Spinal Muscular Atrophy: The Past, Present, and Future of Diagnosis and Treatment
Abstract
:1. Introduction
2. Single-Gene Disorder with Phenotypic Variation
2.1. First Case Report of SMA
2.2. Phenotypic Variation of SMA
2.2.1. Severe Phenotype (SMA Type I, Werdnig–Hoffmann Disease)
2.2.2. Intermediate Phenotype (SMA Type II, Dubowitz Disease)
2.2.3. Mild Phenotype (SMA Type III, Kugelberg–Welander Disease)
2.3. Single-Gene Disorder
2.3.1. SMA Locus in Chromosome 5q13
2.3.2. Current Classification of SMA
3. The SMA-Causative Gene: SMN1
3.1. The SMN1 and SMN2 Genes
3.2. The SMN Protein
3.2.1. Expression in Tissues and Subcellular Localization
3.2.2. High SMN Protein Expression in the Fetal Period
3.2.3. Various Functions of SMN Protein
3.2.4. SMN Protein in Tissues Associated with SMA Pathology
3.3. Another Candidate SMA-Causative Gene: Telomeric NAIP
4. The SMA-Modifier Gene: SMN2
4.1. The SMN2 Gene
4.2. Alternative Splicing
4.3. Phenotype Modification by SMN2
4.3.1. SMN2 Copy Number
4.3.2. Gene Conversion Event from SMN1 to SMN2
4.3.3. Variation of SMN Gene Copy Numbers in Different Populations
4.3.4. SMA Phenotype Modifiers Other than SMN2 Copy Number
5. Drug Development
5.1. Development of Therapeutic Options for SMA
5.2. Regulation of SMN2 Splicing
5.2.1. Targeting the Splicing Enhancer in SMN2 exon 7
5.2.2. Targeting the Splicing Silencers in Flanking Introns of SMN2 exon 7
5.3. Introduction of Exogenous Genes
5.3.1. Lentiviral Gene Transfer System (Lentivector)
5.3.2. Adeno-Associated Virus (AAV) Vector
5.4. Therapeutic Strategies with Existing Medication
5.4.1. Aclarubicin
5.4.2. Valproic Acid (VPA)
5.4.3. Salbutamol
6. FDA-Approved Drugs for SMA
6.1. Nusinersen
6.1.1. Outline
6.1.2. Mechanism of Action
6.1.3. Clinical Trials
Clinical Trials Involving Symptomatic Patients
Clinical Trials Involving Pre-Symptomatic Patients
6.2. Onasemnogene Abeparvovec
6.2.1. Outline
6.2.2. Mechanism of Action
6.2.3. Clinical Trials
Clinical Trials Involving Symptomatic Patients
Clinical Trials Involving Pre-Symptomatic Patients
6.3. Risdiplam
6.3.1. Outline
6.3.2. Mechanism of Action
6.3.3. Clinical Trials
Clinical Trials Involving Symptomatic Patients
Clinical Trials Involving Pre-Symptomatic Patients
7. Necessity of SMA Newborn Screening
7.1. Detection of Pre-Symptomatic SMA
7.2. Prevention of Delayed Diagnosis of SMA
7.3. Treatment Algorithm for Patients Identified by Newborn Screening
7.4. Obstacles to Implementation of Newborn Screening for SMA
8. Discussion
8.1. Four Historical Mysteries of SMA
8.2. Current Problems Associated with New Therapies
8.3. Switching Therapies in Adults with SMA
8.4. Switching Therapies in Infants with SMA
8.5. Future Prospects for SMA Therapies
8.6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Verhaart, I.E.C.; Robertson, A.; Wilson, I.J.; Aartsma-Rus, A.; Cameron, S.; Jones, C.C.; Cook, S.F.; Lochmüller, H. Prevalence, Incidence and Carrier Frequency of 5q-Linked Spinal Muscular Atrophy—A Literature Review. Orphanet J. Rare Dis. 2017, 12, 124. [Google Scholar] [CrossRef] [Green Version]
- Lunn, M.R.; Wang, C.H. Spinal Muscular Atrophy. Lancet 2008, 371, 2120–2133. [Google Scholar] [CrossRef] [PubMed]
- Werdnig, G. Zwei frühinfantile hereditäre Fälle von progressiver Muskelatrophie unter dem Bilde der Dystrophie, aber anf neurotischer Grundlage. Arch. Für Psychiatr. Nervenkrankh. 1891, 22, 437–480. [Google Scholar] [CrossRef] [Green Version]
- Pearn, J. Classification of Spinal Muscular Atrophies. Lancet 1980, 1, 919–922. [Google Scholar] [CrossRef]
- Brzustowicz, L.M.; Lehner, T.; Castilla, L.H.; Penchaszadeh, G.K.; Wilhelmsen, K.C.; Daniels, R.; Davies, K.E.; Leppert, M.; Ziter, F.; Wood, D. Genetic Mapping of Chronic Childhood-Onset Spinal Muscular Atrophy to Chromosome 5q11.2-13.3. Nature 1990, 344, 540–541. [Google Scholar] [CrossRef]
- Gilliam, T.C.; Brzustowicz, L.M.; Castilla, L.H.; Lehner, T.; Penchaszadeh, G.K.; Daniels, R.J.; Byth, B.C.; Knowles, J.; Hislop, J.E.; Shapira, Y. Genetic Homogeneity between Acute and Chronic Forms of Spinal Muscular Atrophy. Nature 1990, 345, 823–825. [Google Scholar] [CrossRef] [PubMed]
- Melki, J.; Abdelhak, S.; Sheth, P.; Bachelot, M.F.; Burlet, P.; Marcadet, A.; Aicardi, J.; Barois, A.; Carriere, J.P.; Fardeau, M. Gene for Chronic Proximal Spinal Muscular Atrophies Maps to Chromosome 5q. Nature 1990, 344, 767–768. [Google Scholar] [CrossRef] [PubMed]
- Melki, J.; Sheth, P.; Abdelhak, S.; Burlet, P.; Bachelot, M.F.; Lathrop, M.G.; Frezal, J.; Munnich, A. Mapping of Acute (Type I) Spinal Muscular Atrophy to Chromosome 5q12-Q14. The French Spinal Muscular Atrophy Investigators. Lancet 1990, 336, 271–273. [Google Scholar] [CrossRef]
- Dubowitz, V. Very Severe Spinal Muscular Atrophy (SMA Type 0): An Expanding Clinical Phenotype. Eur. J. Paediatr. Neurol. EJPN Off. J. Eur. Paediatr. Neurol. Soc. 1999, 3, 49–51. [Google Scholar] [CrossRef]
- Clermont, O.; Burlet, P.; Lefebvre, S.; Bürglen, L.; Munnich, A.; Melki, J. SMN Gene Deletions in Adult-Onset Spinal Muscular Atrophy. Lancet 1995, 346, 1712–1713. [Google Scholar] [CrossRef]
- Arnold, W.D.; Kassar, D.; Kissel, J.T. Spinal Muscular Atrophy: Diagnosis and Management in a New Therapeutic Era. Muscle Nerve 2015, 51, 157–167. [Google Scholar] [CrossRef] [Green Version]
