An Overview of Oxidative Stress, Neuroinflammation, and Neurodegenerative Diseases
Abstract
:1. Introduction
2. Oxidative Stress and Neurodegenerative Events
2.1. Reactive Oxygen Species Generated in the Brain
2.2. Parkinson’s Disease
2.3. Amyotrophic Lateral Sclerosis
2.4. Alzheimer’s Disease
2.5. Huntington’s Disease
3. Neuroinflammation
4. Neuroprotection and Antioxidants
4.1. Enzymatic Antioxidants
4.2. Non-Enzymatic Antioxidants
5. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, Z.; Zhou, T.; Ziegler, A.C.; Dimitrion, P.; Zuo, L. Oxidative Stress in Neurodegenerative Diseases: From Molecular Mechanisms to Clinical Applications. Oxidative Med. Cell. Longev. 2017, 2017, 2525967. [Google Scholar] [CrossRef] [PubMed]
- Stephenson, J.; Nutma, E.; van der Valk, P.; Amor, S. Inflammation in CNS neurodegenerative diseases. Immunology 2018, 154, 204–219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Volkman, R.; Offen, D. Concise Review: Mesenchymal Stem Cells in Neurodegenerative Diseases. Stem Cells 2017, 35, 1867–1880. [Google Scholar] [CrossRef] [Green Version]
- Busnatu, Ș.; Niculescu, A.-G.; Bolocan, A.; Petrescu, G.E.D.; Păduraru, D.N.; Năstasă, I.; Lupușoru, M.; Geantă, M.; Andronic, O.; Grumezescu, A.M.; et al. Clinical Applications of Artificial Intelligence—An Updated Overview. J. Clin. Med. 2022, 11, 2265. [Google Scholar] [CrossRef] [PubMed]
- Ishola, A.A.; Oyinloye, B.E.; Ajiboye, B.O.; Kappo, A.P. Molecular Docking Studies of Flavonoids from Andrographis paniculata as Potential Acetylcholinesterase, Butyrylcholinesterase and Monoamine Oxidase Inhibitors towards the Treatment of Neurodegenerative Diseases. Biointerface Res. Appl. Chem. 2021, 11, 9871–9879. [Google Scholar] [CrossRef]
- Kadry, H.; Noorani, B.; Cucullo, L. A blood–brain barrier overview on structure, function, impairment, and biomarkers of integrity. Fluids Barriers CNS 2020, 17, 69. [Google Scholar] [CrossRef]
- Barnham, K.J.; Masters, C.L.; Bush, A.I. Neurodegenerative diseases and oxidative stress. Nat. Rev. Drug Discov. 2004, 3, 205–214. [Google Scholar] [CrossRef]
- Onose, G.; Anghelescu, A.; Blendea, D.; Ciobanu, V.; Daia, C.; Firan, F.C.; Oprea, M.; Spinu, A.; Popescu, C.; Ionescu, A.; et al. Cellular and Molecular Targets for Non-Invasive, Non-Pharmacological Therapeutic/Rehabilitative Interventions in Acute Ischemic Stroke. Int. J. Mol. Sci. 2022, 23, 907. [Google Scholar] [CrossRef]
- Misrani, A.; Tabassum, S.; Yang, L. Mitochondrial Dysfunction and Oxidative Stress in Alzheimer’s Disease. Front. Aging Neurosci. 2021, 13, 617588. [Google Scholar] [CrossRef]
- Liu, Z.; Ren, Z.; Zhang, J.; Chuang, C.C.; Kandaswamy, E.; Zhou, T.; Zuo, L. Role of ROS and Nutritional Antioxidants in Human Diseases. Front. Physiol. 2018, 9, 477. [Google Scholar] [CrossRef] [Green Version]
- González-Fuentes, J.; Selva, J.; Moya, C.; Castro-Vázquez, L.; Lozano, M.V.; Marcos, P.; Plaza-Oliver, M.; Rodríguez-Robledo, V.; Santander-Ortega, M.J.; Villaseca-González, N.; et al. Neuroprotective Natural Molecules, from Food to Brain. Front. Neurosci. 2018, 12, 721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kazakov, Y.; Tarasov, A.; Alyoshina, L.; Brainina, K. Interplay between antioxidant activity, health and disease. Biointerface Res. Appl. Chem. 2020, 10, 4893–4901. [Google Scholar] [CrossRef]
- Kim, G.H.; Kim, J.; Jeong Rhie, S.; Yoon, S. The Role of Oxidative Stress in Neurodegenerative Diseases. Exp. Neurobiol. 2015, 24, 325. [Google Scholar] [CrossRef] [PubMed]
- Balogun, O.; Abolaji, A.O.; Adedara, A.O.; Akinsanmi, A.O.; Alemika, T.E. Ameliorative Role of Plectranthus esculentus on 4-Vinylcyclohexene Monoepoxide-Induced Oxidative Stress in Drosophila melanogaster. Biointerface Res. Appl. Chem. 2021, 11, 9432–9442. [Google Scholar] [CrossRef]
- Chen, R.; Lai, U.H.; Zhu, L.; Singh, A.; Ahmed, M.; Forsyth, N.R. Reactive Oxygen Species Formation in the Brain at Different Oxygen Levels: The Role of Hypoxia Inducible Factors. Front. Cell Dev. Biol. 2018, 6, 132. [Google Scholar] [CrossRef] [Green Version]
- Avery, S.V. Molecular targets of oxidative stress. Biochem. J. 2011, 434, 201–210. [Google Scholar] [CrossRef] [Green Version]
- Shefali; Sankhla, M.S.; Kumar, R.; Sonone, S.S. Phytomicrobiome Studies for Combating the Abiotic Stress. Biointerface Res. Appl. Chem. 2021, 11, 10493–10509. [Google Scholar] [CrossRef]
- Friedman, J. Why Is the Nervous System Vulnerable to Oxidative Stress? In Oxidative Stress and Free Radical Damage in Neurology; Gadoth, N., Göbel, H.H., Eds.; Humana Press: Totowa, NJ, USA, 2011; pp. 19–27. [Google Scholar]
