A Longitudinal Study of the Association between the LEPR Polymorphism and Treatment Response in Patients with Bipolar Disorder
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Subjects
4.2. Genotyping
4.3. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vancampfort, D.; Vansteelandt, K.; Correll, C.U.; Mitchell, A.J.; Herdt, A.D.; Sienaert, P.; Probst, M.; Hert, M.D. Metabolic syndrome and metabolic abnormalities in bipolar disorder: A meta-analysis of prevalence rates and moderators. Am. J. Psychiatry 2013, 170, 265–274. [Google Scholar] [CrossRef] [PubMed]
- Grande, I.; Berk, M.; Birmaher, B.; Vieta, E. Bipolar disorder. Lancet 2016, 387, 1561–1572. [Google Scholar] [CrossRef]
- Rosa, A.R.; Bonnín, C.M.; Vázquez, G.H.; Reinares, M.; Solé, B.; Tabarés-Seisdedos, R.; Balanzá-Martínez, V.; González-Pinto, A.; Sánchez-Moreno, J.; Vieta, E. Functional impairment in bipolar II disorder: Is it as disabling as bipolar I? J. Affect. Disord. 2010, 127, 71–76. [Google Scholar] [CrossRef]
- Weinshilboum, R.M.; Wang, L. Pharmacogenomics: Precision medicine and drug response. Mayo Clin. Proc. 2017, 92, 1711–1722. [Google Scholar] [CrossRef]
- Van Westrhenen, R.; Aitchison, K.J.; Ingelman-Sundberg, M.; Jukić, M.M. Pharmacogenomics of antidepressant and antipsychotic treatment: How far have we got and where are we going? Front. Psychiatry 2020, 11, 94. [Google Scholar] [CrossRef]
- Wang, L.; McLeod, H.L.; Weinshilboum, R.M. Genomics and drug response. N. Eng. J. Med. 2011, 364, 1144–1153. [Google Scholar] [CrossRef] [PubMed]
- Li, C. Personalized medicine—The promised land: Are we there yet? Clin. Genet. 2011, 79, 403–412. [Google Scholar] [CrossRef] [PubMed]
- Preskorn, S.H. Pharmacogenomics, informatics, and individual drug therapy in psychiatry: Past, present and future. J. Psychopharm. 2006, 20 (Suppl. S4), 85–94. [Google Scholar] [CrossRef]
- Serretti, A.; Lilli, R.; Smeraldi, E. Pharmacogenetics in affective disorders. Eur. J. Pharmacol. 2002, 438, 117–128. [Google Scholar] [CrossRef]
- Fortinguerra, S.; Sorrenti, V.; Giusti, P.; Zusso, M.; Buriani, A. Pharmacogenomic characterization in bipolar spectrum disorders. Pharmaceutics 2020, 12, 13. [Google Scholar] [CrossRef] [Green Version]
- Smith, L.A.; Cornelius, V.R.; Azorin, J.M.; Perugi, G.; Vieta, E.; Young, A.H.; Bowden, C.L. Valproate for the treatment of acute bipolar depression: Systematic review and meta-analysis. J. Affect. Disord. 2010, 122, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.-M.; Wu, C.-S.; Huang, Y.-W.; Chau, Y.-L.; Tsai, H.-J. Utilization of psychopharmacological treatment among patients with newly diagnosed bipolar disorder from 2001 to 2010. J. Clin. Psychopharmacol. 2016, 36, 32–44. [Google Scholar] [CrossRef]
- Leng, Y.; Wang, Z.; Tsai, L.K.; Leeds, P.; Fessler, E.B.; Wang, J.; Chuang, D.M. FGF-21, a novel metabolic regulator, has a robust neuroprotective role and is markedly elevated in neurons by mood stabilizers. Mol. Psychiatry 2015, 20, 215–223. [Google Scholar] [CrossRef]
