [CrossRef]
  182. Almanza, A.; Carlesso, A.; Chintha, C.; Creedican, S.; Doultsinos, D.; Leuzzi, B.; Luís, A.; McCarthy, N.; Montibeller, L.; More, S.; et al. Endoplasmic reticulum stress signaling—from basic mechanisms to clinical applications. FEBS J. 2019, 286, 241–278. [Google Scholar] [CrossRef] [PubMed]
Figure 1. —Steps of Autophagy: Autophagy (macro autophagy) means “self” (“auto”) and “eating” (“phagy”). Autophagy removes dysfunctional and unnecessary cellular components through various steps such as Omegasomes and the initiation of isolation membrane; the elongation of the isolation membrane and formation of autophagosomes; and autophagosome-lysosome fusion and degradation.
Figure 1. —Steps of Autophagy: Autophagy (macro autophagy) means “self” (“auto”) and “eating” (“phagy”). Autophagy removes dysfunctional and unnecessary cellular components through various steps such as Omegasomes and the initiation of isolation membrane; the elongation of the isolation membrane and formation of autophagosomes; and autophagosome-lysosome fusion and degradation.
Ijms 22 08180 g001
Figure 2. Types of Autophagy: Autophagy categorized into three different categories based on differences in their routes to the lysosome.
Figure 2. Types of Autophagy: Autophagy categorized into three different categories based on differences in their routes to the lysosome.
Ijms 22 08180 g002
Figure 3. ER stress-induced unfolded protein receptor [UPR] pathways to cause Autophagy.
Figure 3. ER stress-induced unfolded protein receptor [UPR] pathways to cause Autophagy.
Ijms 22 08180 g003
Figure 4. Autophagy pathway including the convergence of the endocytic pathways.
Figure 4. Autophagy pathway including the convergence of the endocytic pathways.
Ijms 22 08180 g004
Figure 5. Damaged-Induced Mitophagy involves two major proteins: [1] ubiquitin kinase PINK1 (which flags the damaged mitochondria); and [2] parkin, E3 ligase (as a signal amplifier).
Figure 5. Damaged-Induced Mitophagy involves two major proteins: [1] ubiquitin kinase PINK1 (which flags the damaged mitochondria); and [2] parkin, E3 ligase (as a signal amplifier).
Ijms 22 08180 g005
Figure 6. Development-Induced Mitophagy.
Figure 6. Development-Induced Mitophagy.
Ijms 22 08180 g006
Figure 7. Relationships between mitochondrial fission and fusion, apoptosis and mitophagy.
Figure 7. Relationships between mitochondrial fission and fusion, apoptosis and mitophagy.
Ijms 22 08180 g007
Figure 8. Viruses’ influence on beta-oxidation and the TCA cycle.
Figure 8. Viruses’ influence on beta-oxidation and the TCA cycle.
Ijms 22 08180 g008
Figure 9. AMPK regulates a variety of metabolic processes.
Figure 9. AMPK regulates a variety of metabolic processes.
Ijms 22 08180 g009
Figure 10. Mitochondria dysfunction in the pathogenesis of COVID-19.
Figure 10. Mitochondria dysfunction in the pathogenesis of COVID-19.
Ijms 22 08180 g010
Table 1. Effect of the autophagy inducer and inhibitor on the replication of coronavirus in cell cultures.
Table 1. Effect of the autophagy inducer and inhibitor on the replication of coronavirus in cell cultures.
Viruses SpeciesDrugsMechanism of Action at Various Step of Autophagy
Autophagy InducersAutophagy Inhibitor
SARS-CoV-2 [54]Ivermectin Ivertine inhibited SARS-CoV-2 by inhibiting the AKT phosphorylation [55].
SARS-CoV-2 [56] Nitazoxanide/AliniaThese drugs also inhibit SARS-CoV-2 by the blocking of late- stage lysosome acidification [57].
[56,58]ChloroquineChloroquine increses the PH of lysosome and prevents the formation of autolysosome [59], thus it inhibits SARS-CoV-2 virus.