- Singh, A.; Kukreti, R.; Saso, L.; Kukreti, S. Oxidative Stress: A Key Modulator in Neurodegenerative Diseases. Molecules 2019, 24, 1583. [Google Scholar] [CrossRef] [Green Version]
- Cobley, J.N.; Fiorello, M.L.; Bailey, D.M. 13 reasons why the brain is susceptible to oxidative stress. Redox Biol. 2018, 15, 490–503. [Google Scholar] [CrossRef]
- Trist, B.G.; Hare, D.J.; Double, K.L. Oxidative stress in the aging substantia nigra and the etiology of Parkinson’s disease. Aging Cell 2019, 18, e13031. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.M.; Ferdous, K.S.; Ahmed, M. Emerging Promise of Nanoparticle-Based Treatment for Parkinson’s disease. Biointerface Res. Appl. Chem. 2020, 10, 7135–7151. [Google Scholar] [CrossRef]
- Venkateshappa, C.; Harish, G.; Mythri, R.B.; Mahadevan, A.; Srinivas Bharath, M.M.; Shankar, S.K. Increased Oxidative Damage and Decreased Antioxidant Function in Aging Human Substantia Nigra Compared to Striatum: Implications for Parkinson’s Disease. Neurochem. Res. 2012, 37, 358–369. [Google Scholar] [CrossRef] [PubMed]
- Martin-Bastida, A.; Ward, R.J.; Newbould, R.; Piccini, P.; Sharp, D.; Kabba, C.; Patel, M.C.; Spino, M.; Connelly, J.; Tricta, F.; et al. Brain iron chelation by deferiprone in a phase 2 randomised double-blinded placebo controlled clinical trial in Parkinson’s disease. Sci. Rep. 2017, 7, 1398. [Google Scholar] [CrossRef] [PubMed]
- Thomas Jefferson University. FDOPA PET and Nutritional Support in Parkinson’s Disease (FdopaPD2). Available online: https://clinicaltrials.gov/ct2/show/NCT04459052 (accessed on 30 April 2022).
- Thomas Jefferson University. Physiological Effects of Nutritional Support in Patients with Parkinson’s Disease. Available online: https://clinicaltrials.gov/ct2/show/NCT02445651 (accessed on 30 April 2022).
- Radboud University Medical Center. Multiple N-of-1 Trials of (Intermittent) Hypoxia Therapy in Parkinson’s Disease (TALISMAN-1). Available online: https://clinicaltrials.gov/ct2/show/NCT05214287 (accessed on 30 April 2022).
- Centre Hospitalier Universitaire Dijon. Multicenter Study of Blood Biomarkers of Mitochondrial and Peroxisomal Metabolism to Differentiate Idiopathic Parkinson’s Disease from Related Conditions (BiomarPark). Available online: https://clinicaltrials.gov/ct2/show/NCT05110547 (accessed on 30 April 2022).
- Black, S.E.; Sunnybrook Health Sciences Centre. BEAM: Brain-Eye Amyloid Memory Study (BEAM). Available online: https://clinicaltrials.gov/ct2/show/NCT02524405 (accessed on 30 April 2022).
- National Neuroscience Institute. Tocotrienols in Parkinson’s Disease (PD). Available online: https://clinicaltrials.gov/ct2/show/NCT04491383 (accessed on 30 April 2022).
- Obrador, E.; Salvador, R.; López-Blanch, R.; Jihad-Jebbar, A.; Vallés, S.L.; Estrela, J.M. Oxidative Stress, Neuroinflammation and Mitochondria in the Pathophysiology of Amyotrophic Lateral Sclerosis. Antioxidants 2020, 9, 901. [Google Scholar] [CrossRef] [PubMed]
- Hardiman, O.; Al-Chalabi, A.; Chio, A.; Corr, E.M.; Logroscino, G.; Robberecht, W.; Shaw, P.J.; Simmons, Z.; van den Berg, L.H. Amyotrophic lateral sclerosis. Nat. Rev. Dis. Prim. 2017, 3, 17071. [Google Scholar] [CrossRef] [PubMed]
- Bond, L.; Bernhardt, K.; Madria, P.; Sorrentino, K.; Scelsi, H.; Mitchell, C.S. A Metadata Analysis of Oxidative Stress Etiology in Preclinical Amyotrophic Lateral Sclerosis: Benefits of Antioxidant Therapy. Front. Neurosci. 2018, 12, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pollari, E.; Goldsteins, G.; Bart, G.; Koistinaho, J.; Giniatullin, R. The role of oxidative stress in degeneration of the neuromuscular junction in amyotrophic lateral sclerosis. Front. Cell. Neurosci. 2014, 8, 131. [Google Scholar] [CrossRef] [Green Version]
- The University of Queensland. Targeting Metabolic Flexibility in Amyotrophic Lateral Sclerosis (ALS) (MetFlex). Available online: https://clinicaltrials.gov/ct2/show/NCT04788745 (accessed on 30 April 2022).
- Loma Linda University. Biomarkers in Different Types of Amyotrophic Lateral Sclerosis (ALS) Patients Being Treated with Edaravone. Available online: https://clinicaltrials.gov/ct2/show/NCT04097158 (accessed on 30 April 2022).
- University Hospital, Lille. Conservative Iron Chelation as a Disease-modifying Strategy in Amyotrophic Lateral Sclerosis (FAIR-ALS II). Available online: https://clinicaltrials.gov/ct2/show/NCT03293069 (accessed on 30 April 2022).
- Dallas VA Medical Center. Mitochondrial Capacity Boost in ALS (MICABO-ALS) Trial (MICABO-ALS). Available online: https://clinicaltrials.gov/ct2/show/NCT04244630 (accessed on 30 April 2022).