- Lefebvre, S.; Bürglen, L.; Reboullet, S.; Clermont, O.; Burlet, P.; Viollet, L.; Benichou, B.; Cruaud, C.; Millasseau, P.; Zeviani, M. Identification and Characterization of a Spinal Muscular Atrophy-Determining Gene. Cell 1995, 80, 155–165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fidzianska, A.; Hausmanowa-Petrusewicz, I. Morphology of the Lower Motor Neuron and Muscle. In Progressive Spinal Muscular Atrophie; Gamstorp, I., Sarnat, H.B., Eds.; Raven Press: New York, NY, USA, 1984; pp. 55–89. [Google Scholar]
- Dubowitz, V. Sixty Years of Spinal Muscular Atrophy: A Personal Odyssey. In Spinal Muscular Atrophy; Sumner, C.J., Paushkin, S., Ko, C.-P., Eds.; Academic Press: Cambridge, MA, USA, 2017; pp. xvii–xxi. [Google Scholar] [CrossRef]
- Chaytow, H.; Faller, K.M.E.; Huang, Y.-T.; Gillingwater, T.H. Spinal Muscular Atrophy: From Approved Therapies to Future Therapeutic Targets for Personalized Medicine. Cell Rep. Med. 2021, 2, 100346. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, J. Ueber chronische spinale Muskelatrophie im Kindesalter, auf familiärer Basis. Dtsch. Z. Für Nervenheilkd. 1893, 3, 427–470. [Google Scholar] [CrossRef]
- Thomson, J.; Bruce, A. A Case of Progressive Muscular Atrophy in a Child, with a Spinal Lesion. In Edinburgh Hospital Reports: The Supervision of the Editorial Committee of the Royal Infirmary Royal Hospital for Sick Children; Gibson, G.A., Cathcart, M.A., Thomson, J., Hart, B., Eds.; Nabu Press: Charleston, SC, USA, 1893; Volume 1, pp. 361–382. [Google Scholar]
- Beevor, C.E. A Case of Congenital Spinal Muscular Atrophy (Family Type), and a Case of Haemorrhage into the Spinal Cord at Birth, Giving Similar Symptoms. Brain 1902, 25, 85–108. [Google Scholar] [CrossRef]
- Dubowitz, V. Ramblings in the History of Spinal Muscular Atrophy. Neuromuscul. Disord. NMD 2009, 19, 69–73. [Google Scholar] [CrossRef]
- Sylvestre, M. Paralysie Flasque de Quatre Membres et Des Muscles Du Tronc (Sauf Le Diaphragme) Chez Un Nouveau-Ne. Bull. Soc. Pediatr. Paris 1899, 1, 3–10. [Google Scholar]
- Oppenheim, H. Ueber Allgemeine Und Localisierte Atonie Der Muskulatur (Myatonie) Im Frühen Kindesalter.: Vorläufige Mitteilung. Monatsschrift Für Psychiatr. Neurol. 1900, 8, 232–233. [Google Scholar] [CrossRef]
- Burdick, W.F.; Whipple, D.V.; Freeman, W. Amyotonia congenita (oppenheim): Report of five cases with necropsy; discussion of the relationship between amyotonia congenita, werdnig-hoffmann disease, neonatal poliomyelitis and muscular dystrophy. Am. J. Dis. Child. 1945, 69, 295–307. [Google Scholar] [CrossRef]
- Brandt, S. Course and symptoms of progressive infantile muscular atrophy: A Follow-Up Study of One Hundred and Twelve Cases in Denmark. Arch. Neurol. Psychiatry 1950, 63, 218–228. [Google Scholar] [CrossRef]
- Greenfield, J.G.; Stern, R.O. The anatomical identity of the werdnig-hoffmann and oppenheim forms of infantile muscular atrophy. Brain 1927, 50, 652–686. [Google Scholar] [CrossRef]
- Walton, J.N. The Amyotonia Congenita Syndrome. Proc. R. Soc. Med. 1957, 50, 301–308. [Google Scholar] [CrossRef] [PubMed]
- Gamstorp, I. Historical Review of the Progressive Spinal Muscular Atrophy Atrophies with Onset in Infancy or Early Childhood. In Progressive Spinal Muscular Atrophy; Gamstorp, I., Sarnat, H., Eds.; Raven Press: New York, NY, USA, 1984; pp. 11–18. [Google Scholar]
- Darras, B.T. Spinal Muscular Atrophies. Pediatr. Clin. N. Am. 2015, 62, 743–766. [Google Scholar] [CrossRef] [PubMed]
- Dubowitz, V. Infantile muscular atrophy. a prospective study with particular reference to a slowly progressive variety. Brain J. Neurol. 1964, 87, 707–718. [Google Scholar] [CrossRef] [PubMed]
- Kugelberg, E.; Welander, L. Heredofamilial Juvenile Muscular Atrophy Simulating Muscular Dystrophy. AMA Arch. Neurol. Psychiatry 1956, 75, 500–509. [Google Scholar] [CrossRef] [PubMed]
- Bertini, E.; Burghes, A.; Bushby, K.; Estournet-Mathiaud, B.; Finkel, R.S.; Hughes, R.A.C.; Iannaccone, S.T.; Melki, J.; Mercuri, E.; Muntoni, F.; et al. 134th ENMC International Workshop: Outcome Measures and Treatment of Spinal Muscular Atrophy, 11-13 February 2005, Naarden, The Netherlands. Neuromuscul. Disord. NMD 2005, 15, 802–816. [Google Scholar] [CrossRef] [PubMed]
- Zerres, K.; Rudnik-Schöneborn, S.; Forrest, E.; Lusakowska, A.; Borkowska, J.; Hausmanowa-Petrusewicz, I. A Collaborative Study on the Natural History of Childhood and Juvenile Onset Proximal Spinal Muscular Atrophy (Type II and III SMA): 569 Patients. J. Neurol. Sci. 1997, 146, 67–72. [Google Scholar] [CrossRef]
- Finkel, R.; Bertini, E.; Muntoni, F.; Mercuri, E.; ENMC SMA Workshop Study Group. 209th ENMC International Workshop: Outcome Measures and Clinical Trial Readiness in Spinal Muscular Atrophy 7–9 November 2014, Heemskerk, The Netherlands. Neuromuscul. Disord. NMD 2015, 25, 593–602. [Google Scholar] [CrossRef]
- MacLeod, M.J.; Taylor, J.E.; Lunt, P.W.; Mathew, C.G.; Robb, S.A. Prenatal Onset Spinal Muscular Atrophy. Eur. J. Paediatr. Neurol. EJPN Off. J. Eur. Paediatr. Neurol. Soc. 1999, 3, 65–72. [Google Scholar] [CrossRef]
- Oskoui, M.; Darras, B.T.; De Vivo, D.C. Chapter 1—Spinal Muscular Atrophy: 125 Years Later and on the Verge of a Cure. In Spinal Muscular Atrophy; Sumner, C.J., Paushkin, S., Ko, C.-P., Eds.; Academic Press: Cambridge, MA, USA, 2017; pp. 3–19. [Google Scholar] [CrossRef]
- Roy, N.; Mahadevan, M.S.; McLean, M.; Shutler, G.; Yaraghi, Z.; Farahani, R.; Baird, S.; Besner-Johnston, A.; Lefebvre, C.; Kang, X. The Gene for Neuronal Apoptosis Inhibitory Protein Is Partially Deleted in Individuals with Spinal Muscular Atrophy. Cell 1995, 80, 167–178. [Google Scholar] [CrossRef] [Green Version]