- Yasuda, S.; Liang, M.H.; Marinova, Z.; Yahyavi, A.; Chuang, D.M. The mood stabilizers lithium and valproate selectively activate the promoter IV of brain-derived neurotrophic factor in neurons. Mol. Psychiatry 2009, 14, 51–59. [Google Scholar] [CrossRef]
- Chen, P.S.; Peng, G.S.; Li, G.; Yang, S.; Wu, X.; Wang, C.C.; Wilson, B.; Lu, R.B.; Gean, P.W.; Chuang, D.M.; et al. Valproate protects dopaminergic neurons in midbrain neuron/glia cultures by stimulating the release of neurotrophic factors from astrocytes. Mol. Psychiatry 2006, 11, 1116–1125. [Google Scholar] [CrossRef] [PubMed]
- Williams, K.W.; Scott, M.M.; Elmquist, J.K. Modulation of the central melanocortin system by leptin, insulin, and serotonin: Co-ordinated actions in a dispersed neuronal network. Eur. J. Pharmacol. 2011, 660, 2–12. [Google Scholar] [CrossRef]
- Allison, M.B.; Myers, M.G. 20 YEARS OF LEPTIN: Connecting leptin signaling to biological function. J. Endocrinol. 2014, 223, T25–T35. [Google Scholar] [CrossRef]
- Farr, O.M.; Tsoukas, M.A.; Mantzoros, C.S. Leptin and the brain: Influences on brain development, cognitive functioning and psychiatric disorders. Metabolism 2015, 64, 114–130. [Google Scholar] [CrossRef]
- Kang, S.H.; Han, H.R.; Lee, J.I.; Karmacharya, R.; Jeon, H.J.; Roh, S. Effects of LEP, LEPR, ADIPOQ, MC4R and FTO polymorphisms on dyslipidemia in Korean patients with schizophrenia who are taking clozapine. Psychiatry Res. 2015, 228, 177–178. [Google Scholar] [CrossRef] [PubMed]
- Li, X.-M.; Yan, H.-J.; Guo, Y.-S.; Wang, D. The role of leptin in central nervous system diseases. NeuroReport 2016, 27, 350–355. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.J.; Kim, S.H.; Kim, E.Y.; Lee, N.Y.; Yu, H.Y.; Kim, Y.S.; Ahn, Y.M. Leptin is associated with mood status and metabolic homeostasis in patients with bipolar disorder. Neuropsychobiology 2014, 70, 203–209. [Google Scholar] [CrossRef]
- Chang, H.H.; Chou, C.H.; Chen, P.S.; Gean, P.W.; Huang, H.C.; Lin, C.Y.; Yang, Y.K.; Lu, R.B. High prevalence of metabolic disturbances in patients with bipolar disorder in Taiwan. J. Affect. Disord. 2009, 117, 124–129. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.H.; Yang, Y.K.; Gean, P.W.; Huang, H.C.; Chen, P.S.; Lu, R.B. The role of valproate in metabolic disturbances in bipolar disorder patients. J. Affect. Disord. 2010, 124, 319–323. [Google Scholar] [CrossRef] [PubMed]
- Greco, R.; Latini, G.; Chiarelli, F.; Iannetti, P.; Verrotti, A. Leptin, ghrelin, and adiponectin in epileptic patients treated with valproic acid. Neurology 2005, 65, 1808–1809. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wang, X.; Zhou, Y.; Ni, G.; Su, Q.; Chen, Z.; Chen, Z.; Li, J.; Chen, X.; Hou, X.; et al. Association of LEPR and ANKK1 gene polymorphisms with weight gain in epilepsy patients receiving valproic acid. Int. J. Neuropsychopharmacol. 2015, 18, pyv021. [Google Scholar] [CrossRef]
- Obradovic, M.; Sudar-Milovanovic, E.; Soskic, S.; Essack, M.; Arya, S.; Stewart, A.J.; Gojobori, T.; Isenovic, E.R. Leptin and obesity: Role and clinical implication. Front. Endocrinol. 2021, 12, 585887. [Google Scholar] [CrossRef]