SARS-CoV [60]Valinomycin Valinomycin stimulates mitophagy by loss of MMP, Ref. [61] causing it to inhibit the replication of SARS-CoV virus.
AescimAescim inhibits SARS-CoV virus by activating the signaling pathway of ROS-MAPK/p38 [62].
[63,64] ChloroquineChloroquine acts similary to SARS-CoV-2 and inhibits the SARS virus [59].
MERS-CoV [65]Venetoclax Venetoclax inhibits MERS-CoV by releasing the BECN1 from BCL2L1 or by interacting with BCL2L1/Bcl-XL [66].
Everolimus/AfinitorThese drugs inhibit MTOR causing it to inhibit the MERS-CoV Virus [67].
[68]Rapamycin/SirolumusThese drugs act in the same way as Everolimus and Afinitor and inhibit virus repliucatin [69].
wortmanninWortmannin inhibits MERS-CoV by inhibiting the PtdIns3K & PI3KS [70].
UO126It inhibits the MAPK/ERK pathway and therefore inhibits the MERS-CoV virus [71].
MHV [72]Rapamycin/Sirolumus It also acts in a similar way to the MERS-CoV virus [69].
[73] 3-MAIt acts by inhibiting the class III PtdIns3K and therefore inhibits the MHV virus [74].
Table 2. Viruses and their effects on mitochondrial dynamics.
Table 2. Viruses and their effects on mitochondrial dynamics.
S.No.Author & YearVirusWork & Object
1Horner and Gale, 2013 [98]Hepatitis C virus (HCV)HCV cleaves the MAVS protein and suppresses the host’s antiviral response.
2Datan et al., 2016 [99], Liang et al., 2016 [100]Dengue and Zika virusWith the help of autophagy, the Dengue and Zika viruses improve their replication and the induction of autophagy by pharmacological agents (e.g., rapamycin) increasing viral dissemination.
3Joubert et al., 2012 [101]Chikungunya virusAutophagy limits virus-induced cell death and in vivo mortality in Chikungunya virus.
4Datan et al., 2016 [99]; Lee et al., 2008 [102]; McLean et al., 2011 [103]Dengue virusAutophagy inhibits apoptosis to enhance virus replication in the Dengue virus.
5Zhu et al., 2016 [104]Transmissible gastroenteritis virus (TGEV)TGEV-induced complete mitophagy by stimulating DJ1-1 protein deglycase which increases cell survival and infection by eliminating virus-induced ROS.
6Meng et al., 2014 [105]Newcastle disease virus (NDV)Delayed administration of 3 methyl adenine (3-MA) induced more efficient oncolysis in NSCLCs.
7Barbier et al., 2017 [106]Dengue virusIn the Dengue virus, mitochondrial fission is blocked because the Dengue virus’ NS4B or NS3 protein promotes mitochondrial fusion by downregulating Drp1.
8Yu et al., 2015 [107]Dengue virusIn the case of the Dengue virus, mitochondrial fusion is suppressed by NS2B3 protease which cleaves MFNs.
9Zamarin et al., 2005 [108]Influenza A virusPB1-F2 have an essential role in the pathogenicity of the viral infection of influenza virus A, via modulation of the host’s mitochondrial dynamics.
10Kim et al., 2013b [109]Hepatitis C virus (HCV)HCV stimulates the expression of parkin, PINK1 and induced mitophagy by impairing oxidative phosphorylation. The resulting HCV infection affects mitochondrial dynamics.
11Gou et al., 2017 [110]Classical swine fever virus (CSFV)CSFV expresses MFN2 and stimulates parkin and PINK1 expression, resulting in enhanced mitochondrial fission and mitophagy.
12Ding et al., 2017 [111]Human parainfluenza virus type 3 (HPIV3)In HPIV3 infection, a viral protein regulates mitophagy independently of parkin/PINK1.
13Xia et al., 2014b [112]Measles virusDuring the measles viral infection, virus-induced antiviral immune response is enhanced by the knockdown of autophagy-related genes (eg, ATG7, BECN1, SQSTM1, and RAB7).