- Blatnik, A.J., III; McGovern, V.L.; Burghes, A.H.M. What Genetics Has Told Us and How It Can Inform Future Experiments for Spinal Muscular Atrophy, a Perspective. Int. J. Mol. Sci. 2021, 22, 8494. [Google Scholar] [CrossRef] [PubMed]
- Bürglen, L.; Lefebvre, S.; Clermont, O.; Burlet, P.; Viollet, L.; Cruaud, C.; Munnich, A.; Melki, J. Structure and Organization of the Human Survival Motor Neurone (SMN) Gene. Genomics 1996, 32, 479–482. [Google Scholar] [CrossRef] [PubMed]
- Coovert, D.D.; Le, T.T.; McAndrew, P.E.; Strasswimmer, J.; Crawford, T.O.; Mendell, J.R.; Coulson, S.E.; Androphy, E.J.; Prior, T.W.; Burghes, A.H. The Survival Motor Neuron Protein in Spinal Muscular Atrophy. Hum. Mol. Genet. 1997, 6, 1205–1214. [Google Scholar] [CrossRef]
- Lefebvre, S.; Burlet, P.; Liu, Q.; Bertrandy, S.; Clermont, O.; Munnich, A.; Dreyfuss, G.; Melki, J. Correlation between Severity and SMN Protein Level in Spinal Muscular Atrophy. Nat. Genet. 1997, 16, 265–269. [Google Scholar] [CrossRef] [PubMed]
- Ramos Liu, Q.; Dreyfuss, G. A Novel Nuclear Structure Containing the Survival of Motor Neurons Protein. EMBO J. 1996, 15, 3555–3565. [Google Scholar]
- Yong, J.; Wan, L.; Dreyfuss, G. Why Do Cells Need an Assembly Machine for RNA-Protein Complexes? Trends Cell Biol. 2004, 14, 226–232. [Google Scholar] [CrossRef]
- Pellizzoni, L. Chaperoning Ribonucleoprotein Biogenesis in Health and Disease. EMBO Rep. 2007, 8, 340–345. [Google Scholar] [CrossRef] [Green Version]
- Burlet, P.; Huber, C.; Bertrandy, S.; Ludosky, M.A.; Zwaenepoel, I.; Clermont, O.; Roume, J.; Delezoide, A.L.; Cartaud, J.; Munnich, A.; et al. The Distribution of SMN Protein Complex in Human Fetal Tissues and Its Alteration in Spinal Muscular Atrophy. Hum. Mol. Genet. 1998, 7, 1927–1933. [Google Scholar] [CrossRef] [Green Version]
- Ramos, D.M.; d’Ydewalle, C.; Gabbeta, V.; Dakka, A.; Klein, S.K.; Norris, D.A.; Matson, J.; Taylor, S.J.; Zaworski, P.G.; Prior, T.W.; et al. Age-Dependent SMN Expression in Disease-Relevant Tissue and Implications for SMA Treatment. J. Clin. Investig. 2019, 129, 4817–4831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Q.; Fischer, U.; Wang, F.; Dreyfuss, G. The Spinal Muscular Atrophy Disease Gene Product, SMN, and Its Associated Protein SIP1 Are in a Complex with Spliceosomal SnRNP Proteins. Cell 1997, 90, 1013–1021. [Google Scholar] [CrossRef] [Green Version]
- Fischer, U.; Liu, Q.; Dreyfuss, G. The SMN-SIP1 Complex Has an Essential Role in Spliceosomal SnRNP Biogenesis. Cell 1997, 90, 1023–1029. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monani, U.R. Spinal Muscular Atrophy: A Deficiency in a Ubiquitous Protein; a Motor Neuron-Specific Disease. Neuron 2005, 48, 885–896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burghes, A.H.M.; Beattie, C.E. Spinal Muscular Atrophy: Why Do Low Levels of Survival Motor Neuron Protein Make Motor Neurons Sick? Nat. Rev. Neurosci. 2009, 10, 597–609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hebert, M.D.; Szymczyk, P.W.; Shpargel, K.B.; Matera, A.G. Coilin Forms the Bridge between Cajal Bodies and SMN, the Spinal Muscular Atrophy Protein. Genes Dev. 2001, 15, 2720–2729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bühler, D.; Raker, V.; Lührmann, R.; Fischer, U. Essential Role for the Tudor Domain of SMN in Spliceosomal U SnRNP Assembly: Implications for Spinal Muscular Atrophy. Hum. Mol. Genet. 1999, 8, 2351–2357. [Google Scholar] [CrossRef]
- Selenko, P.; Sprangers, R.; Stier, G.; Bühler, D.; Fischer, U.; Sattler, M. SMN Tudor Domain Structure and Its Interaction with the Sm Proteins. Nat. Struct. Biol. 2001, 8, 27–31. [Google Scholar] [CrossRef]
- Martin, R.; Gupta, K.; Ninan, N.S.; Perry, K.; Van Duyne, G.D. The Survival Motor Neuron Protein Forms Soluble Glycine Zipper Oligomers. Structure 2012, 20, 1929–1939. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.N.; Howell, M.D.; Ottesen, E.W.; Singh, N.N. Diverse Role of Survival Motor Neuron Protein. Biochim. Biophys. Acta Gene Regul. Mech. 2017, 1860, 299–315. [Google Scholar] [CrossRef] [Green Version]
- Chaytow, H.; Huang, Y.-T.; Gillingwater, T.H.; Faller, K.M.E. The Role of Survival Motor Neuron Protein (SMN) in Protein Homeostasis. Cell. Mol. Life Sci. CMLS 2018, 75, 3877–3894. [Google Scholar] [CrossRef] [Green Version]
- Rossoll, W.; Jablonka, S.; Andreassi, C.; Kröning, A.-K.; Karle, K.; Monani, U.R.; Sendtner, M. Smn, the Spinal Muscular Atrophy-Determining Gene Product, Modulates Axon Growth and Localization of Beta-Actin MRNA in Growth Cones of Motoneurons. J. Cell Biol. 2003, 163, 801–812. [Google Scholar] [CrossRef]
- Fallini, C.; Bassell, G.J.; Rossoll, W. Spinal Muscular Atrophy: The Role of SMN in Axonal MRNA Regulation. Brain Res. 2012, 1462, 81–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kariya, S.; Park, G.-H.; Maeno-Hikichi, Y.; Leykekhman, O.; Lutz, C.; Arkovitz, M.S.; Landmesser, L.T.; Monani, U.R. Reduced SMN Protein Impairs Maturation of the Neuromuscular Junctions in Mouse Models of Spinal Muscular Atrophy. Hum. Mol. Genet. 2008, 17, 2552–2569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hosseinibarkooie, S.; Peters, M.; Torres-Benito, L.; Rastetter, R.H.; Hupperich, K.; Hoffmann, A.; Mendoza-Ferreira, N.; Kaczmarek, A.; Janzen, E.; Milbradt, J.; et al. The Power of Human Protective Modifiers: PLS3 and CORO1C Unravel Impaired Endocytosis in Spinal Muscular Atrophy and Rescue SMA Phenotype. Am. J. Hum. Genet. 2016, 99, 647–665. [Google Scholar] [CrossRef] [Green Version]
- Riessland, M.; Kaczmarek, A.; Schneider, S.; Swoboda, K.J.; Löhr, H.; Bradler, C.; Grysko, V.; Dimitriadi, M.; Hosseinibarkooie, S.; Torres-Benito, L.; et al. Neurocalcin Delta Suppression Protects against Spinal Muscular Atrophy in Humans and across Species by Restoring Impaired Endocytosis. Am. J. Hum. Genet. 2017, 100, 297–315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.-K.; Jha, N.N.; Awano, T.; Caine, C.; Gollapalli, K.; Welby, E.; Kim, S.-S.; Fuentes-Moliz, A.; Wang, X.; Feng, Z.; et al. A Spinal Muscular Atrophy Modifier Implicates the SMN Protein in SNARE Complex Assembly at Neuromuscular Synapses. Neuron 2023, 111, 1423–1439.e4. [Google Scholar] [CrossRef] [PubMed]
- Bottai, D.; Adami, R. Spinal Muscular Atrophy: New Findings for an Old Pathology. Brain Pathol. Zur. Switz. 2013, 23, 613–622. [Google Scholar] [CrossRef]
- Kim, J.-K.; Jha, N.N.; Feng, Z.; Faleiro, M.R.; Chiriboga, C.A.; Wei-Lapierre, L.; Dirksen, R.T.; Ko, C.-P.; Monani, U.R. Muscle-Specific SMN Reduction Reveals Motor Neuron-Independent Disease in Spinal Muscular Atrophy Models. J. Clin. Investig. 2020, 130, 1271–1287. [Google Scholar] [CrossRef] [PubMed]
- Ikenaka, A.; Kitagawa, Y.; Yoshida, M.; Lin, C.-Y.; Niwa, A.; Nakahata, T.; Saito, M.K. SMN Promotes Mitochondrial Metabolic Maturation during Myogenesis by Regulating the MYOD-MiRNA Axis. Life Sci. Alliance 2023, 6, e202201457. [Google Scholar] [CrossRef]
- Liston, P.; Roy, N.; Tamai, K.; Lefebvre, C.; Baird, S.; Cherton-Horvat, G.; Farahani, R.; McLean, M.; Ikeda, J.E.; MacKenzie, A.; et al. Suppression of Apoptosis in Mammalian Cells by NAIP and a Related Family of IAP Genes. Nature 1996, 379, 349–353. [Google Scholar] [CrossRef]
- Xu, D.G.; Crocker, S.J.; Doucet, J.P.; St-Jean, M.; Tamai, K.; Hakim, A.M.; Ikeda, J.E.; Liston, P.; Thompson, C.S.; Korneluk, R.G.; et al. Elevation of Neuronal Expression of NAIP Reduces Ischemic Damage in the Rat Hippocampus. Nat. Med. 1997, 3, 997–1004. [Google Scholar] [CrossRef]
- Monani, U.R.; Lorson, C.L.; Parsons, D.W.; Prior, T.W.; Androphy, E.J.; Burghes, A.H.; McPherson, J.D. A Single Nucleotide Difference That Alters Splicing Patterns Distinguishes the SMA Gene SMN1 from the Copy Gene SMN2. Hum. Mol. Genet. 1999, 8, 1177–1183. [Google Scholar] [CrossRef] [PubMed]
- Hsieh-Li, H.M.; Chang, J.G.; Jong, Y.J.; Wu, M.H.; Wang, N.M.; Tsai, C.H.; Li, H. A Mouse Model for Spinal Muscular Atrophy. Nat. Genet. 2000, 24, 66–70. [Google Scholar] [CrossRef] [PubMed]
- Monani, U.R.; Sendtner, M.; Coovert, D.D.; Parsons, D.W.; Andreassi, C.; Le, T.T.; Jablonka, S.; Schrank, B.; Rossoll, W.; Prior, T.W.; et al. The Human Centromeric Survival Motor Neuron Gene (SMN2) Rescues Embryonic Lethality in Smn−/− Mice and Results in a Mouse with Spinal Muscular Atrophy. Hum. Mol. Genet. 2000, 9, 333–339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lorson, C.L.; Hahnen, E.; Androphy, E.J.; Wirth, B. A Single Nucleotide in the SMN Gene Regulates Splicing and Is Responsible for Spinal Muscular Atrophy. Proc. Natl. Acad. Sci. USA 1999, 96, 6307–6311. [Google Scholar] [CrossRef]
- Crawford, T.O.; Paushkin, S.V.; Kobayashi, D.T.; Forrest, S.J.; Joyce, C.L.; Finkel, R.S.; Kaufmann, P.; Swoboda, K.J.; Tiziano, D.; Lomastro, R.; et al. Evaluation of SMN Protein, Transcript, and Copy Number in the Biomarkers for Spinal Muscular Atrophy (BforSMA) Clinical Study. PLoS ONE 2012, 7, e33572. [Google Scholar] [CrossRef] [Green Version]
- Wadman, R.I.; Stam, M.; Jansen, M.D.; van der Weegen, Y.; Wijngaarde, C.A.; Harschnitz, O.; Sodaar, P.; Braun, K.P.J.; Dooijes, D.; Lemmink, H.H.; et al. A Comparative Study of SMN Protein and MRNA in Blood and Fibroblasts in Patients with Spinal Muscular Atrophy and Healthy Controls. PLoS ONE 2016, 11, e0167087. [Google Scholar] [CrossRef] [Green Version]
- Vitte, J.; Fassier, C.; Tiziano, F.D.; Dalard, C.; Soave, S.; Roblot, N.; Brahe, C.; Saugier-Veber, P.; Bonnefont, J.P.; Melki, J. Refined Characterization of the Expression and Stability of the SMN Gene Products. Am. J. Pathol. 2007, 171, 1269–1280. [Google Scholar] [CrossRef] [Green Version]
- Cho, S.; Dreyfuss, G. A Degron Created by SMN2 Exon 7 Skipping Is a Principal Contributor to Spinal Muscular Atrophy Severity. Genes Dev. 2010, 24, 438–442. [Google Scholar] [CrossRef] [Green Version]
- Jodelka, F.M.; Ebert, A.D.; Duelli, D.M.; Hastings, M.L. A Feedback Loop Regulates Splicing of the Spinal Muscular Atrophy-Modifying Gene, SMN2. Hum. Mol. Genet. 2010, 19, 4906–4917. [Google Scholar] [CrossRef] [Green Version]
- Cartegni, L.; Krainer, A.R. Disruption of an SF2/ASF-Dependent Exonic Splicing Enhancer in SMN2 Causes Spinal Muscular Atrophy in the Absence of SMN1. Nat. Genet. 2002, 30, 377–384. [Google Scholar] [CrossRef]
- Kashima, T.; Manley, J.L. A Negative Element in SMN2 Exon 7 Inhibits Splicing in Spinal Muscular Atrophy. Nat. Genet. 2003, 34, 460–463. [Google Scholar] [CrossRef] [PubMed]
- Martins de Araújo, M.; Bonnal, S.; Hastings, M.L.; Krainer, A.R.; Valcárcel, J. Differential 3′ Splice Site Recognition of SMN1 and SMN2 Transcripts by U2AF and U2 SnRNP. RNA 2009, 15, 515–523. [Google Scholar] [CrossRef] [Green Version]
- Cartegni, L.; Hastings, M.L.; Calarco, J.A.; de Stanchina, E.; Krainer, A.R. Determinants of Exon 7 Splicing in the Spinal Muscular Atrophy Genes, SMN1 and SMN2. Am. J. Hum. Genet. 2006, 78, 63–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lorson, C.L.; Strasswimmer, J.; Yao, J.M.; Baleja, J.D.; Hahnen, E.; Wirth, B.; Le, T.; Burghes, A.H.; Androphy, E.J. SMN Oligomerization Defect Correlates with Spinal Muscular Atrophy Severity. Nat. Genet. 1998, 19, 63–66. [Google Scholar] [CrossRef] [PubMed]