- Mitsubishi Tanabe Pharma America Inc. Radicava® (Edaravone) Findings in Biomarkers from ALS (REFINE-ALS). Available online: https://clinicaltrials.gov/ct2/show/NCT04259255 (accessed on 30 April 2022).
- Patterson, C. World Alzheimer Report 2018. The State of Art of Dementia Research: New Frontiers; Alzheimer’s Disease International: London, UK, 2018; pp. 34–40. [Google Scholar]
- Ashrafi, H.; Azadi, A.; Mohammadi-Samani, S.; Hamidi, M. New Candidate Delivery System for Alzheimer’s Disease: Deferoxamine Nanogels. Biointerface Res. Appl. Chem. 2020, 10, 7106–7119. [Google Scholar] [CrossRef]
- Cheignon, C.; Tomas, M.; Bonnefont-Rousselot, D.; Faller, P.; Hureau, C.; Collin, F. Oxidative stress and the amyloid beta peptide in Alzheimer’s disease. Redox Biol. 2018, 14, 450–464. [Google Scholar] [CrossRef]
- Rahman, M.R.; Islam, T.; Shabjam, M.; Rana, M.H.K.; Holsinger, R.M.D.; Quinn, J.M.W.; Gov, E.; Moni, M.A. Genome-Wide Integrative Analysis Reveals Common Molecular Signatures in Blood and Brain of Alzheimer’s Disease. Biointerface Res. Appl. Chem. 2021, 11, 8686–8701. [Google Scholar] [CrossRef]
- Huang, W.-J.; Zhang, X.; Chen, W.-W. Role of oxidative stress in Alzheimer’s disease. Biomed. Rep. 2016, 4, 519–522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Angelova, P.R.; Abramov, A.Y. Role of mitochondrial ROS in the brain: From physiology to neurodegeneration. FEBS Lett. 2018, 592, 692–702. [Google Scholar] [CrossRef] [PubMed]
- Cassidy, L.; Fernandez, F.; Johnson, J.B.; Naiker, M.; Owoola, A.G.; Broszczak, D.A. Oxidative stress in alzheimer’s disease: A review on emergent natural polyphenolic therapeutics. Complementary Ther. Med. 2020, 49, 102294. [Google Scholar] [CrossRef]
- Cioffi, F.; Adam, R.H.I.; Broersen, K. Molecular Mechanisms and Genetics of Oxidative Stress in Alzheimer’s Disease. J. Alzheimer’s Dis. 2019, 72, 981–1017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Butterfield, D.A.; Halliwell, B. Oxidative stress, dysfunctional glucose metabolism and Alzheimer disease. Nat. Rev. Neurosci. 2019, 20, 148–160. [Google Scholar] [CrossRef] [PubMed]
- Simunkova, M.; Alwasel, S.H.; Alhazza, I.M.; Jomova, K.; Kollar, V.; Rusko, M.; Valko, M. Management of oxidative stress and other pathologies in Alzheimer’s disease. Arch. Toxicol. 2019, 93, 2491–2513. [Google Scholar] [CrossRef] [Green Version]
- Shinto, L.; Quinn, J.; Montine, T.; Dodge, H.H.; Woodward, W.; Baldauf-Wagner, S.; Waichunas, D.; Bumgarner, L.; Bourdette, D.; Silbert, L.; et al. A randomized placebo-controlled pilot trial of omega-3 fatty acids and alpha lipoic acid in Alzheimer’s disease. J. Alzheimer’s Dis. 2014, 38, 111–120. [Google Scholar] [CrossRef] [Green Version]
- Hospices Civils de Lyon. Influence of Oxidative Stress and Nutrition Biomarkers on the Cognitive Decline Evolution in Alzheimer Disease (GERIOX). Available online: https://clinicaltrials.gov/ct2/show/NCT02800395 (accessed on 30 April 2022).
- Du, F.; Mclean Hospital. Effects of Nicotinamide Riboside on Bioenergetics and Oxidative Stress in Mild Cognitive Impairment/Alzheimer’s Dementia. Available online: https://clinicaltrials.gov/ct2/show/NCT04430517 (accessed on 30 April 2022).
- Park, S.-Y.; University of Nebraska. Effects of Mitochondrial-targeted Antioxidant on Mild Cognitive Impairment (MCI) Patients. Available online: https://clinicaltrials.gov/ct2/show/NCT03514875 (accessed on 30 April 2022).
- Sekhar, R.V.; Baylor College of Medicine. Glutathione and Alzheimer’s Disease. Available online: https://clinicaltrials.gov/ct2/show/NCT04740580 (accessed on 30 April 2022).
- Poulin, M.; University of Calgary. Aerobic Exercise for Older Adults at Increased Risk of Alzheimer’s Disease and Related Dementias (BIMII). Available online: https://clinicaltrials.gov/ct2/show/NCT03035851 (accessed on 30 April 2022).
- Second Affiliated Hospital; School of Medicine; Zhejiang University. Effects of Sulforaphane in Patients with Prodromal to Mild Alzheimer’s Disease. Available online: https://clinicaltrials.gov/ct2/show/NCT04213391 (accessed on 30 April 2022).
- Ho, H.-H.; Glac Biotech Co., Ltd. Effect of Probiotics in Alzheimer’s Disease. Available online: https://www.clinicaltrials.gov/ct2/show/NCT05145881 (accessed on 30 April 2022).
- Li-Hsian, C.C.; National University, Singapore. The SINgapore GERiatric Intervention Study to Reduce Cognitive Decline and Physical Frailty (SINGER) Study (SINGER). Available online: https://clinicaltrials.gov/ct2/show/NCT05007353 (accessed on 30 April 2022).