- Marroqui, L.; Gonzalez, A.; Neco, P.; Caballero-Garrido, E.; Vieira, E.; Ripoll, C.; Nadal, A.; Quesada, I. Role of leptin in the pancreatic beta-cell: Effects and signaling pathways. J. Mol. Endocrinol. 2012, 49, R9–R17. [Google Scholar] [CrossRef]
- Park, K.S.; Shin, H.D.; Park, B.L.; Cheong, H.S.; Cho, Y.M.; Lee, H.K.; Lee, J.Y.; Lee, J.K.; Oh, B.; Kimm, K. Polymorphisms in the leptin receptor (LEPR)—Putative association with obesity and T2DM. J. Hum. Genet. 2006, 51, 85–91. [Google Scholar] [CrossRef]
- Lu, X.Y. The leptin hypothesis of depression: A potential link between mood disorders and obesity? Curr. Opin. Pharmacol. 2007, 7, 648–652. [Google Scholar] [CrossRef]
- Lawson, E.A.; Miller, K.K.; Blum, J.I.; Meenaghan, E.; Misra, M.; Eddy, K.T.; Herzog, D.B.; Klibanski, A. Leptin levels are associated with decreased depressive symptoms in women across the weight spectrum, independent of body fat. Clin. Endocrinol. 2012, 76, 520–525. [Google Scholar] [CrossRef]
- Atmaca, M.; Kuloglu, M.; Tezcan, E.; Ustundag, B.; Bayik, Y. Serum leptin and cholesterol levels in patients with bipolar disorder. Neuropsychobiology 2003, 46, 176–179. [Google Scholar] [CrossRef]
- Farinelli, E.; Giampaoli, D.; Cenciarini, A.; Cercado, E.; Verrotti, A. Valproic acid and nonalcoholic fatty liver disease: A possible association? World J. Hepatol. 2015, 7, 1251–1257. [Google Scholar] [CrossRef]
- Klok, M.D.; Jakobsdottir, S.; Drent, M.L. The role of leptin and ghrelin in the regulation of food intake and body weight in humans: A review. Obes. Rev. 2007, 8, 21–34. [Google Scholar] [CrossRef]
- Anghebem-Oliveira, M.I.; Martins, B.R.; Alberton, D.; Ramos, E.A.d.S.; Picheth, G.; Rego, F.G.d.M. Type 2 diabetes-associated genetic variants of FTO, LEPR, PPARg, and TCF7L2 in gestational diabetes in a Brazilian population. Arch. Endocrinol. Metab. 2017, 61, 238–248. [Google Scholar] [CrossRef]
- Kloiber, S.; Ripke, S.; Kohli, M.A.; Reppermund, S.; Salyakina, D.; Uher, R.; McGuffin, P.; Perlis, R.H.; Hamilton, S.P.; Putz, B.; et al. Resistance to antidepressant treatment is associated with polymorphisms in the leptin gene, decreased leptin mRNA expression, and decreased leptin serum levels. Eur. Neuropsychopharmacol. 2013, 23, 653–662. [Google Scholar] [CrossRef]
- Martini, J.S.; Raake, P.; Vinge, L.E.; DeGeorge, B.R., Jr.; Chuprun, J.K.; Harris, D.M.; Gao, E.; Eckhart, A.D.; Pitcher, J.A.; Koch, W.J. Uncovering G protein-coupled receptor kinase-5 as a histone deacetylase kinase in the nucleus of cardiomyocytes. Proc. Natl. Acad. Sci. USA 2008, 105, 12457–12462. [Google Scholar] [CrossRef]
- Beaulieu, J.M.; Caron, M.G. Beta-arrestin goes nuclear. Cell 2005, 123, 755–757. [Google Scholar] [CrossRef]
- Phiel, C.J.; Zhang, F.; Huang, E.Y.; Guenther, M.G.; Lazar, M.A.; Klein, P.S. Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen. J. Biol. Chem. 2001, 276, 36734–36741. [Google Scholar] [CrossRef]