- Burnett, B.G.; Muñoz, E.; Tandon, A.; Kwon, D.Y.; Sumner, C.J.; Fischbeck, K.H. Regulation of SMN Protein Stability. Mol. Cell. Biol. 2009, 29, 1107–1115. [Google Scholar] [CrossRef] [Green Version]
- Niba, E.T.E.; Nishio, H.; Wijaya, Y.O.S.; Ar Rochmah, M.; Takarada, T.; Takeuchi, A.; Kimizu, T.; Okamoto, K.; Saito, T.; Awano, H.; et al. Stability and Oligomerization of Mutated SMN Protein Determine Clinical Severity of Spinal Muscular Atrophy. Genes 2022, 13, 205. [Google Scholar] [CrossRef]
- Velasco, E.; Valero, C.; Valero, A.; Moreno, F.; Hernández-Chico, C. Molecular Analysis of the SMN and NAIP Genes in Spanish Spinal Muscular Atrophy (SMA) Families and Correlation between Number of Copies of CBCD541 and SMA Phenotype. Hum. Mol. Genet. 1996, 5, 257–263. [Google Scholar] [CrossRef] [Green Version]
- McAndrew, P.E.; Parsons, D.W.; Simard, L.R.; Rochette, C.; Ray, P.N.; Mendell, J.R.; Prior, T.W.; Burghes, A.H. Identification of Proximal Spinal Muscular Atrophy Carriers and Patients by Analysis of SMNT and SMNC Gene Copy Number. Am. J. Hum. Genet. 1997, 60, 1411–1422. [Google Scholar] [CrossRef] [Green Version]
- Feldkötter, M.; Schwarzer, V.; Wirth, R.; Wienker, T.F.; Wirth, B. Quantitative Analyses of SMN1 and SMN2 Based on Real-Time LightCycler PCR: Fast and Highly Reliable Carrier Testing and Prediction of Severity of Spinal Muscular Atrophy. Am. J. Hum. Genet. 2002, 70, 358–368. [Google Scholar] [CrossRef] [Green Version]
- Harada, Y.; Sutomo, R.; Sadewa, A.H.; Akutsu, T.; Takeshima, Y.; Wada, H.; Matsuo, M.; Nishio, H. Correlation between SMN2 Copy Number and Clinical Phenotype of Spinal Muscular Atrophy: Three SMN2 Copies Fail to Rescue Some Patients from the Disease Severity. J. Neurol. 2002, 249, 1211–1219. [Google Scholar] [CrossRef]
- Yamamoto, T.; Sato, H.; Lai, P.S.; Nurputra, D.K.; Harahap, N.I.F.; Morikawa, S.; Nishimura, N.; Kurashige, T.; Ohshita, T.; Nakajima, H.; et al. Intragenic Mutations in SMN1 May Contribute More Significantly to Clinical Severity than SMN2 Copy Numbers in Some Spinal Muscular Atrophy (SMA) Patients. Brain Dev. 2014, 36, 914–920. [Google Scholar] [CrossRef]
- de Mendonça, R.H.; Matsui, C.; Polido, G.J.; Silva, A.M.S.; Kulikowski, L.; Torchio Dias, A.; Zanardo, E.A.; Solla, D.J.F.; Gurgel-Giannetti, J.; de Moura, A.C.M.L.; et al. Intragenic Variants in the SMN1 Gene Determine the Clinical Phenotype in 5q Spinal Muscular Atrophy. Neurol. Genet. 2020, 6, e505. [Google Scholar] [CrossRef]
- Noguchi, Y.; Onishi, A.; Nakamachi, Y.; Hayashi, N.; Harahap, N.I.F.; Rochmah, M.A.; Shima, A.; Yanagisawa, S.; Morisada, N.; Nakagawa, T.; et al. Telomeric Region of the Spinal Muscular Atrophy Locus Is Susceptible to Structural Variations. Pediatr. Neurol. 2016, 58, 83–89. [Google Scholar] [CrossRef]
- van der Steege, G.; Grootscholten, P.M.; Cobben, J.M.; Zappata, S.; Scheffer, H.; den Dunnen, J.T.; van Ommen, G.J.; Brahe, C.; Buys, C.H. Apparent Gene Conversions Involving the SMN Gene in the Region of the Spinal Muscular Atrophy Locus on Chromosome 5. Am. J. Hum. Genet. 1996, 59, 834–838. [Google Scholar]
- Niba, E.T.E.; Nishio, H.; Wijaya, Y.O.S.; Lai, P.S.; Tozawa, T.; Chiyonobu, T.; Yamadera, M.; Okamoto, K.; Awano, H.; Takeshima, Y.; et al. Clinical Phenotypes of Spinal Muscular Atrophy Patients with Hybrid SMN Gene. Brain Dev. 2021, 43, 294–302. [Google Scholar] [CrossRef] [PubMed]
- Campbell, L.; Potter, A.; Ignatius, J.; Dubowitz, V.; Davies, K. Genomic Variation and Gene Conversion in Spinal Muscular Atrophy: Implications for Disease Process and Clinical Phenotype. Am. J. Hum. Genet. 1997, 61, 40–50. [Google Scholar] [CrossRef] [Green Version]
- Burghes, A.H. When Is a Deletion Not a Deletion? When It Is Converted. Am. J. Hum. Genet. 1997, 61, 9–15. [Google Scholar] [CrossRef] [Green Version]
- Rochette, C.F.; Gilbert, N.; Simard, L.R. SMN Gene Duplication and the Emergence of the SMN2 Gene Occurred in Distinct Hominids: SMN2 Is Unique to Homo Sapiens. Hum. Genet. 2001, 108, 255–266. [Google Scholar] [CrossRef] [PubMed]
- Dennis, M.Y.; Harshman, L.; Nelson, B.J.; Penn, O.; Cantsilieris, S.; Huddleston, J.; Antonacci, F.; Penewit, K.; Denman, L.; Raja, A.; et al. The Evolution and Population Diversity of Human-Specific Segmental Duplications. Nat. Ecol. Evol. 2017, 1, 69. [Google Scholar] [CrossRef] [Green Version]
- Tran, V.K.; Sasongko, T.H.; Hong, D.D.; Hoan, N.T.; Dung, V.C.; Lee, M.J.; Takeshima, Y.; Matsuo, M.; Nishio, H. SMN2 and NAIP Gene Dosages in Vietnamese Patients with Spinal Muscular Atrophy. Pediatr. Int. Off. J. Jpn. Pediatr. Soc. 2008, 50, 346–351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoon, S.; Lee, C.H.; Lee, K.-A. Determination of SMN1 and SMN2 Copy Numbers in a Korean Population Using Multiplex Ligation-Dependent Probe Amplification. Korean J. Lab. Med. 2010, 30, 93–96. [Google Scholar] [CrossRef] [Green Version]
- Ogino, S.; Gao, S.; Leonard, D.G.B.; Paessler, M.; Wilson, R.B. Inverse Correlation between SMN1 and SMN2 Copy Numbers: Evidence for Gene Conversion from SMN2 to SMN1. Eur. J. Hum. Genet. EJHG 2003, 11, 275–277. [Google Scholar] [CrossRef] [Green Version]