- Islam, M.T. Oxidative stress and mitochondrial dysfunction-linked neurodegenerative disorders. Neurol. Res. 2017, 39, 73–82. [Google Scholar] [CrossRef]
- Moghaddam, M.H.; Bayat, A.-H.; Eskandari, N.; Abdollahifar, M.-a.; Fotouhi, F.; Forouzannia, A.; Rafiei, R.; Hatari, S.; Seraj, A.; Shahidi, A.M.E.J.; et al. Elderberry diet ameliorates motor function and prevents oxidative stress-induced cell death in rat models of Huntington disease. Brain Res. 2021, 1762, 147444. [Google Scholar] [CrossRef]
- Hartl, F.U. Protein Misfolding Diseases. Annu. Rev. Biochem. 2017, 86, 21–26. [Google Scholar] [CrossRef] [Green Version]
- Zheng, J.; Winderickx, J.; Franssens, V.; Liu, B. A Mitochondria-Associated Oxidative Stress Perspective on Huntington’s Disease. Front. Mol. Neurosci. 2018, 11, 329. [Google Scholar] [CrossRef] [PubMed]
- Bono-Yagüe, J.; Gómez-Escribano, A.P.; Millán, J.M.; Vázquez-Manrique, R.P. Reactive Species in Huntington Disease: Are They Really the Radicals You Want to Catch? Antioxidants 2020, 9, 577. [Google Scholar] [CrossRef] [PubMed]
- Essa, M.M.; Moghadas, M.; Ba-Omar, T.; Walid Qoronfleh, M.; Guillemin, G.J.; Manivasagam, T.; Justin-Thenmozhi, A.; Ray, B.; Bhat, A.; Chidambaram, S.B.; et al. Protective Effects of Antioxidants in Huntington’s Disease: An Extensive Review. Neurotox. Res. 2019, 35, 739–774. [Google Scholar] [CrossRef] [PubMed]
- Tobore, T.O. Towards a comprehensive understanding of the contributions of mitochondrial dysfunction and oxidative stress in the pathogenesis and pathophysiology of Huntington’s disease. J. Neurosci. Res. 2019, 97, 1455–1468. [Google Scholar] [CrossRef]
- Sorolla, M.A.; Rodríguez-Colman, M.J.; Tamarit, J.; Ortega, Z.; Lucas, J.J.; Ferrer, I.; Ros, J.; Cabiscol, E. Protein oxidation in Huntington disease affects energy production and vitamin B6 metabolism. Free Radic. Biol. Med. 2010, 49, 612–621. [Google Scholar] [CrossRef]
- Kumar, A.; Ratan, R.R. Oxidative Stress and Huntington’s Disease: The Good, The Bad, and The Ugly. J. Huntingt. Dis. 2016, 5, 217–237. [Google Scholar] [CrossRef] [Green Version]
- Cong, W.; Bai, R.; Li, Y.-F.; Wang, L.; Chen, C. Selenium Nanoparticles as an Efficient Nanomedicine for the Therapy of Huntington’s Disease. ACS Appl. Mater. Interfaces 2019, 11, 34725–34735. [Google Scholar] [CrossRef]
- Solleiro-Villavicencio, H.; Rivas-Arancibia, S. Effect of Chronic Oxidative Stress on Neuroinflammatory Response Mediated by CD4(+)T Cells in Neurodegenerative Diseases. Front. Cell. Neurosci. 2018, 12, 114. [Google Scholar] [CrossRef] [Green Version]
- Gao, H.-M.; Zhou, H.; Hong, J.-S. Oxidative Stress, Neuroinflammation, and Neurodegeneration. In Neuroinflammation and Neurodegeneration; Peterson, P.K., Toborek, M., Eds.; Springer: New York, NY, USA, 2014; pp. 81–104. [Google Scholar]
- Bisht, K.; Sharma, K.; Tremblay, M.-È. Chronic stress as a risk factor for Alzheimer’s disease: Roles of microglia-mediated synaptic remodeling, inflammation, and oxidative stress. Neurobiol. Stress 2018, 9, 9–21. [Google Scholar] [CrossRef]
- Panahi, Y.; Rajaee, S.M.; Johnston, T.P.; Sahebkar, A. Neuroprotective effects of antioxidants in the management of neurodegenerative disorders: A literature review. J. Cell. Biochem. 2019, 120, 2742–2748. [Google Scholar] [CrossRef]
- Duhan, N.; Barak, S.; Mudgil, D. Bioactive Lipids: Chemistry & Health Benefits. Biointerface Res. Appl. Chem. 2020, 10, 6676–6687. [Google Scholar] [CrossRef]
- Yousefi, M.; Shadnoush, M.; Sohrabvandi, S.; Khorshidian, N.; Mortazavian, A.M. Encapsulation Systems for Delivery of Flavonoids: A Review. Biointerface Res. Appl. Chem. 2021, 11, 13934–13951. [Google Scholar] [CrossRef]
- Adewale, O.F.; Basiru, A.; Adewale, I.; Ojo, O.; Oyinloye, B.; Abiola Okesola, M. Significance in the Treatment and Prevention of Neurodegenerative Diseases. J. Phytopharm. 2019, 8, 75–83. [Google Scholar]
- Filograna, R.; Beltramini, M.; Bubacco, L.; Bisaglia, M. Anti-Oxidants in Parkinson’s Disease Therapy: A Critical Point of View. Curr. Neuropharmacol. 2016, 14, 260–271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ighodaro, O.M.; Akinloye, O.A. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alex. J. Med. 2018, 54, 287–293. [Google Scholar] [CrossRef] [Green Version]
- Saxena, P.; Selvaraj, K.; Khare, S.K.; Chaudhary, N. Superoxide dismutase as multipotent therapeutic antioxidant enzyme: Role in human diseases. Biotechnol. Lett. 2022, 44, 1–22. [Google Scholar] [CrossRef]
- Younus, H. Therapeutic potentials of superoxide dismutase. Int. J. Health Sci. 2018, 12, 88–93. [Google Scholar]
- McLimans, K.E.; Clark, B.E.; Plagman, A.; Pappas, C.; Klinedinst, B.; Anatharam, V.; Kanthasamy, A.; Willette, A.A. Is Cerebrospinal Fluid Superoxide Dismutase 1 a Biomarker of Tau But Not Amyloid-Induced Neurodegeneration in Alzheimer’s Disease? Antioxid. Redox Signal. 2019, 31, 572–578. [Google Scholar] [CrossRef]
- De Lazzari, F.; Bubacco, L.; Whitworth, A.J.; Bisaglia, M. Superoxide Radical Dismutation as New Therapeutic Strategy in Parkinson’s Disease. Aging Dis. 2018, 9, 716–728. [Google Scholar] [CrossRef] [Green Version]
- Zhao, B.; Marciniuk, K.; Gibbs, E.; Yousefi, M.; Napper, S.; Cashman, N.R. Therapeutic vaccines for amyotrophic lateral sclerosis directed against disease specific epitopes of superoxide dismutase 1. Vaccine 2019, 37, 4920–4927. [Google Scholar] [CrossRef]
- Soll, M.; Goldshtein, H.; Rotkopf, R.; Russek-Blum, N.; Gross, Z. A Synthetic SOD/Catalase Mimic Compound for the Treatment of ALS. Antioxidants 2021, 10, 827. [Google Scholar] [CrossRef] [PubMed]
- MacKenzie, J.L.; Ivanova, N.; Nell, H.J.; Giordano, C.R.; Terlecky, S.R.; Agca, C.; Agca, Y.; Walton, P.A.; Whitehead, S.N.; Cechetto, D.F. Microglial Inflammation and Cognitive Dysfunction in Comorbid Rat Models of Striatal Ischemic Stroke and Alzheimer’s Disease: Effects of Antioxidant Catalase-SKL on Behavioral and Cellular Pathology. Neuroscience 2022, 487, 47–65. [Google Scholar] [CrossRef] [PubMed]
- Kojima, R.; Bojar, D.; Rizzi, G.; Hamri, G.C.-E.; El-Baba, M.D.; Saxena, P.; Ausländer, S.; Tan, K.R.; Fussenegger, M. Designer exosomes produced by implanted cells intracerebrally deliver therapeutic cargo for Parkinson’s disease treatment. Nat. Commun. 2018, 9, 1305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haney, M.J.; Klyachko, N.L.; Zhao, Y.; Kabanov, A.V.; Batrakova, E.V. P22—Extracellular Vesicles as Drug Delivery Vehicles for Potent Redox Enzyme Catalase to Treat Parkinson’s Disease. Free Radic. Biol. Med. 2018, 128, S18. [Google Scholar] [CrossRef]
- Schirinzi, T.; Martella, G.; Imbriani, P.; Di Lazzaro, G.; Franco, D.; Colona, V.L.; Alwardat, M.; Sinibaldi Salimei, P.; Mercuri, N.B.; Pierantozzi, M.; et al. Dietary Vitamin E as a Protective Factor for Parkinson’s Disease: Clinical and Experimental Evidence. Front. Neurol. 2019, 10, 148. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Zhang, M.; Li, C.; Jiang, X.; Su, Y.; Zhang, Y. Benefits of Vitamins in the Treatment of Parkinson’s Disease. Oxidative Med. Cell. Longev. 2019, 2019, 9426867. [Google Scholar] [CrossRef]
- Lloret, A.; Esteve, D.; Monllor, P.; Cervera-Ferri, A.; Lloret, A. The Effectiveness of Vitamin E Treatment in Alzheimer’s Disease. Int. J. Mol. Sci. 2019, 20, 879. [Google Scholar] [CrossRef] [Green Version]
- Kocot, J.; Luchowska-Kocot, D.; Kielczykowska, M.; Musik, I.; Kurzepa, J. Does Vitamin C Influence Neurodegenerative Diseases and Psychiatric Disorders? Nutrients 2017, 9, 659. [Google Scholar] [CrossRef] [Green Version]
- He, X.-B.; Kim, M.; Kim, S.-Y.; Yi, S.-H.; Rhee, Y.-H.; Kim, T.; Lee, E.-H.; Park, C.-H.; Dixit, S.; Harrison, F.E.; et al. Vitamin C Facilitates Dopamine Neuron Differentiation in Fetal Midbrain Through TET1- and JMJD3-Dependent Epigenetic Control Manner. Stem Cells 2015, 33, 1320–1332. [Google Scholar] [CrossRef] [Green Version]
- Hernández-Camacho, J.D.; Bernier, M.; López-Lluch, G.; Navas, P. Coenzyme Q10 Supplementation in Aging and Disease. Front. Physiol. 2018, 9, 44. [Google Scholar] [CrossRef] [Green Version]
- Elumalai, P.; Lakshmi, S. Role of Quercetin Benefits in Neurodegeneration. Adv. Neurobiol. 2016, 12, 229–245. [Google Scholar] [CrossRef] [PubMed]
- Amanzadeh, E.; Esmaeili, A.; Rahgozar, S.; Nourbakhshnia, M. Application of quercetin in neurological disorders: From nutrition to nanomedicine. Rev. Neurosci. 2019, 30, 555–572. [Google Scholar] [CrossRef] [PubMed]
- Tamtaji, O.R.; Hadinezhad, T.; Fallah, M.; Shahmirzadi, A.R.; Taghizadeh, M.; Behnam, M.; Asemi, Z. The Therapeutic Potential of Quercetin in Parkinson’s Disease: Insights into its Molecular and Cellular Regulation. Curr. Drug Targets 2020, 21, 509–518. [Google Scholar] [CrossRef] [PubMed]
- Aljadaan, S.A.N.; Elias, R.S.; Al-Anssari, R.A. Investigation of the Antioxidant and Antibacterial Activity of Novel Quercetin Derivatives. Biointerface Res. Appl. Chem. 2020, 10, 7329–7336. [Google Scholar] [CrossRef]
- Khan, H.; Ullah, H.; Aschner, M.; Cheang, W.S.; Akkol, E.K. Neuroprotective Effects of Quercetin in Alzheimer’s Disease. Biomolecules 2020, 10, 59. [Google Scholar] [CrossRef] [Green Version]
- Zaplatic, E.; Bule, M.; Shah, S.Z.A.; Uddin, M.S.; Niaz, K. Molecular mechanisms underlying protective role of quercetin in attenuating Alzheimer’s disease. Life Sci. 2019, 224, 109–119. [Google Scholar] [CrossRef]
- Sriraksa, N.; Wattanathorn, J.; Muchimapura, S.; Tiamkao, S.; Brown, K.; Chaisiwamongkol, K. Cognitive-Enhancing Effect of Quercetin in a Rat Model of Parkinson’s Disease Induced by 6-Hydroxydopamine. Evid.-Based Complementary Altern. Med. 2012, 2012, 823206. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.-W.; Han, R.; He, H.-J.; Li, J.; Chen, S.-Y.; Gu, Y.; Xie, C. Administration of quercetin improves mitochondria quality control and protects the neurons in 6-OHDA-lesioned Parkinson’s disease models. Aging 2021, 13, 11738–11751. [Google Scholar] [CrossRef]
- Tardiolo, G.; Bramanti, P.; Mazzon, E. Overview on the Effects of N-Acetylcysteine in Neurodegenerative Diseases. Molecules 2018, 23, 3305. [Google Scholar] [CrossRef] [Green Version]
- Esmaili, F.; Sanei-Dehkordi, A.; Amoozegar, F.; Osanloo, M. A Review on the Use of Essential Oil-Based Nanoformulations in Control of Mosquitoes. Biointerface Res. Appl. Chem. 2021, 11, 12516–12529. [Google Scholar] [CrossRef]
- Ayaz, M.; Sadiq, A.; Junaid, M.; Ullah, F.; Subhan, F.; Ahmed, J. Neuroprotective and Anti-Aging Potentials of Essential Oils from Aromatic and Medicinal Plants. Front. Aging Neurosci. 2017, 9, 168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abd Rashed, A.; Abd Rahman, A.Z.; Rathi, D.N. Essential Oils as a Potential Neuroprotective Remedy for Age-Related Neurodegenerative Diseases: A Review. Molecules 2021, 26, 1107. [Google Scholar] [CrossRef] [PubMed]
- Abuhamdah, S.; Abuhamdah, R.; Howes, M.-J.R.; Al-Olimat, S.; Ennaceur, A.; Chazot, P.L. Pharmacological and neuroprotective profile of an essential oil derived from leaves of Aloysia citrodora Palau. J. Pharm. Pharmacol. 2015, 67, 1306–1315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kohoude, M.J.; Gbaguidi, F.; Agbani, P.; Ayedoun, M.-A.; Cazaux, S.; Bouajila, J. Chemical composition and biological activities of extracts and essential oil of Boswellia dalzielii leaves. Pharm. Biol. 2017, 55, 33–42. [Google Scholar] [CrossRef] [Green Version]
- Sihoglu Tepe, A.; Ozaslan, M. Anti-Alzheimer, anti-diabetic, skin-whitening, and antioxidant activities of the essential oil of Cinnamomum zeylanicum. Ind. Crops Prod. 2020, 145, 112069. [Google Scholar] [CrossRef]
- Ademosun, A.O.; Oboh, G.; Olupona, A.J.; Oyeleye, S.I.; Adewuni, T.M.; Nwanna, E.E. Comparative study of chemical composition, in vitro inhibition of cholinergic and monoaminergic enzymes, and antioxidant potentials of essential oil from peels and seeds of sweet orange (Citrus sinensis [L.] Osbeck) Fruits. J. Food Biochem. 2016, 40, 53–60. [Google Scholar] [CrossRef]
- Ali-Shtayeh, M.S.; Jamous, R.M.; Abu-Zaitoun, S.Y.; Akkawi, R.J.; Kalbouneh, S.R.; Bernstein, N.; Dudai, N. Chemical profile and bioactive properties of the essential oil isolated from Clinopodium serpyllifolium (M.Bieb.) Kuntze growing in Palestine. Ind. Crops Prod. 2018, 124, 617–625. [Google Scholar] [CrossRef]
- Postu, P.A.; Sadiki, F.Z.; El Idrissi, M.; Cioanca, O.; Trifan, A.; Hancianu, M.; Hritcu, L. Pinus halepensis essential oil attenuates the toxic Alzheimer’s amyloid beta (1-42)-induced memory impairment and oxidative stress in the rat hippocampus. Biomed. Pharmacother. 2019, 112, 108673. [Google Scholar] [CrossRef]
- Ayaz, M.; Junaid, M.; Ullah, F.; Sadiq, A.; Khan, M.A.; Ahmad, W.; Shah, M.R.; Imran, M.; Ahmad, S. Comparative chemical profiling, cholinesterase inhibitions and anti-radicals properties of essential oils from Polygonum hydropiper L: A Preliminary anti- Alzheimer’s study. Lipids Health Dis. 2015, 14, 141. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, S.; Ullah, F.; Sadiq, A.; Ayaz, M.; Imran, M.; Ali, I.; Zeb, A.; Ullah, F.; Shah, M.R. Chemical composition, antioxidant and anticholinesterase potentials of essential oil of Rumex hastatus D. Don collected from the North West of Pakistan. BMC Complementary Altern. Med. 2016, 16, 29. [Google Scholar] [CrossRef] [Green Version]
- El Euch, S.K.; Hassine, D.B.; Cazaux, S.; Bouzouita, N.; Bouajila, J. Salvia officinalis essential oil: Chemical analysis and evaluation of anti-enzymatic and antioxidant bioactivities. S. Afr. J. Bot. 2019, 120, 253–260. [Google Scholar] [CrossRef]
- Cutillas, A.-B.; Carrasco, A.; Martinez-Gutierrez, R.; Tomas, V.; Tudela, J. Salvia officinalis L. Essential Oils from Spain: Determination of Composition, Antioxidant Capacity, Antienzymatic, and Antimicrobial Bioactivities. Chem. Biodivers. 2017, 14, e1700102. [Google Scholar] [CrossRef] [PubMed]
- Bahadori, M.B.; Maggi, F.; Zengin, G.; Asghari, B.; Eskandani, M. Essential oils of hedgenettles (Stachys inflata, S. lavandulifolia, and S. byzantina) have antioxidant, anti-Alzheimer, antidiabetic, and anti-obesity potential: A comparative study. Ind. Crops Prod. 2020, 145, 112089. [Google Scholar] [CrossRef]
- Zengin, G.; Sarıkürkçü, C.; Aktümsek, A.; Ceylan, R. Antioxidant Potential and Inhibition of Key Enzymes Linked to Alzheimer’s Diseases and Diabetes Mellitus by Monoterpene-Rich Essential Oil from Sideritis galatica Bornm. Endemic to Turkey. Rec. Nat. Prod. 2016, 10, 195–206. [Google Scholar]
- Sadiki, F.Z.; Idrissi, M.E.; Cioanca, O.; Trifan, A.; Hancianu, M.; Hritcu, L.; Postu, P.A. Tetraclinis articulata essential oil mitigates cognitive deficits and brain oxidative stress in an Alzheimer’s disease amyloidosis model. Phytomedicine 2019, 56, 57–63. [Google Scholar] [CrossRef]
- Cutillas, A.-B.; Carrasco, A.; Martinez-Gutierrez, R.; Tomas, V.; Tudela, J. Thymus mastichina L. essential oils from Murcia (Spain): Composition and antioxidant, antienzymatic and antimicrobial bioactivities. PLoS ONE 2018, 13, e0190790. [Google Scholar] [CrossRef] [Green Version]
- Sevindik, H.G.; Ozek, T.; Yerdelen, K.O.; Onal, M.; Ozbek, H.; Guvenalp, Z.; Demirezer, L.O. Chemical Composition, Antioxidant Capacity, Acetyl-and Butyrylcholinesterase Inhibitory Activities of the Essential Oil of Thymus haussknechtii Velen. Rec. Nat. Prod. 2016, 10, 503–507. [Google Scholar]
- Issa, M.Y.; Ezzat, M.I.; Sayed, R.H.; Elbaz, E.M.; Omar, F.A.; Mohsen, E. Neuroprotective effects of Pulicaria undulata essential oil in rotenone model of parkinson’s disease in rats: Insights into its anti-inflammatory and anti-oxidant effects. S. Afr. J. Bot. 2020, 132, 289–298. [Google Scholar] [CrossRef]
- Nikolova, G.; Karamalakova, Y.; Kovacheva, N.; Stanev, S.; Zheleva, A.; Gadjeva, V. Protective effect of two essential oils isolated from Rosa damascena Mill. and Lavandula angustifolia Mill, and two classic antioxidants against L-dopa oxidative toxicity induced in healthy mice. Regul. Toxicol. Pharmacol. 2016, 81, 1–7. [Google Scholar] [CrossRef]
- Nikolova, G.; Karamalakova, Y.; Gadjeva, V. Reducing oxidative toxicity of L-dopa in combination with two different antioxidants: An essential oil isolated from Rosa Damascena Mill., and vitamin C. Toxicol. Rep. 2019, 6, 267–271. [Google Scholar] [CrossRef]
- Cenini, G.; Lloret, A.; Cascella, R. Oxidative Stress in Neurodegenerative Diseases: From a Mitochondrial Point of View. Oxidative Med. Cell. Longev. 2019, 2019, 2105607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liguori, I.; Russo, G.; Curcio, F.; Bulli, G.; Aran, L.; Della-Morte, D.; Gargiulo, G.; Testa, G.; Cacciatore, F.; Bonaduce, D.; et al. Oxidative stress, aging, and diseases. Clin. Interv. Aging 2018, 13, 757–772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
ClinicalTrials.gov Identifier | Official Title | Intervention/ Treatment | Phase | Estimated Completion Date | Ref. |
---|---|---|---|---|---|
NCT04459052 | Phase II: Physiological Effects of Nutritional Support in Patients With Parkinson’s Disease | Dietary Supplement: N-acetylcysteine Drug: [F-18] Fluorodopa Positron Emission Tomography | Phase 2 | 1 May 2023 | [25] |
NCT02445651 | Physiological Effects of Nutritional Support in Patients With Parkinson’s Disease | Dietary Supplement: Intravenous and Oral N-acetylcysteine | Not applicable | 6 December 2021 | [26] |
NCT05214287 | An N-of-1 Double-blind Randomized Phase 1 Trial of the Safety and Feasibility of (Intermittent) Hypoxia Therapy in Parkinson’s Disease | Drug: Hypoxic Gas Mixture | Phase 1 Phase 2 | February 2023 | [27] |
NCT05110547 | Multicenter Study of Blood Biomarkers of Mitochondrial and Peroxisomal Metabolism to Differentiate Idiopathic Parkinson’s Disease From Related Conditions | Biological: Blood Collection | Not applicable | April 2023 | [28] |
NCT02524405 | The Brain Eye Amyloid Memory (BEAM) Study: Validation of Ocular Measures as Potential Biomarkers for Early Detection of Brain Amyloid and Neurodegeneration | Other: Pittsburgh Compound B [11C]-PIB | Not applicable | December 2023 | [29] |
NCT04491383 | Tocotrienols in Parkinson’s Disease (PD): A Pilot, Randomised, Placebo-controlled Trial | Drug: Tocovid Suprabio (HOV-12020) Other: Placebo | Phase 2 | December 2024 | [30] |
ClinicalTrials.gov Identifier | Official Title | Intervention/ Treatment | Phase | Estimated Completion Date | Ref. |
---|---|---|---|---|---|
NCT04788745 | Targeting Metabolic Flexibility in ALS (MetFlex); Safety and Tolerability of Trimetazidine for the Treatment of ALS | Drug: Trimetazidine Dihydrochloride | Phase 2 | 31 March 2023 | [35] |
NCT04097158 | Oxidative Markers and Efficacy in Amyotrophic Lateral Sclerosis (ALS) Phenotypes Treated With Edaravone | Other: Sample Collection | Not applicable | September 2023 | [36] |
NCT03293069 | Conservative Iron Chelation as a Disease-modifying Strategy in Amyotrophic Lateral Sclerosis: Multicentre, Parallel-group, Placebo-controlled, Randomized Clinical Trial of Deferiprone | Drug: Deferiprone Drug: Placebo Oral Tablet | Phase 2 Phase 3 | November 2023 | [37] |
NCT04244630 | Mitochondrial Capacity Boost in ALS (MICABO-ALS) Trial | Combination Product: Antioxidants | Phase 2 | December 2023 | [38] |
NCT04259255 | Radicava® (Edaravone) Findings in Biomarkers From ALS (REFINE-ALS) | Drug: Edaravone | Not applicable | March 2023 | [39] |
ClinicalTrials.gov Identifier | Official Title | Intervention/ Treatment | Phase | Estimated Completion Date | Ref. |
---|---|---|---|---|---|
NCT02800395 | Influence of Oxidative Stress and Nutrition Biomarkers on the Cognitive Decline Evolution in Alzheimer Disease | Procedure: Malnutrition Screening and Perioperative Nutritional Support | Not applicable | December 2026 | [51] |
NCT04430517 | Effects of Orally Administered Nicotinamide Riboside on Bioenergetic Metabolism, Oxidative Stress and Cognition in Mild Cognitive Impairment and Mild Alzheimer’s Dementia | Drug: Nicotinamide Riboside | Early Phase 1 | 30 April 2025 | [52] |
NCT03514875 | Effects of Mitochondrial-targeted Antioxidant on Carotid Artery Endothelial Function and Brain Blood Flow in Mild Cognitive Impairment (MCI) Patients | Dietary Supplement: MitoQ Dietary Supplement: Placebo | Not applicable | 1 October 2022 | [53] |
NCT04740580 | Glutathione, Brain Metabolism and Inflammation in Alzheimer’s Disease | Dietary Supplement: Glycine Dietary Supplement: N-acetylcysteine Dietary Supplement: Alanine | Early Phase 1 | 31 May 2025 | [54] |
NCT03035851 | Aerobic Exercise for Older Adults at Increased Risk of Alzheimer’s Disease and Related Dementias: Harnessing Translational Physiology | Behavioral: Aerobic Exercise Behavioral: Stretch and Strength | Not applicable | January 2025 | [55] |
NCT02524405 | The Brain Eye Amyloid Memory (BEAM) Study: Validation of Ocular Measures as Potential Biomarkers for Early Detection of Brain Amyloid and Neurodegeneration | Other: Pittsburgh Compound B [11C]-PIB | Not applicable | December 2023 | [29] |
NCT04213391 | Randomized, Double-blind, Placebo-controlled, Efficacy and Safety Study of Sulforaphane in Patients With Prodromal to Mild Alzheimer’s Disease | Dietary Supplement: sulforaphane Dietary Supplement: Placebo | Not applicable | 1 December 2022 | [56] |
NCT05145881 | Evaluation of Clinical Effect of Probiotics in Alzheimer’s Disease: a Randomized, Double-blind Clinical Trial | Dietary Supplement: Low-dose Probiotics Dietary Supplement: Normal-dose Probiotics | Not applicable | 30 June 2023 | [57] |
NCT05007353 | The SINgapore GERiatric Intervention Study to Reduce Cognitive Decline and Physical Frailty (SINGER) Study, Biomarker and Health Service Research Analyses | Behavioral: Structured Lifestyle Intervention Behavioral: Self-Guided Intervention | Not applicable | 31 January 2026 | [58] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teleanu, D.M.; Niculescu, A.-G.; Lungu, I.I.; Radu, C.I.; Vladâcenco, O.; Roza, E.; Costăchescu, B.; Grumezescu, A.M.; Teleanu, R.I. An Overview of Oxidative Stress, Neuroinflammation, and Neurodegenerative Diseases. Int. J. Mol. Sci. 2022, 23, 5938. https://doi.org/10.3390/ijms23115938
Teleanu DM, Niculescu A-G, Lungu II, Radu CI, Vladâcenco O, Roza E, Costăchescu B, Grumezescu AM, Teleanu RI. An Overview of Oxidative Stress, Neuroinflammation, and Neurodegenerative Diseases. International Journal of Molecular Sciences. 2022; 23(11):5938. https://doi.org/10.3390/ijms23115938
Chicago/Turabian StyleTeleanu, Daniel Mihai, Adelina-Gabriela Niculescu, Iulia Ioana Lungu, Crina Ioana Radu, Oana Vladâcenco, Eugenia Roza, Bogdan Costăchescu, Alexandru Mihai Grumezescu, and Raluca Ioana Teleanu. 2022. "An Overview of Oxidative Stress, Neuroinflammation, and Neurodegenerative Diseases" International Journal of Molecular Sciences 23, no. 11: 5938. https://doi.org/10.3390/ijms23115938