- Crunkhorn, S. Metabolic disease: New role for HDACs in glucose homeostasis. Nat. Rev. Drug Discov. 2011, 10, 492. [Google Scholar] [CrossRef]
- Karpac, J.; Jasper, H. Metabolic homeostasis: HDACs take center stage. Cell 2011, 145, 497–499. [Google Scholar] [CrossRef] [Green Version]
- McIntyre, R.S.; Danilewitz, M.; Liauw, S.S.; Kemp, D.E.; Nguyen, H.T.; Kahn, L.S.; Kucyi, A.; Soczynska, J.K.; Woldeyohannes, H.O.; Lachowski, A.; et al. Bipolar disorder and metabolic syndrome: An international perspective. J. Affect. Disord. 2010, 126, 366–387. [Google Scholar] [CrossRef]
- De Almeida, K.M.; Moreira, C.L.; Lafer, B. Metabolic syndrome and bipolar disorder: What should psychiatrists know? CNS Neurosci. Ther. 2012, 18, 160–166. [Google Scholar] [CrossRef]
- Goldstein, B.I.; Kemp, D.E.; Soczynska, J.K.; McIntyre, R.S. Inflammation and the phenomenology, pathophysiology, comorbidity, and treatment of bipolar disorder: A systematic review of the literature. J. Clin. Psychiatry 2009, 70, 1078–1090. [Google Scholar] [CrossRef]
- Lee, N.Y.; Kim, S.H.; Cho, B.; Lee, Y.J.; Chang, J.S.; Kang, U.G.; Kim, Y.S.; Ahn, Y.M. Patients taking medications for bipolar disorder are more prone to metabolic syndrome than Korea’s general population. Prog. Neuropsychopharmacol. Biol. Psychiatry 2010, 34, 1243–1249. [Google Scholar] [CrossRef]
- Mansur, R.B.; Brietzke, E.; McIntyre, R.S. Is there a “metabolic-mood syndrome”? A review of the relationship between obesity and mood disorders. Neurosci. Biobehav. Rev. 2015, 52, 89–104. [Google Scholar] [CrossRef]
- Chang, H.H.; Gean, P.W.; Chou, C.H.; Yang, Y.K.; Tsai, H.C.; Lu, R.B.; Chen, P.S. C825T polymorphism of the GNB3 gene on valproate-related metabolic abnormalities in bipolar disorder patients. J. Clin. Psychopharmacol. 2010, 30, 512–517. [Google Scholar] [CrossRef]
- Lee, S.Y.; Chen, S.L.; Chang, Y.H.; Chen, S.H.; Chu, C.H.; Huang, S.Y.; Tzeng, N.S.; Wang, C.L.; Wang, L.J.; Lee, I.H.; et al. Genotype variant associated with add-on memantine in bipolar II disorder. Int. J. Neuropsychopharmacol. 2014, 17, 189–197. [Google Scholar] [CrossRef]
- Shinozaki, G.; Potash, J.B. New developments in the genetics of bipolar disorder. Curr. Psychiatry Rep. 2014, 16, 493. [Google Scholar] [CrossRef]
- Benazzi, F.; Akiskal, H. The duration of hypomania in bipolar-II disorder in private practice: Methodology and validation. J. Affect. Disord. 2006, 96, 189–196. [Google Scholar] [CrossRef]
- Judd, L.L.; Akiskal, H.S.; Schettler, P.J.; Coryell, W.; Maser, J.; Rice, J.A.; Solomon, D.A.; Keller, M.B. The comparative clinical phenotype and long term longitudinal episode course of bipolar I and II: A clinical spectrum or distinct disorders? J. Affect. Disord. 2003, 73, 19–32. [Google Scholar] [CrossRef]
- Hsueh, Y.S.; Lin, C.Y.; Chiu, N.T.; Yang, Y.K.; Chen, P.S.; Chang, H.H. Changes in striatal dopamine transporters in bipolar disorder and valproate treatment. Eur. Psychiatry 2021, 64, e9. [Google Scholar] [CrossRef]