Table 3. List of drugs which targeted SARS- CoV related pathways.
Table 3. List of drugs which targeted SARS- CoV related pathways.
Therapeutic CategoryMechanism of Action
AutophagyUPR stressMPTPNLRP3 Inflammasome
ActivatorModulatorInhibitorSuppressorModulatorModulatorInhibitor
ImmunosuppressantRapamycin, Tacrolimus, Everolimus [152] Cyclosporin A [153,154]
Anticancer Rapamycin, Tersirolimus, Everolimus [152], Gefitinib [155], Temozolomide [155] Bortezomib, Celecoxib [155]Sunitinib [156] Thalidomide [157]
AntidiabeticMetformin [152] Pioglitazone [156], Exenatide, Vildagliptin [158], Berberine [159]Liraglutide [159] Glyburide [157,160]
Dietary supplementTrehalose, Resveratro l [152] Curcumin [156]Quercetin [161]
AntipsychoticLithium [152], Fluspirilene, Trifluperazine, Pimozide [162], Bromperidol, Chlorpromazine [163,164], Sertindole, Olanzapine, Fluphenazine, Methotrimeprazine [165], Prochlorperazine [164]Clozapine [165] Haloperidol [166,167,168], Etifoxine [169,170]
AntiepilepticCarbamazepine, Sodium valproate [152]
AntihypertensiveVerapamil, Nimodipine, Nitrendipine [152], Nicardipine, Amidarone [162], Rilmenidine, Clonidine [171], Minoxidil [163] Isoproterenol [156], Valsartan, Lowsartan, Olmesartan, Telmisartan [158], Guanabenz [172], Bisoprolol, Propranolol, Metoprolol [159] Ifenprodil [166,167,168], Diazoxide, Nicorandil, Tadalafil, Perhaxiline, Carvedilol [153,154]
AntidiarrhealLoperamide [162]
Ca+ regulatorCalcifediol [171]
Anti-infectiveNitazoxanide [171]
AntidepressantNortriptyline [171] Clomipramine [163]Trazodone [173]
AnticholesteremiC agentSimvastatin [170] Atorvastatin [159]
AntiemeticChlorpromazine [163,164], Prochlorperazine [164] Haloperidol [166,167,168]Thalidomide [157]
Minercorticoid replacement agentFludraocortisone [163,164]
AntitussiveNoscapine [163,164] Carbetapentane, Dextromethorphan [166,167,168]
Anti-allergicClemastine [163]
Chelating agentDefeiprone [174]
AntihelminticNiclosamide [175] Quimacrine [176,177]
Skeletal muscle relaxant Baclofen [178]
Gastrointestinal Pantoprazole [155]
Macrolide antibioticAzithromycin [163]
Ocular drugVerteporfin [163]
Antiprotozoal drugQuimacrine [176,177], Chloroquine, Hydroxychloroquine [171]
Urea cycle disorder agent Thenylbutyrate [155,156]
Hypolipidemic agentPravastatin [156], Fenofibrate [158]
Anti-Alzheimer’s Donepeziol [166,167,168]
Anti-ParkinsonianPramipexole [179]
Neuroprotective agent; anti-ALS drugEdaravone [153,180]
Anti-arthritic Anakinra [157]
Anti-inflammatory agent Celecoxib [155] Anakinra [157], Tranilast [157,181]
Anti-insomia agent Melatonin [182]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Singh, S.P.; Amar, S.; Gehlot, P.; Patra, S.K.; Kanwar, N.; Kanwal, A. Mitochondrial Modulations, Autophagy Pathways Shifts in Viral Infections: Consequences of COVID-19. Int. J. Mol. Sci. 2021, 22, 8180. https://doi.org/10.3390/ijms22158180

AMA Style

Singh SP, Amar S, Gehlot P, Patra SK, Kanwar N, Kanwal A. Mitochondrial Modulations, Autophagy Pathways Shifts in Viral Infections: Consequences of COVID-19. International Journal of Molecular Sciences. 2021; 22(15):8180. https://doi.org/10.3390/ijms22158180

Chicago/Turabian Style

Singh, Shailendra Pratap, Salomon Amar, Pinky Gehlot, Sanjib K. Patra, Navjot Kanwar, and Abhinav Kanwal. 2021. "Mitochondrial Modulations, Autophagy Pathways Shifts in Viral Infections: Consequences of COVID-19" International Journal of Molecular Sciences 22, no. 15: 8180. https://doi.org/10.3390/ijms22158180

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop