A Challenge toward Novel Quaternary Sulfides SrLnCuS3 (Ln = La, Nd, Tm): Unraveling Synthetic Pathways, Structures and Properties
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Materials
3.2. Methods
3.3. Synthesis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Shi, W.; Ye, J.; Zhang, Y.; Suzuki, R.; Yoshida, M.; Miyazaki, J.; Inoue, N.; Saito, Y.; Iwasa, Y. Superconductivity Series in Transition Metal Dichalcogenides by Ionic Gating. Sci. Rep. 2015, 5, 12534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gulay, L.D.; Kaczorowski, D.; Pietraszko, A. Crystal structure and magnetic properties of YbCuPbSe3. J. Alloys Compd. 2006, 413, 26–28. [Google Scholar] [CrossRef]
- Sturza, M.; Allred, J.M.; Malliakas, C.D.; Bugaris, D.E.; Han, F.; Chung, D.Y.; Kanatzidis, M.G. Tuning the Magnetic Properties of New Layered Iron Chalcogenides (BaF)2Fe2XQ3 (Q = S, Se) by Changing the Defect Concentration on the Iron Sublattice. Chem. Mater. 2015, 27, 3280–3290. [Google Scholar] [CrossRef]
- Ishtiyak, M.; Jana, S.; Karthikeyan, R.; Mamindla, R.; Tripathy, B.; Malladi, S.K.; Niranjan, M.; Prakash, J. Syntheses of Five New Layered Quaternary Chalcogenides SrScCuSe3, SrScCuTe3, BaScCuSe3, BaScCuTe3, and BaScAgTe3: Crystal Structures, Thermoelectric Properties, and Electronic Structures. Inorg. Chem. Front. 2021, 8, 4086–4101. [Google Scholar] [CrossRef]
- Kuo, S.-M.; Chang, Y.-M.; Chung, I.; Jang, J.-I.; Her, B.-H.; Yang, S.-H.; Ketterson, J.B.; Kanatzidis, M.G.; Hsu, K.-F. New Metal Chalcogenides Ba4CuGa5Q12 (Q = S, Se) Displaying Strong Infrared Nonlinear Optical Response. Chem. Mater. 2013, 25, 2427–2433. [Google Scholar] [CrossRef]
- Fabini, D.H.; Koerner, M.; Seshadri, R. Candidate inorganic photovoltaic materials from electronic structure-based optical absorption and charge transport proxies. Chem. Mater. 2019, 31, 1561–1574. [Google Scholar] [CrossRef] [Green Version]
- Maldonado, M.E.; Das, A.; Jawaid, A.M.; Ritter, A.J.; Vaia, R.A.; Nagaoka, D.A.; Vianna, P.G.; Seixas, L.; de Matos, C.J.S.; Baev, A.; et al. Nonlinear Optical Interactions and Relaxation in 2D Layered Transition Metal Dichalcogenides Probed by Optical and Photoacoustic Z-Scan Methods. ACS Photonics 2020, 7, 3440–3447. [Google Scholar] [CrossRef]
- Chakraborty, S.B.; Beltran-Suito, R.; Hlukhyy, V.; Schmidt, J.; Menezes, P.W.; Driess, M. Crystalline Copper Selenide as a Reliable Non-Noble Electro(pre)catalyst for Overall Water. ChemSusChem 2020, 13, 3222–3229. [Google Scholar] [CrossRef]
- Mansuetto, M.F.; Keane, P.M.; Ibers, J.A. Synthesis, structure, and conductivity of the new group IV chalcogenides KCuZrQ3 (Q = S, Se, Te). J. Solid State Chem. 1992, 101, 257–264. [Google Scholar] [CrossRef]
- Sutorik, A.C.; Albritton-Thomas, J.; Hogan, T.; Kannewurf, C.R.; Kanatzidis, M.G. New Quaternary Compounds Resulting from the Reaction of Copper and f-Block Metals in Molten Polychalcogenide Salts at Intermediate Temperatures. Valence Fluctuations in the Layered CsCuCeS3. Chem. Mater. 1996, 8, 751–761. [Google Scholar] [CrossRef]
- Huang, F.Q.; Mitchell, K.; Ibers, J.A. New Layered Materials: Syntheses, Structures, and Optical and Magnetic Properties of CsGdZnSe3, CsZrCuSe3, CsUCuSe3, and BaGdCuSe3. Inorg. Chem. 2001, 40, 5123–5126. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, K.; Haynes, C.L.; McFarland, A.D.; Van Duyne, R.P.; Ibers, J.A. Tuning of Optical Band Gaps: Syntheses, Structures, Magnetic Properties, and Optical Properties of CsLnZnSe3 (Ln = Sm, Tb, Dy, Ho, Er, Tm, Yb, and Y). Inorg. Chem. 2002, 41, 1199–1204. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, K.; Huang, F.Q.; McFarland, A.D.; Haynes, C.L.; Somers, R.C.; Van Duyne, R.P.; Ibers, J.A. The CsLnMSe3 Semiconductors (Ln = Rare-Earth Element, Y, M = Zn, Cd, Hg). Inorg. Chem. 2003, 42, 4109–4116. [Google Scholar] [CrossRef]
- Wakeshima, M.; Furuuchi, F.; Hinatsu, Y. Crystal structures and magnetic properties of novel rare-earth copper sulfides, EuRCuS3 (R = Y, Gd–Lu). J. Phys. Condens. Matter. 2004, 16, 5503–5518. [Google Scholar] [CrossRef]
- Mitchell, K.; Huang, F.Q.; Caspi, E.N.; McFarland, A.D.; Haynes, C.L.; Somers, R.C.; Jorgensen, J.D.; Van Duyne, R.P.; Ibers, J.A. Syntheses, structure, and selected physical properties of CsLnMnSe3 (Ln = Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Y) and AYbZnQ3 (A = Rb, Cs; Q = S, Se, Te). Inorg. Chem. 2004, 43, 1082–1089. [Google Scholar] [CrossRef]
- Yao, J.; Deng, B.; Sherry, L.J.; McFarland, A.D.; Ellis, D.E.; Van Duyne, R.P.; Ibers, J.A. Syntheses, Structure, Some Band Gaps, and Electronic Structures of CsLnZnTe3 (Ln = La, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Y). Inorg. Chem. 2004, 43, 7735–7740. [Google Scholar] [CrossRef]
- Selby, H.D.; Chan, B.C.; Hess, R.F.; Abney, K.D.; Dorhout, P.K. Three new phases in the K/Cu/Th/S system: KCuThS3, K2Cu2ThS4, and K3Cu3Th2S7. Inorg. Chem. 2005, 44, 6463–6469. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, L.; Wu, L.-M.; Chan, G.H.; Van Duyne, R.P. Syntheses, Crystal and Band Structures, and Magnetic and Optical Properties of New CsLnCdTe3 (Ln = La, Pr, Nd, Sm, Gd–Tm, and Lu). Inorg. Chem. 2008, 47, 855–862. [Google Scholar] [CrossRef]
- Yao, J.; Wells, D.M.; Chan, G.H.; Zeng, H.-Y.; Ellis, D.E.; Van Duyne, R.P.; Ibers, J.A. Syntheses, Structures, Physical Properties, and Electronic Properties of Some AMUQ3 Compounds (A = Alkali Metal, M = Cu or Ag, Q = S or Se). Inorg. Chem. 2008, 47, 6873–6879. [Google Scholar] [CrossRef]
- Bugaris, D.E.; Ibers, J.A. RbAuUSe3, CsAuUSe3, RbAuUTe3, and CsAuUTe3: Syntheses and structure; magnetic properties of RbAuUSe3. J. Solid State Chem. 2009, 182, 2587–2590. [Google Scholar] [CrossRef]
- Koscielski, L.A.; Ibers, J.A. The structural chemistry of quaternary chalcogenides of the type AMM’Q3. Z. Anorg. Allg. Chem. 2012, 638, 2585–2593. [Google Scholar] [CrossRef]
- Ruseikina, A.V.; Solovyov, L.A.; Grigoriev, M.V.; Andreev, O.V. Crystal structure variations in the series SrLnCuS3 (Ln = La, Pr, Sm, Gd, Er and Lu). Acta Cryst. 2019, C75, 584–588. [Google Scholar] [CrossRef] [PubMed]
- Grigoriev, M.V.; Solovyov, L.A.; Ruseikina, A.V.; Aleksandrovsky, A.S.; Chernyshev, V.A.; Velikanov, D.A.; Garmonov, A.A.; Molokeev, M.S.; Oreshonkov, A.S.; Shestakov, N.P.; et al. Quaternary Selenides EuLnCuSe3: Synthesis, Structures, Properties and In Silico Studies. Int. J. Mol. Sci. 2022, 23, 1503. [Google Scholar] [CrossRef] [PubMed]
- Pal, K.; Hua, X.; Xia, Y.; Wolverton, C. Unraveling the structure-valence-property relationships in AMM′Q3 chalcogenides with promising thermoelectric performance. ACS Appl. Energy Mater. 2019, 3, 2110–2119. [Google Scholar] [CrossRef]
- Hao, S.; Ward, L.; Luo, Z.; Ozolins, V.; Dravid, V.P.; Kanatzidis, M.G.; Wolverton, C. Design Strategy for High-Performance Thermoelectric Materials: The Prediction of Electron-Doped KZrCuSe3. Chem. Mater. 2019, 31, 3018–3024. [Google Scholar] [CrossRef]
- Pal, K.; Xia, Y.; Shen, J.; He, J.; Luo, Y.; Kanatzidis, M.G.; Wolverton, C. Accelerated discovery of a large family of quaternary chalcogenides with very low lattice thermal conductivity. NPJ Comput. Mater. 2021, 7, 82. [Google Scholar] [CrossRef]
- Pal, K.; Park, C.W.; Xia, Y.; Shen, J.; Wolverton, C. Scale-invariant machine-learning model accelerates the discovery of quaternary chalcogenides with ultralow lattice thermal conductivity. NPJ Comput. Mater. 2022, 8, 48. [Google Scholar] [CrossRef]
- Pal, K.; Xia, Y.; He, J.; Wolverton, C. High thermoelectric performance in BaAgYTe3 via low lattice thermal conductivity induced by bonding heterogeneity. Phys. Rev. Mater. 2019, 3, 085402. [Google Scholar] [CrossRef]
- Matsunaga, T.; Yamada, N.; Kojima, R.; Shamoto, S.; Sato, M.; Tanida, H.; Uruga, T.; Kohara, S.; Takata, M.; Zalden, P.; et al. Phase-change materials: Vibrational softening upon crystallization and its impact on thermal properties. Adv. Funct. Mater. 2011, 21, 2232–2239. [Google Scholar] [CrossRef] [Green Version]
- Biswas, K.; He, J.; Blum, I.D.; Wu, C.-I.; Hogan, T.P.; Seidman, D.N.; Dravid, V.P.; Kanatzidis, M.G. High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 2012, 489, 414–418. [Google Scholar] [CrossRef]
- Darolia, R. Thermal barrier coatings technology: Critical review, progress update, remaining challenges and prospects. Int. Mater. Rev. 2013, 58, 315–348. [Google Scholar] [CrossRef]
- Zhao, L.-D.; Tan, G.; Hao, S.; He, J.; Pei, Y.; Chi, H.; Wang, H.; Gong, S.; Xu, H.; Dravid, V.P.; et al. Ultrahigh power factor and thermoelectric performance in holedoped single crystal SnSe. Science 2016, 351, 141–144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, P.; Christuk, A.E.; Ibers, J.A. New Quaternary Chalcogenides BaLnMQ3 (Ln = Rare Earth or Sc; M = Cu, Ag; Q = S, Se). Structure and Property Variation vs Rare-Earth Element. J. Solid State Chem. 1994, 110, 337–344. [Google Scholar] [CrossRef]
- Ruseikina, A.V.; Andreev, O.V.; Galenko, E.O.; Koltsov, S.I. Trends in thermodynamic parameters of phase transitions of lanthanide sulfides SrLnCuS3 (Ln = La–Lu). J. Therm. Anal. Calorim. 2017, 128, 993–999. [Google Scholar] [CrossRef]
- Ruseikina, A.V.; Demchuk, Z.A. Crystal Structure and Properties of AHoCuS3 (A = Sr or Eu). Russ. J. Inorg. Chem. 2017, 62, 27–32. [Google Scholar] [CrossRef]
- Ruseikina, A.V.; Molokeev, M.S.; Chernyshev, V.A.; Aleksandrovsky, A.S.; Krylov, A.S.; Krylova, S.N.; Velikanov, D.A.; Grigoriev, M.V.; Maximov, N.G.; Shestakov, N.P.; et al. Synthesis, structure, and properties of EuScCuS3 and SrScCuS3. J. Solid State Chem. 2021, 296, 121926. [Google Scholar] [CrossRef]
- Ruseikina, A.V.; Chernyshev, V.A.; Velikanov, D.A.; Aleksandrovsky, A.S.; Shestakov, N.P.; Molokeev, M.S.; Grigoriev, M.V.; Andreev, O.V.; Garmonov, A.A.; Matigorov, A.V.; et al. Regularities of the property changes in the compounds EuLnCuS3 (Ln = La-Lu). J. Alloys Compd. 2021, 874, 159968. [Google Scholar] [CrossRef]
- Oreshonkov, A.S.; Azarapin, N.O.; Shestakov, N.P.; Adichtchev, S.V. Experimental and DFT study of BaLaCuS3: Direct band gap semiconductor. J. Phys. Chem. Solids 2021, 148, 109670. [Google Scholar] [CrossRef]
- Zhang, S.B.; Wei, S.H.; Zunger, A.; Katayama-Yoshida, H. Defect physics of the CuInSe2 chalcopyrite semiconductor. Phys. Rev. B. 1998, 57, 9642–9656. [Google Scholar] [CrossRef]
- Contreras, M.A.; Ramanathan, K.; AbuShama, J.; Hasoon, F.; Young, D.L.; Egaas, B.; Noufi, R. Diode characteristics in state-of-the-art ZnO/CdS/Cu(In1–xGax)Se2 solar cells. Prog. Photovolt. Res. Appl. 2005, 13, 209–216. [Google Scholar] [CrossRef]
- Repins, I.L.; Stanbery, B.J.; Young, D.L.; Li, S.S.; Metzger, W.K.; Perkins, C.L.; Shafarman, W.N.; Beck, M.E.; Chen, L.; Kapur, V.K.; et al. Comparison of device performance and measured transport parameters in widely varying Cu(In,Ga)(Se,S) solar cells. Prog. Photovolt. Res. Appl. 2006, 14, 25–43. [Google Scholar] [CrossRef]
- Repins, I.; Contreras, M.; Romero, M.; Yan, Y.; Metzger, W.; Li, J.; Johnston, S.; Egaas, B.; DeHart, C.; Scharf, J. Characterization of 19.9%-Efficient CIGS. In Proceedings of the 33rd IEEE Photovoltaic Specialists Conference, San Diego, CA, USA, 11–16 May 2008. Paper NREL/CP-520-42539. [Google Scholar]
- Ruseikina, A.V.; Solov’ev, L.A.; Andreev, O.V. Crystal Structures and Properties of SrLnCuS3 (Ln = La, Pr). Russ. J. Inorg. Chem. 2014, 59, 196–201. [Google Scholar] [CrossRef]
- Ruseikina, A.V.; Solov’ev, L.A. Crystal Structures of α- and β-SrCeCuS3. Russ. J. Inorg. Chem. 2016, 61, 482–487. [Google Scholar] [CrossRef]
- Ruseikina, A.V.; Solov’ev, L.A.; Galenko, E.O.; Grigor’ev, M.V. Refined Crystal Structures of SrLnCuS3 (Ln = Er, Yb). Russ. J. Inorg. Chem. 2018, 63, 1225–1231. [Google Scholar] [CrossRef]
- Eberle, M.A.; Strobel, S.; Schleid, T. SrCuNdS3: A new Compound with two Different Crystal Structures. Z. Kristallogr. 2014, S34, 139. [Google Scholar]
- Eberle, M.A.; Schleid, T. Expanding the SrCuRES3 Series with the Rare-Earth Metals Scandium and Yttrium. Z. Kristallogr. 2016, S36, 71. [Google Scholar]
- Ruseikina, A.V.; Andreev, O.V.; Demchuk, Z.A. Preparation of Polycrystalline Samples of the EuLnCuS3 (Ln = Gd, Lu) Compounds. Inorg. Mater. 2016, 52, 537–542. [Google Scholar] [CrossRef]
- Ruseikina, A.V.; Andreev, O.V. Phase equilibria in the Cu2S–La2S3–EuS system. Russ. J. Inorg. Chem. 2017, 62, 610–618. [Google Scholar] [CrossRef]
- Strobel, S.; Schleid, T. Quaternary Strontium Copper (I) Lanthanoid (III) Selenides with Cerium and Praseodymium: SrCuCeSe3 and SrCuPrSe3, Unequal Brother and Sister. Z. Naturforsch. 2004, B59, 985–991. [Google Scholar] [CrossRef]
- Strobel, S.; Schleid, T. Three structure types for strontium copper (I) lanthanide (III) selenides SrCuMSe3 (M = La, Gd, Lu). J. Alloys Compd. 2006, 418, 80–85. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. 1976, A32, 751–767. [Google Scholar] [CrossRef]
- Ceci-Ginistrelli, E.; Smith, C.; Pugliese, D.; Lousteau, J.; Boetti, N.G.; Clarkson, W.A.; Poletti, F.; Milanese, D. Nd-doped phosphate glass cane laser: From materials fabrication to power scaling tests. J. Alloys Compd. 2017, 722, 599–605. [Google Scholar] [CrossRef]
- Otwinowski, Z.; Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 1997, 276, 307–326. [Google Scholar] [PubMed]
- Herrendorf, W.; Bärnighausen, H.; Habitus, A. Program for the Optimization of the Crystal Shape for Numerical Absorption Correction in X-SHAPE; Universität Karlsruhe: Karlsruhe, Germany, 1993. [Google Scholar]
- Sheldrick, G.M. Shelxl-97: Program for the Refinement of Crystal Structures; University of Göttingen: Göttingen, Germany, 1997. [Google Scholar]
- Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. A 2008, 64, 112–122. [Google Scholar] [CrossRef] [Green Version]
- Visser, J.W. A fully automatic program for finding the unit cell from powder data. J. Appl. Crystallogr. 1969, 2, 89–95. [Google Scholar] [CrossRef]
- Solovyov, L.A. Full-Profile refinement by derivative difference minimization. J. Appl. Crystallogr. 2004, 37, 743–749. [Google Scholar] [CrossRef]
- Brennan, T.D.; Ibers, J.A. LaPbCuS3: Cu(I) insertion into the α-La2S3 framework. J. Solid State Chem. 1992, 97, 377–382. [Google Scholar] [CrossRef]
- Christuk, A.E.; Wu, P.; Ibers, J.A. New Quaternary Chalcogenides BaLnMQ3 (Ln = Rare Earth; M = Cu, Ag; Q = S, Se): I. Structures and Grinding-Induced Phase Transition in BaLaCuQ3. J. Solid State Chem. 1994, 110, 330–336. [Google Scholar] [CrossRef]
- Velikanov, D.A. Vibration Magnetometer. RF Pat. 2341810. 20 December 2008. Available online: http://www.freepatent.ru/patents/2341810 (accessed on 10 July 2022).
SrLaCuS3 a | SrNdCuS3 a | SrNdCuS3 a | SrYCuS3 a | SrTmCuS3 a | SrScCuS3 a | |
---|---|---|---|---|---|---|
Space group | Pnma | Pnma | Pnma | Pnma | Cmcm | Cmcm |
Structural type | Ba2MnS3 | BaLaCuS3 | Eu2CuS3 | Eu2CuS3 | KZrCuS3 | KZrCuS3 |
a (Å) | 8.1682(6) | 11.0663(8) | 10.5693(7) | 10.1845(7) | 3.9163(3) | 3.8316(3) |