- Leucht, S.; Fennema, H.; Engel, R.; Kaspers-Janssen, M.; Lepping, P.; Szegedi, A. What does the HAMD mean? J. Affect. Disord. 2013, 148, 243–248. [Google Scholar] [CrossRef]
- Chengappa, K.N.R.; Baker, R.W.; Shao, L.; Yatham, L.N.; Tohen, M.; Gershon, S.; Kupfer, D.J. Rates of response, euthymia and remission in two placebo-controlled olanzapine trials for bipolar mania. Bipolar Disord. 2003, 5, 1–5. [Google Scholar] [CrossRef]
- Yang, M.M.; Wang, J.; Fan, J.J.; Ng, T.K.; Sun, D.J.; Guo, X.; Teng, Y.; Li, Y.B. Variations in the obesity gene “LEPR” contribute to risk of type 2 diabetes mellitus: Evidence from a meta-analysis. J. Diabetes Res. 2016, 2016, 5412084. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, F.; Xu, L.L.; Sha, S.F.; Zhang, W.; Qiao, J.; Bao, H.D.; Qiu, Y.; Jiang, Q.; Zhu, Z.Z. Polymorphism of rs2767485 in leptin receptor gene is associated with the occurrence of adolescent idiopathic scoliosis. Spine 2015, 40, 1593–1598. [Google Scholar] [CrossRef]
- Domínguez-Reyes, T.; Astudillo-López, C.C.; Salgado-Goytia, L.; Muñoz-Valle, J.F.; Salgado-Bernabé, A.B.; Guzmán-Guzmán, I.P.; Castro-Alarcón, N.; Moreno-Godínez, M.E.; Parra-Rojas, I. Interaction of dietary fat intake with APOA2, APOA5 and LEPR polymorphisms and its relationship with obesity and dyslipidemia in young subjects. Lipids Health Dis. 2015, 14, 106. [Google Scholar] [CrossRef]
- Suppes, T.; Kroger, H.; Pikalov, A.; Loebel, A. Lurasidone adjunctive with lithium or valproate for bipolar depression: A placebo-controlled trial utilizing prospective and retrospective enrolment cohorts. J. Psychiatr. Res. 2016, 78, 86–93. [Google Scholar] [CrossRef] [Green Version]
Controls (n = 77) | BD Patients (n = 130) | BD Patients after Treatment | 95% CI a | t a/χ2 | p Value a | 95% CI b | t b | p Value b | |
---|---|---|---|---|---|---|---|---|---|
Age (y) (Range, min–max) | 31.0 ± 10.7 (19–59) | 32.1 ± 11.6 (18–64) | – | −2–4.2 | −0.690 | 0.491 | – | – | – |
Gender, female (%) | 43 (55.8) | 66 (50.8) | – | −0.1–0.2 | 0.564 | 0.453 | – | – | – |
HAMD scores | 3.2 ± 1.6 | 19.4 ± 5.5 | 11.4 ± 6.9 | 14.9–17.4 | −25.327 | <0.001 * | 6.8–9.2 | 12.911 | <0.001 * |
YMRS scores | 4.1 ± 0.4 | 9.2 ± 4.0 | 6.4 ± 3.4 | 4.3–6 | −11.428 | <0.001 * | 2.2–3.6 | 8.147 | <0.001 * |
Controls | BD | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
rs1137100 | AG (n = 26) | GG (n = 51) | t | 95% CI | p | AA + AG (n = 46) | GG (n = 84) | t | 95% CI | p |
HAMD scores | 3.4 ± 1.6 | 3.2 ± 1.6 | 0.498 | −0.6–0.9 | 0.620 | 19.3 ± 6.5 | 19.4 ± 5.2 | −0.141 | −2.2–1.9 | 0.888 |
YMRS scores | 4.2 ± 0.5 | 4.1 ± 0.3 | 0.815 | −0.1–0.3 | 0.418 | 10.4 ± 4.1 | 8.8 ± 3.9 | 2.188 | 0.2–3.0 | 0.030 * |
rs1137101 | AA + AG (n = 20) | GG (n = 57) | AA + AG (n = 27) | GG (n = 103) | ||||||
HAMD scores | 3.6 ± 1.7 | 3.1 ± 1.5 | 1.261 | −0.3–1.3 | 0.211 | 18.8 ± 6.7 | 19.5 ± 5.4 | −0.580 | −3.1–1.7 | 0.563 |
YMRS scores | 4.1 ± 0.4 | 4.1 ± 0.4 | −0.052 | −0.2–0.2 | 0.958 | 9.7 ± 4.6 | 9.3 ± 3.8 | 0.508 | −1.3–2.2 | 0.612 |
rs12145690 | AA + AC (n = 25) | CC (n = 52) | AA + AC (n = 26) | CC (n = 104) | ||||||