- Sangaré, M.; Hendrickson, B.; Sango, H.A.; Chen, K.; Nofziger, J.; Amara, A.; Dutra, A.; Schindler, A.B.; Guindo, A.; Traoré, M.; et al. Genetics of Low Spinal Muscular Atrophy Carrier Frequency in Sub-Saharan Africa. Ann. Neurol. 2014, 75, 525–532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, C.C.; Cook, S.F.; Jarecki, J.; Belter, L.; Reyna, S.P.; Staropoli, J.; Farwell, W.; Hobby, K. Spinal Muscular Atrophy (SMA) Subtype Concordance in Siblings: Findings from the Cure SMA Cohort. J. Neuromuscul. Dis. 2020, 7, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Oprea, G.E.; Kröber, S.; McWhorter, M.L.; Rossoll, W.; Müller, S.; Krawczak, M.; Bassell, G.J.; Beattie, C.E.; Wirth, B. Plastin 3 Is a Protective Modifier of Autosomal Recessive Spinal Muscular Atrophy. Science 2008, 320, 524–527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hao, L.T.; Wolman, M.; Granato, M.; Beattie, C.E. Survival Motor Neuron Affects Plastin 3 Protein Levels Leading to Motor Defects. J. Neurosci. Off. J. Soc. Neurosci. 2012, 32, 5074–5084. [Google Scholar] [CrossRef] [Green Version]
- Cartegni, L.; Krainer, A.R. Correction of Disease-Associated Exon Skipping by Synthetic Exon-Specific Activators. Nat. Struct. Biol. 2003, 10, 120–125. [Google Scholar] [CrossRef]
- Skordis, L.A.; Dunckley, M.G.; Yue, B.; Eperon, I.C.; Muntoni, F. Bifunctional Antisense Oligonucleotides Provide a Trans-Acting Splicing Enhancer That Stimulates SMN2 Gene Expression in Patient Fibroblasts. Proc. Natl. Acad. Sci. USA 2003, 100, 4114–4119. [Google Scholar] [CrossRef]
- Miyajima, H.; Miyaso, H.; Okumura, M.; Kurisu, J.; Imaizumi, K. Identification of a Cis-Acting Element for the Regulation of SMN Exon 7 Splicing. J. Biol. Chem. 2002, 277, 23271–23277. [Google Scholar] [CrossRef] [Green Version]
- Singh, N.K.; Singh, N.N.; Androphy, E.J.; Singh, R.N. Splicing of a Critical Exon of Human Survival Motor Neuron Is Regulated by a Unique Silencer Element Located in the Last Intron. Mol. Cell. Biol. 2006, 26, 1333–1346. [Google Scholar] [CrossRef] [Green Version]
- Hua, Y.; Vickers, T.A.; Okunola, H.L.; Bennett, C.F.; Krainer, A.R. Antisense Masking of an HnRNP A1/A2 Intronic Splicing Silencer Corrects SMN2 Splicing in Transgenic Mice. Am. J. Hum. Genet. 2008, 82, 834–848. [Google Scholar] [CrossRef] [Green Version]
- Passini, M.A.; Bu, J.; Richards, A.M.; Kinnecom, C.; Sardi, S.P.; Stanek, L.M.; Hua, Y.; Rigo, F.; Matson, J.; Hung, G.; et al. Antisense Oligonucleotides Delivered to the Mouse CNS Ameliorate Symptoms of Severe Spinal Muscular Atrophy. Sci. Transl. Med. 2011, 3, 72ra18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rigo, F.; Hua, Y.; Krainer, A.R.; Bennett, C.F. Antisense-Based Therapy for the Treatment of Spinal Muscular Atrophy. J. Cell Biol. 2012, 199, 21–25. [Google Scholar] [CrossRef]
- Azzouz, M.; Le, T.; Ralph, G.S.; Walmsley, L.; Monani, U.R.; Lee, D.C.P.; Wilkes, F.; Mitrophanous, K.A.; Kingsman, S.M.; Burghes, A.H.M.; et al. Lentivector-Mediated SMN Replacement in a Mouse Model of Spinal Muscular Atrophy. J. Clin. Investig. 2004, 114, 1726–1731. [Google Scholar] [CrossRef] [PubMed]
- Foust, K.D.; Nurre, E.; Montgomery, C.L.; Hernandez, A.; Chan, C.M.; Kaspar, B.K. Intravascular AAV9 Preferentially Targets Neonatal Neurons and Adult Astrocytes. Nat. Biotechnol. 2009, 27, 59–65. [Google Scholar] [CrossRef] [Green Version]
- Foust, K.D.; Wang, X.; McGovern, V.L.; Braun, L.; Bevan, A.K.; Haidet, A.M.; Le, T.T.; Morales, P.R.; Rich, M.M.; Burghes, A.H.M.; et al. Rescue of the Spinal Muscular Atrophy Phenotype in a Mouse Model by Early Postnatal Delivery of SMN. Nat. Biotechnol. 2010, 28, 271–274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iannaccone, S.T.; Nelson, L.L. Chapter 26—Spinal Muscular Atrophy Clinical Trials: Lessons Learned. In Spinal Muscular Atrophy; Sumner, C.J., Paushkin, S., Ko, C.-P., Eds.; Academic Press: Cambridge, MA, USA, 2017; pp. 423–428. [Google Scholar] [CrossRef]
- Andreassi, C.; Jarecki, J.; Zhou, J.; Coovert, D.D.; Monani, U.R.; Chen, X.; Whitney, M.; Pollok, B.; Zhang, M.; Androphy, E.; et al. Aclarubicin Treatment Restores SMN Levels to Cells Derived from Type I Spinal Muscular Atrophy Patients. Hum. Mol. Genet. 2001, 10, 2841–2849. [Google Scholar] [CrossRef] [Green Version]
- Hastings, M.L.; Berniac, J.; Liu, Y.H.; Abato, P.; Jodelka, F.M.; Barthel, L.; Kumar, S.; Dudley, C.; Nelson, M.; Larson, K.; et al. Tetracyclines That Promote SMN2 Exon 7 Splicing as Therapeutics for Spinal Muscular Atrophy. Sci. Transl. Med. 2009, 1, 5ra12. [Google Scholar] [CrossRef] [Green Version]
- Wee, C.D.; Havens, M.A.; Jodelka, F.M.; Hastings, M.L. Targeting SR Proteins Improves SMN Expression in Spinal Muscular Atrophy Cells. PLoS ONE 2014, 9, e115205. [Google Scholar] [CrossRef]
- Naryshkin, N.A.; Weetall, M.; Dakka, A.; Narasimhan, J.; Zhao, X.; Feng, Z.; Ling, K.K.Y.; Karp, G.M.; Qi, H.; Woll, M.G.; et al. Motor Neuron Disease. SMN2 Splicing Modifiers Improve Motor Function and Longevity in Mice with Spinal Muscular Atrophy. Science 2014, 345, 688–693. [Google Scholar] [CrossRef]
- Brichta, L.; Hofmann, Y.; Hahnen, E.; Siebzehnrubl, F.A.; Raschke, H.; Blumcke, I.; Eyupoglu, I.Y.; Wirth, B. Valproic Acid Increases the SMN2 Protein Level: A Well-Known Drug as a Potential Therapy for Spinal Muscular Atrophy. Hum. Mol. Genet. 2003, 12, 2481–2489. [Google Scholar] [CrossRef]
- Sumner, C.J.; Huynh, T.N.; Markowitz, J.A.; Perhac, J.S.; Hill, B.; Coovert, D.D.; Schussler, K.; Chen, X.; Jarecki, J.; Burghes, A.H.M.; et al. Valproic Acid Increases SMN Levels in Spinal Muscular Atrophy Patient Cells. Ann. Neurol. 2003, 54, 647–654. [Google Scholar] [CrossRef] [PubMed]
- Weihl, C.C.; Connolly, A.M.; Pestronk, A. Valproate May Improve Strength and Function in Patients with Type III/IV Spinal Muscle Atrophy. Neurology 2006, 67, 500–501. [Google Scholar] [CrossRef]