b (Å) | 4.0748(3) | 4.0886(3) | 4.0072(3) | 3.9378(3) | 12.9520(9) | 12.8504(9) |
c (Å) | 16.0394(11) | 11.4625(8) | 12.8905(9) | 12.9426(9) | 10.0642(7) | 9.7153(7) |
V (Å3) | 533.85(7) | 518.63(2) | 545.96(3) | 519.06(2) | 510.50(6) | 478.36(2) |
Z | 4 | 4 | 4 | 4 | 4 | 4 |
ρ (g cm−3) | 4.806 | 5.015 | 4.764 | 4.303 | 5.416 | 4.059 |
μ (mm−1) | 22.76 | 25.20 | 23.94 | 26.41 | 32.81 | 18.01 |
Collected reflection | 13821 | 7074 | 10117 | 8491 | 2756 | 4498 |
Unique reflections | 846 | 678 | 738 | 734 | 340 | 351 |
Rint | 0.0653 | 0.068 | 0.137 | 0.075 | 0.0678 | 0.055 |
R1(all) | 0.0217 | 0.032 | 0.043 | 0.029 | 0.0248 | 0.017 |
wR2(all) | 0.0382 | 0.054 | 0.080 | 0.033 | 0.0426 | 0.032 |
S | 1.022 | 1.059 | 1.004 | 0.941 | 1.007 | 1.031 |
Reference | This work | [46] | [46] | [47] | This work | [47] |
SrLaCuS3 a | SrLaCuS3 b | SrCeCuS3 a | SrCeCuS3 c | SrPrCuS3 a | SrNdCuS3 d | SrSmCuS3 a | |
---|---|---|---|---|---|---|---|
Space group | Pnma | Pnma | Pnma | Pnma | Pnma | Pnma | Pnma |
Structural type | BaLaCuS3 | Ba2MnS3 | BaLaCuS3 | Ba2MnS3 | BaLaCuS3 | BaLaCuS3 | Eu2CuS3 |
a (Å) | 11.2415(1) | 8.1746(3) | 11.1626(2) | 8.1393(3) | 11.1171(1) | 11.0815(2) | 10.4285(2) |
b (Å) | 4.11053(6) | 4.0727(2) | 4.0970(2) | 4.0587(2) | 4.09492(6) | 4.0849(1) | 3.98640(7) |
c (Å) | 11.5990(1) | 16.0473(8) | 11.5307(1) | 15.9661(2) | 11.5069(2) | 11.4684(2) | 12.9325(2) |
V (Å3) | 535.97(1) | 534.26(4) | 527.33(1) | 527.44(2) | 523.84(1) | 519.14(1) | 537.63(2) |
RDDM (%) | 5.25 | 5.73 | 4.52 | 6.61 | 5.03 | 4.00 | 4.94 |
RF (%) | 1.53 | 1.1 | 2.87 | 3.78 | 1.80 | 3.7 | 2.09 |
Impurity | – | 2.6% SrS | – | – | – | 5.2% SrS 1.3% NdCuSO | 2.6% SmCuS2 1.6% Sm2SO2 |
Reference | [43] | This work | [44] | [44] | [43] | This work | [22] |
SrGdCuS3 a | SrHoCuS3 c | SrErCuS3 a | SrErCuS3 c | SrTmCuS3 e | SrYbCuS3 c | SrLuCuS3 a | |
Space group | Pnma | Pnma | Cmcm | Cmcm | Cmcm | Cmcm | Cmcm |
Structural type | Eu2CuS3 | Eu2CuS3 | KZrCuS3 | KZrCuS3 | KZrCuS3 | KZrCuS3 | KZrCuS3 |
a (Å) | 10.3288(2) | 10.1487(1) | 3.92672(5) | 3.93128(3) | 3.9210(1) | 3.91448(4) | 3.91105(4) |
b (Å) | 3.96271(7) | 3.9332(1) | 12.9632(2) | 12.9709(1)) | 12.9523(5) | 12.9554(1) | 12.9504(1) |
c (Å) | 12.9397(2) | 12.9524(2) | 10.0974(1) | 10.1161(1) | 10.0687(4) | 10.0332(1) | 10.0206(1) |
V (Å3) | 529.62(2) | 517.02(2) | 513.99(1) | 515.843(9) | 511.34(3) | 508.842(8) | 507.540(8) |
RDDM (%) | 4.41 | 4.29 | 5.67 | 3.73 | 4.80 | 3.56 | 5.27 |
RF (%) | 2.18 | 1.91 | 2.60 | 2.06 | 2.60 | 1.48 | 1.27 |
Impurity | 3.6% GdCuS2 2.5% SrS 0.8% Gd2SO2 | 2.6% SrS | 6.3% ErxCuyS2 3.5% SrS | 9.5% Er2SO2 1.2% SrS 0.5% Er5S(SiO4)3 | 5.1% Tm2SO2 1.2% SrS | 2.2% Yb2SO2 1.8% Yb5S(SiO4)3 1.2% SrS | 1.6% SrS 1.1% Lu2SO2 |
Reference | [22] | [36] | [22] | [45] | This work | [45] | [22] |
Atom | x | y | z | Occupancy | x | y | z | Occupancy |
---|---|---|---|---|---|---|---|---|
SrLaCuS3 (single crystal) | SrLaCuS3 (powdered sample) | |||||||