HAMD scores | 3.3 ± 1.6 | 3.2 ± 1.6 | 0.382 | −0.6–0.9 | 0.703 | 18.7 ± 5.5 | 19.5 ± 5.7 | −0.630 | −3.2–1.7 | 0.530 |
YMRS scores | 4.2 ± 0.5 | 4.1 ± 0.3 | 0.889 | −0.1–0.3 | 0.377 | 9.7 ± 4 | 9.3 ± 4.0 | 0.476 | −1.3–2.2 | 0.635 |
rs8179183 | CG (n = 9) | GG (n = 68) | CG (n = 8) | GG (n = 122) | ||||||
HAMD scores | 3.8 ± 1.8 | 3.2 ± 1.5 | 1.135 | −0.5–1.7 | 0.260 | 19.6 ± 4.9 | 19.4 ± 5.7 | 0.128 | −3.8–4.4 | 0.898 |
YMRS scores | 4.4 ± 0.7 | 4.1 ± 0.3 | 1.576 | −0.2–0.9 | 0.152 | 8.9 ± 3.4 | 9.4 ± 4 | −0.377 | −3.4–2.3 | 0.707 |
Haplotype # | BD Patients | Healthy Controls | X2 | p | Odds Ratio | 95% CI | |
---|---|---|---|---|---|---|---|
1 | CGGG | 69.9 | 68.1 | >0.001 | 0.995 | 1.0 | 0.6–1.6 |
2 | AGGG | 7.4 | 11.2 | 1.964 | 0.161 | 0.6 | 0.3–1.2 |
3 | CAGG | 9.3 | 2.9 | 5.756 | 0.016 * | 3.3 | 1.2–9.2 |
4 | CAAG | 6.1 | 7.6 | 0.429 | 0.512 | 0.8 | 0.4–1.7 |
5 | CGAG | 2.5 | 1.5 | 0.378 | 0.539 | 1.6 | 0.4–7.2 |
6 | AAAC | 1.4 | 1.8 | 0.129 | 0.720 | 0.8 | 0.2–3.6 |
7 | AAGG | 0.9 | 1.8 | 0.688 | 0.407 | 0.5 | 0.1–2.7 |
8 | CGGC | 1.3 | 1.2 | >0.001 | 0.985 | 1.0 | 0.2–6.3 |
Haplotype # | HAMD Remitter (%) | HAMD Nonremitter (%) | X2 | p | Odds Ratio | 95% CI | |
---|---|---|---|---|---|---|---|
1 | CGGG | 69.6 | 69.4 | 0.009 | 0.923 | 1.0 | 0.6–1.7 |
2 | CAGG | 13.9 | 7.3 | 2.912 | 0.038 * | 2.0 | 1.9–4.6 |
3 | AGGG | 7.1 | 8.1 | 0.103 | 0.748 | 0.9 | 0.3–2.2 |
4 | CAAG | 5.2 | 6.3 | 0.163 | 0.687 | 0.8 | 0.3–2.4 |
5 | CGAG | 2.2 | 2.8 | 0.093 | 0.761 | 0.8 | 0.2–3.9 |
6 | AAAC | 0 | 2.5 | 2.536 | 0.111 | 0 | – |
7 | CGGC | 1 | 1.5 | 0.130 | 0.718 | 0.7 | 0.1–6.8 |
Haplotype # | YMRS Responder (%) | YMRS Nonresponder (%) | X2 | p | Odds Ratio | 95% CI | |
---|---|---|---|---|---|---|---|
1 | CGGG | 63.3 | 72.3 | 2.283 | 0.131 | 0.6 | 0.4–1.1 |
2 | CAGG | 16.6 | 6.7 | 6.108 | 0.013 * | 2.8 | 1.2–6.3 |
3 | AGGG | 7.1 | 8.0 | 0.074 | 0.786 | 0.9 | 0.3–2.4 |
4 | CAAG | 6.4 | 5.7 | 0.044 | 0.834 | 1.1 | 0.4–3.4 |
5 | CGAG | 2.7 | 2.5 | 0.008 | 0.929 | 1.1 | 0.2–5.5 |
6 | AAAC | 1.2 | 1.7 | 0.085 | 0.771 | 0.7 | 0.1–7.1 |
7 | CGGC | 1.2 | 1.3 | 0.006 | 0.937 | 0.9 | 0.1–9.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, H.H.; Hsueh, Y.-S.; Cheng, Y.W.; Tseng, H.-H. A Longitudinal Study of the Association between the LEPR Polymorphism and Treatment Response in Patients with Bipolar Disorder. Int. J. Mol. Sci. 2022, 23, 9635. https://doi.org/10.3390/ijms23179635
Chang HH, Hsueh Y-S, Cheng YW, Tseng H-H. A Longitudinal Study of the Association between the LEPR Polymorphism and Treatment Response in Patients with Bipolar Disorder. International Journal of Molecular Sciences. 2022; 23(17):9635. https://doi.org/10.3390/ijms23179635
Chicago/Turabian StyleChang, Hui Hua, Yuan-Shuo Hsueh, Yung Wen Cheng, and Huai-Hsuan Tseng. 2022. "A Longitudinal Study of the Association between the LEPR Polymorphism and Treatment Response in Patients with Bipolar Disorder" International Journal of Molecular Sciences 23, no. 17: 9635. https://doi.org/10.3390/ijms23179635