- Brichta, L.; Holker, I.; Haug, K.; Klockgether, T.; Wirth, B. In Vivo Activation of SMN in Spinal Muscular Atrophy Carriers and Patients Treated with Valproate. Ann. Neurol. 2006, 59, 970–975. [Google Scholar] [CrossRef] [PubMed]
- Swoboda, K.J.; Scott, C.B.; Reyna, S.P.; Prior, T.W.; LaSalle, B.; Sorenson, S.L.; Wood, J.; Acsadi, G.; Crawford, T.O.; Kissel, J.T.; et al. Phase II Open Label Study of Valproic Acid in Spinal Muscular Atrophy. PLoS ONE 2009, 4, e5268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swoboda, K.J.; Scott, C.B.; Crawford, T.O.; Simard, L.R.; Reyna, S.P.; Krosschell, K.J.; Acsadi, G.; Elsheik, B.; Schroth, M.K.; D’Anjou, G.; et al. SMA CARNI-VAL Trial Part I: Double-Blind, Randomized, Placebo-Controlled Trial of L-Carnitine and Valproic Acid in Spinal Muscular Atrophy. PLoS ONE 2010, 5, e12140. [Google Scholar] [CrossRef] [PubMed]
- Kissel, J.T.; Scott, C.B.; Reyna, S.P.; Crawford, T.O.; Simard, L.R.; Krosschell, K.J.; Acsadi, G.; Elsheik, B.; Schroth, M.K.; D’Anjou, G.; et al. SMA CARNIVAL TRIAL PART II: A Prospective, Single-Armed Trial of L-Carnitine and Valproic Acid in Ambulatory Children with Spinal Muscular Atrophy. PLoS ONE 2011, 6, e21296. [Google Scholar] [CrossRef]
- Garbes, L.; Heesen, L.; Hölker, I.; Bauer, T.; Schreml, J.; Zimmermann, K.; Thoenes, M.; Walter, M.; Dimos, J.; Peitz, M.; et al. VPA Response in SMA Is Suppressed by the Fatty Acid Translocase CD36. Hum. Mol. Genet. 2013, 22, 398–407. [Google Scholar] [CrossRef] [Green Version]
- Also-Rallo, E.; Alías, L.; Martínez-Hernández, R.; Caselles, L.; Barceló, M.J.; Baiget, M.; Bernal, S.; Tizzano, E.F. Treatment of Spinal Muscular Atrophy Cells with Drugs That Upregulate SMN Expression Reveals Inter- and Intra-Patient Variability. Eur. J. Hum. Genet. EJHG 2011, 19, 1059–1065. [Google Scholar] [CrossRef]
- Martineau, L.; Horan, M.A.; Rothwell, N.J.; Little, R.A. Salbutamol, a Beta 2-Adrenoceptor Agonist, Increases Skeletal Muscle Strength in Young Men. Clin. Sci. 1992, 83, 615–621. [Google Scholar] [CrossRef]
- Kissel, J.T.; McDermott, M.P.; Mendell, J.R.; King, W.M.; Pandya, S.; Griggs, R.C.; Tawil, R.; FSH-DY Group. Randomized, Double-Blind, Placebo-Controlled Trial of Albuterol in Facioscapulohumeral Dystrophy. Neurology 2001, 57, 1434–1440. [Google Scholar] [CrossRef] [PubMed]
- Kinali, M.; Mercuri, E.; Main, M.; De Biasia, F.; Karatza, A.; Higgins, R.; Banks, L.M.; Manzur, A.Y.; Muntoni, F. Pilot Trial of Albuterol in Spinal Muscular Atrophy. Neurology 2002, 59, 609–610. [Google Scholar] [CrossRef] [PubMed]
- Pane, M.; Staccioli, S.; Messina, S.; D’Amico, A.; Pelliccioni, M.; Mazzone, E.S.; Cuttini, M.; Alfieri, P.; Battini, R.; Main, M.; et al. Daily Salbutamol in Young Patients with SMA Type II. Neuromuscul. Disord. NMD 2008, 18, 536–540. [Google Scholar] [CrossRef]
- Tiziano, F.D.; Lomastro, R.; Abiusi, E.; Pasanisi, M.B.; Di Pietro, L.; Fiori, S.; Baranello, G.; Angelini, C.; Sorarù, G.; Gaiani, A.; et al. Longitudinal Evaluation of SMN Levels as Biomarker for Spinal Muscular Atrophy: Results of a Phase IIb Double-Blind Study of Salbutamol. J. Med. Genet. 2019, 56, 293–300. [Google Scholar] [CrossRef]
- Angelozzi, C.; Borgo, F.; Tiziano, F.D.; Martella, A.; Neri, G.; Brahe, C. Salbutamol Increases SMN MRNA and Protein Levels in Spinal Muscular Atrophy Cells. J. Med. Genet. 2008, 45, 29–31. [Google Scholar] [CrossRef]
- Harahap, N.I.F.; Nurputra, D.K.; Ar Rochmah, M.; Shima, A.; Morisada, N.; Takarada, T.; Takeuchi, A.; Tohyama, Y.; Yanagisawa, S.; Nishio, H. Salbutamol Inhibits Ubiquitin-Mediated Survival Motor Neuron Protein Degradation in Spinal Muscular Atrophy Cells. Biochem. Biophys. Rep. 2015, 4, 351–356. [Google Scholar] [CrossRef] [Green Version]
- SPINRAZA (Nusinersen) Injection, for Intrathecal Use. Food and Drug Administration (.gov). Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/209531lbl.pdf (accessed on 26 June 2023).
- Singh, N.N.; Howell, M.D.; Androphy, E.J.; Singh, R.N. How the Discovery of ISS-N1 Led to the First Medical Therapy for Spinal Muscular Atrophy. Gene Ther. 2017, 24, 520–526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Finkel, R.S.; Mercuri, E.; Darras, B.T.; Connolly, A.M.; Kuntz, N.L.; Kirschner, J.; Chiriboga, C.A.; Saito, K.; Servais, L.; Tizzano, E.; et al. Nusinersen versus Sham Control in Infantile-Onset Spinal Muscular Atrophy. N. Engl. J. Med. 2017, 377, 1723–1732. [Google Scholar] [CrossRef] [Green Version]
- Mercuri, E.; Darras, B.T.; Chiriboga, C.A.; Day, J.W.; Campbell, C.; Connolly, A.M.; Iannaccone, S.T.; Kirschner, J.; Kuntz, N.L.; Saito, K.; et al. Nusinersen versus Sham Control in Later-Onset Spinal Muscular Atrophy. N. Engl. J. Med. 2018, 378, 625–635. [Google Scholar] [CrossRef]
- De Vivo, D.C.; Bertini, E.; Swoboda, K.J.; Hwu, W.-L.; Crawford, T.O.; Finkel, R.S.; Kirschner, J.; Kuntz, N.L.; Parsons, J.A.; Ryan, M.M.; et al. Nusinersen Initiated in Infants during the Presymptomatic Stage of Spinal Muscular Atrophy: Interim Efficacy and Safety Results from the Phase 2 NURTURE Study. Neuromuscul. Disord. NMD 2019, 29, 842–856. [Google Scholar] [CrossRef] [Green Version]
- Govoni, A.; Gagliardi, D.; Comi, G.P.; Corti, S. Time Is Motor Neuron: Therapeutic Window and Its Correlation with Pathogenetic Mechanisms in Spinal Muscular Atrophy. Mol. Neurobiol. 2018, 55, 6307–6318. [Google Scholar] [CrossRef]
- Package Insert—ZOLGENSMA. Food and Drug Administration (.gov). Available online: https://www.novartis.com/us-en/sites/novartis_us/files/zolgensma.pdf (accessed on 26 June 2023).