Sr1 | 0.09058(3) | 1/4 | 0.785319(17) | 0.502(5) | 0.09026(6) | 1/4 | 0.785177(28) | 0.5453(46) |
La1 | 0.09058(3) | 1/4 | 0.785319(17) | 0.498(5) | 0.09026(6) | 1/4 | 0.785177(28) | 0.4547(46) |
Sr2 | 0.25439(3) | 1/4 | 0.038345(17) | 0.489(6) | 0.25446(6) | 1/4 | 0.038210(26) | 0.4550(43) |
La2 | 0.25439(3) | 1/4 | 0.038345(17) | 0.511(6) | 0.25446(6) | 1/4 | 0.038210(26) | 0.5450(43) |
Cu | 0.11864(6) | 1/4 | 0.36655(3) | 1 | 0.11857(11) | 1/4 | 0.36652(6) | 1 |
S1 | 0.17928(12) | 1/4 | 0.22120(6) | 1 | 0.17956(18) | 1/4 | 0.22114(9) | 1 |
S2 | 0.38083(12) | 1/4 | 0.42864(6) | 1 | 0.38097(19) | 1/4 | 0.42837(10) | 1 |
S3 | 0.01190(12) | 1/4 | 0.60039(6) | 1 | 0.01197(18) | 1/4 | 0.60006(10) | 1 |
SrNdCuS3 (single crystal) [46] | SrNdCuS3 (powdered sample) | |||||||
Sr1 | 0.31732(6) | 1/4 | 0.49523(6) | 1 | 0.31752(15) | 1/4 | 0.49500(17) | 0.886(5) |
Nd1 | 0.48946(3) | 1/4 | 0.81684(4) | 1 | 0.31752(15) | 1/4 | 0.49500(17) | 0.114(5) |
Sr2 | – | – | – | – | 0.48947(13) | 1/4 | 0.81683(11) | 0.114(5) |
Nd2 | – | – | – | – | 0.48947(13) | 1/4 | 0.81683(11) | 0.886(5) |
Cu | 0.24480(8) | 1/4 | 0.21334(9) | 1 | 0.2447(2) | 1/4 | 0.2133(3) | 1 |
S1 | 0.22363(17) | 1/4 | 0.80669(16) | 1 | 0.2250(5) | 1/4 | 0.8076(4) | 1 |
S2 | 0.04818(16) | 1/4 | 0.14176(17) | 1 | 0.0487(4) | 1/4 | 0.1406(4) | 1 |
S3 | 0.38733(17) | 1/4 | 0.05848(17) | 1 | 0.3872(4) | 1/4 | 0.0571(4) | 1 |
SrTmCuS3 (single crystal) | SrTmCuS3 (powdered sample) | |||||||
Sr | 0 | 0.74817(7) | 1/4 | 1 | 0 | 0.74800(12) | 1/4 | 1 |
Tm | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 |
Cu | 0 | 0.47124(9) | 1/4 | 1 | 0 | 0.47147(17) | 1/4 | 1 |
S1 | 0 | 0.36340(13) | 0.06401(14) | 1 | 0 | 0.3634(2) | 0.0644(2) | 1 |
S2 | 0 | 0.07621(18) | 1/4 | 1 | 0 | 0.0761(3) | 1/4 | 1 |
SrLaCuS3 (Single Crystal/Powdered Sample) | |||||
---|---|---|---|---|---|
Sr1/La1–S1 | 2.957(1)/2.9569(11) | Sr2/La2–S1 | 2.996(1)/2.9988(16) | Cu–S1 | 2.383(1)/2.3857(18) |
Sr1/La1–S1i | 2.957(1)/2.9569(11) | Sr2/La2–S2iv | 2.910(1)/2.9119(12) | Cu–S2x | 2.362(1)/2.3636(18) |
Sr1/La1–S1ii | 3.003(1)/3.0036(11) | Sr2/La2–S2v | 2.910(1)/2.9119(12) | Cu–S3vi | 2.360(1)/2.3607(9) |
Sr1/La1–S1iii | 3.003(1)/3.0036(11) | Sr2/La2–S2vi | 3.097(1)/3.0999(17) | Cu–S3ix | 2.360(1)/2.3607(9) |
Sr1/La1–S2 | 3.081(1)/3.0793(13) | Sr2/La2–S3 | 2.964(1)/2.9627(11) | ||
Sr1/La1–S2i | 3.081(1)/3.0793(13) | Sr2/La2–S3vii | 2.964(1)/2.9627(11) | ||
Sr1/La1–S3 | 3.035(1)/3.0387(16) | Sr2/La2–S3viii | 3.062(1)/3.0585(16) | ||
SrNdCuS3 (Single Crystal/Powdered Sample) | |||||
Sr1/Nd1–S1 | 3.009(2)/3.002(4) | Sr2/Nd2–S1 | 2.944(2)/2.933(5) | Cu–S1 | 2.334(1)/2.335(3) |
Sr1/Nd1–S1i | 3.009(2)/3.002(4) | Sr2/Nd2–S1v | 2.953(2)/2.974(5) | Cu–S1i | 2.334(1)/2.335(3) |
Sr1/Nd1–S2ii | 3.036(2)/3.026(4) | Sr2/Nd2–S2 | 2.895(1)/2.904(4) | Cu–S2 | 2.325(2)/2.327(5) |
Sr1/Nd1–S2iii | 3.036(2)/3.026(4) | Sr2/Nd2–S2vi | 2.895(1)/2.904(4) | Cu–S3 | 2.375(2)/2.388(5) |
Sr1/Nd1–S2iv | 2.999(2)/2.997(5) | Sr2/Nd2–S3ii | 2.992(2)/2.980(5) | ||
Sr1/Nd1–S3ii | 3.136(2)/3.135(4) | Sr2/Nd2–S3v | 2.843(1)/2.851(3) | ||
Sr1/Nd1–S3iii | 3.136(2)/3.135(4) | Sr2/Nd2–S3vii | 2.843(1)/2.851(3) | ||
SrTmCuS3 (Single Crystal/Powdered Sample) | |||||
Sr–S1ii | 3.093(1)/3.093(2) | Tm–S1 | 2.717(1)/2.719(2) | Cu–S1 | 2.336(2)/2.335(3) |
Sr–S1v | 3.093(1)/3.093(2) | Tm–S1i | 2.717(1)/2.719(2) | Cu–S1viii | 2.336(2)/2.335(3) |
Sr–S1vi | 3.093(1)/3.093(2) | Tm–S1iii | 2.717(1)/2.719(2) | Cu–S2 | 2.384(2)/2.383(3) |
Sr–S1vii | 3.093(1)/3.093(2) | Tm–S1iv | 2.717(1)/2.719(2) | Cu–S2i | 2.384(2)/2.383(3) |
Sr–S2 | 2.966(2)/2.966(3) | Tm–S2 | 2.703(1)/2.703(2) | ||
Sr–S2i | 2.966(2)/2.966(3) | Tm–S2ii | 2.703(1)/2.703(2) |
SrNdCuS3 | SrTmCuS3 | |
---|---|---|
Space group | Pnma | Cmcm |
Structural type | Ba2MnS3 | KZrCuS3 |
Calculated μ (μB) | 3.618 | 7.561 |
Experimental μ296 K (μB) | 3.611 | 7.378 |
Experimental μ20–300 K (μB) | 3.52 | 7.57 |
Calculated C (K m3 kmol−1) | 0.02057 | 0.08983 |
Experimental C20–300 K (K m3 kmol−1) | 0.0195 | 0.0901 |
Experimental θ20–300 K (K) | −18 | −12 |
Compound (Mass) | Calculated (%) | Found (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Sr | Ln | Cu | S | O | Sr | Ln | Cu | S | O | |
SrLaCuS3 (386.25) | 22.68 | 35.96 | 16.45 | 24.90 | – | 23.23 | 35.82 | 16.06 | 24.89 | – |
97.4% SrLaCuS3 + 2.6% SrS | 23.10 | 35.67 | 16.32 | 24.92 | – | |||||
SrNdCuS3 (391.59) | 22.38 | 36.83 | 16.23 | 24.56 | – | 24.68 | 35.18 | 15.52 | 24.54 | 0.08 |
93.5% SrNdCuS3 + 5.2% SrS + 1.3% NdCuSO | 23.02 | 36.40 | 16.04 | 24.49 | 0.06 | |||||
SrTmCuS3 (416.28) | 21.05 | 40.58 | 15.27 | 23.10 | – | 20.53 | 42.51 | 14.25 | 22.30 | 0.41 |
93.7% SrTmCuS3 + 1.2% SrS + 5.1% Tm2SO2 | 20.18 | 42.60 | 14.45 | 22.36 | 0.40 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruseikina, A.V.; Grigoriev, M.V.; Solovyov, L.A.; Chernyshev, V.A.; Aleksandrovsky, A.S.; Krylov, A.S.; Krylova, S.N.; Shestakov, N.P.; Velikanov, D.A.; Garmonov, A.A.; et al. A Challenge toward Novel Quaternary Sulfides SrLnCuS3 (Ln = La, Nd, Tm): Unraveling Synthetic Pathways, Structures and Properties. Int. J. Mol. Sci. 2022, 23, 12438. https://doi.org/10.3390/ijms232012438
Ruseikina AV, Grigoriev MV, Solovyov LA, Chernyshev VA, Aleksandrovsky AS, Krylov AS, Krylova SN, Shestakov NP, Velikanov DA, Garmonov AA, et al. A Challenge toward Novel Quaternary Sulfides SrLnCuS3 (Ln = La, Nd, Tm): Unraveling Synthetic Pathways, Structures and Properties. International Journal of Molecular Sciences. 2022; 23(20):12438. https://doi.org/10.3390/ijms232012438
Chicago/Turabian StyleRuseikina, Anna V., Maxim V. Grigoriev, Leonid A. Solovyov, Vladimir A. Chernyshev, Aleksandr S. Aleksandrovsky, Alexander S. Krylov, Svetlana N. Krylova, Nikolai P. Shestakov, Dmitriy A. Velikanov, Alexander A. Garmonov, and et al. 2022. "A Challenge toward Novel Quaternary Sulfides SrLnCuS3 (Ln = La, Nd, Tm): Unraveling Synthetic Pathways, Structures and Properties" International Journal of Molecular Sciences 23, no. 20: 12438. https://doi.org/10.3390/ijms232012438