- National Academies of Sciences, Engineering, and Medicine; Health and Medicine Division; Board on Health Sciences Policy; Forum on Neuroscience and Nervous System Disorders. Advancing Gene-Targeted Therapies for Central Nervous System Disorders: Proceedings of a Workshop; Stroud, C., Bain, L., Eds.; The National Academies Collection: Reports Funded by National Institutes of Health; National Academies Press (US): Washington, DC, USA, 2019. [Google Scholar]
- Mendell, J.R.; Al-Zaidy, S.; Shell, R.; Arnold, W.D.; Rodino-Klapac, L.R.; Prior, T.W.; Lowes, L.; Alfano, L.; Berry, K.; Church, K.; et al. Single-Dose Gene-Replacement Therapy for Spinal Muscular Atrophy. N. Engl. J. Med. 2017, 377, 1713–1722. [Google Scholar] [CrossRef] [PubMed]
- Mendell, J.R.; Al-Zaidy, S.A.; Lehman, K.J.; McColly, M.; Lowes, L.P.; Alfano, L.N.; Reash, N.F.; Iammarino, M.A.; Church, K.R.; Kleyn, A.; et al. Five-Year Extension Results of the Phase 1 START Trial of Onasemnogene Abeparvovec in Spinal Muscular Atrophy. JAMA Neurol. 2021, 78, 834–841. [Google Scholar] [CrossRef]
- Lowes, L.P.; Alfano, L.N.; Arnold, W.D.; Shell, R.; Prior, T.W.; McColly, M.; Lehman, K.J.; Church, K.; Sproule, D.M.; Nagendran, S.; et al. Impact of Age and Motor Function in a Phase 1/2A Study of Infants with SMA Type 1 Receiving Single-Dose Gene Replacement Therapy. Pediatr. Neurol. 2019, 98, 39–45. [Google Scholar] [CrossRef] [Green Version]
- Strauss, K.A.; Farrar, M.A.; Muntoni, F.; Saito, K.; Mendell, J.R.; Servais, L.; McMillan, H.J.; Finkel, R.S.; Swoboda, K.J.; Kwon, J.M.; et al. Onasemnogene Abeparvovec for Presymptomatic Infants with Two Copies of SMN2 at Risk for Spinal Muscular Atrophy Type 1: The Phase III SPR1NT Trial. Nat. Med. 2022, 28, 1381–1389. [Google Scholar] [CrossRef] [PubMed]
- Strauss, K.A.; Farrar, M.A.; Muntoni, F.; Saito, K.; Mendell, J.R.; Servais, L.; McMillan, H.J.; Finkel, R.S.; Swoboda, K.J.; Kwon, J.M.; et al. Onasemnogene Abeparvovec for Presymptomatic Infants with Three Copies of SMN2 at Risk for Spinal Muscular Atrophy: The Phase III SPR1NT Trial. Nat. Med. 2022, 28, 1390–1397. [Google Scholar] [CrossRef] [PubMed]
- Risdiplam: Prescription Information. Available online: https://www.gene.com/download/pdf/evrysdi_prescribing.pdf (accessed on 26 June 2023).
- Singh, R.N.; Ottesen, E.W.; Singh, N.N. The First Orally Deliverable Small Molecule for the Treatment of Spinal Muscular Atrophy. Neurosci. Insights 2020, 15, 2633105520973985. [Google Scholar] [CrossRef]
- Meyer, S.M.; Williams, C.C.; Akahori, Y.; Tanaka, T.; Aikawa, H.; Tong, Y.; Childs-Disney, J.L.; Disney, M.D. Small Molecule Recognition of Disease-Relevant RNA Structures. Chem. Soc. Rev. 2020, 49, 7167–7199. [Google Scholar] [CrossRef]
- Singh, R.N.; Singh, N.N. Mechanism of Splicing Regulation of Spinal Muscular Atrophy Genes. Adv. Neurobiol. 2018, 20, 31–61. [Google Scholar] [CrossRef]
- Sivaramakrishnan, M.; McCarthy, K.D.; Campagne, S.; Huber, S.; Meier, S.; Augustin, A.; Heckel, T.; Meistermann, H.; Hug, M.N.; Birrer, P.; et al. Binding to SMN2 Pre-MRNA-Protein Complex Elicits Specificity for Small Molecule Splicing Modifiers. Nat. Commun. 2017, 8, 1476. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Schultz, P.G.; Johnson, K.A. Mechanistic Studies of a Small-Molecule Modulator of SMN2 Splicing. Proc. Natl. Acad. Sci. USA 2018, 115, E4604–E4612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baranello, G.; Darras, B.T.; Day, J.W.; Deconinck, N.; Klein, A.; Masson, R.; Mercuri, E.; Rose, K.; El-Khairi, M.; Gerber, M.; et al. Risdiplam in Type 1 Spinal Muscular Atrophy. N. Engl. J. Med. 2021, 384, 915–923. [Google Scholar] [CrossRef] [PubMed]
- Darras, B.T.; Masson, R.; Mazurkiewicz-Bełdzińska, M.; Rose, K.; Xiong, H.; Zanoteli, E.; Baranello, G.; Bruno, C.; Vlodavets, D.; Wang, Y.; et al. Risdiplam-Treated Infants with Type 1 Spinal Muscular Atrophy versus Historical Controls. N. Engl. J. Med. 2021, 385, 427–435. [Google Scholar] [CrossRef] [PubMed]
- Masson, R.; Mazurkiewicz-Bełdzińska, M.; Rose, K.; Servais, L.; Xiong, H.; Zanoteli, E.; Baranello, G.; Bruno, C.; Day, J.W.; Deconinck, N.; et al. Safety and Efficacy of Risdiplam in Patients with Type 1 Spinal Muscular Atrophy (FIREFISH Part 2): Secondary Analyses from an Open-Label Trial. Lancet Neurol. 2022, 21, 1110–1119. [Google Scholar] [CrossRef] [PubMed]
- Day, J.; Deconinck, N.; Mazzone, E.; Nascimento, A.; Oskoui, M.; Saito, K.; Vuillerot, C.; Baranello, G.; Boespflug-Tanguy, O.; Goemans, N.; et al. SUNFISH Parts 1 and 2: 3-Year Efficacy and Safety of Risdiplam in Types 2 and 3 Spinal Muscular Atrophy (SMA). Neuromuscul. Disord. 2022, 32, S42–S136. [Google Scholar] [CrossRef]
- Mercuri, E.; Deconinck, N.; Mazzone, E.S.; Nascimento, A.; Oskoui, M.; Saito, K.; Vuillerot, C.; Baranello, G.; Boespflug-Tanguy, O.; Goemans, N.; et al. Safety and Efficacy of Once-Daily Risdiplam in Type 2 and Non-Ambulant Type 3 Spinal Muscular Atrophy (SUNFISH Part 2): A Phase 3, Double-Blind, Randomised, Placebo-Controlled Trial. Lancet Neurol. 2022, 21, 42–52. [Google Scholar] [CrossRef]
- Oskoui, M.; Day, J.W.; Deconinck, N.; Mazzone, E.S.; Nascimento, A.; Saito, K.; Vuillerot, C.; Baranello, G.; Goemans, N.; Kirschner, J.; et al. Two-Year Efficacy and Safety of Risdiplam in Patients with Type 2 or Non-Ambulant Type 3 Spinal Muscular Atrophy (SMA). J. Neurol. 2023, 270, 2531–2546. [Google Scholar] [CrossRef]
- Finkel, R.S.; Farrar, M.A.; Vlodavets, D.; Servais, L.; Zanoteli, E.; Al-Muhaizea, M.; Nelson, L.; Prufer, A.; Wang, Y.; Fisher, C.; et al. RAINBOWFISH: Preliminary Efficacy and Safety Data in Risdiplam-Treated Infants with Presymptomatic SMA (P17-5.003). In Proceedings of the Muscular Dystrophy Association Clinical and Scientific Conference, Nashville, TN, USA, 13–16 March 2022. [Google Scholar]
- Dangouloff, T.; Burghes, A.; Tizzano, E.F.; Servais, L.; NBS SMA Study Group. 244th ENMC International Workshop: Newborn Screening in Spinal Muscular Atrophy 10–12 May 2019, Hoofdorp, The Netherlands. Neuromuscul. Disord. NMD 2020, 30, 93–103. [Google Scholar] [CrossRef]
- Dangouloff, T.; Vrščaj, E.; Servais, L.; Osredkar, D.; SMA NBS World Study Group. Newborn Screening Programs for Spinal Muscular Atrophy Worldwide: Where We Stand and Where to Go. Neuromuscul. Disord. NMD 2021, 31, 574–582. [Google Scholar] [CrossRef]
- Lin, C.-W.; Kalb, S.J.; Yeh, W.-S. Delay in Diagnosis of Spinal Muscular Atrophy: A Systematic Literature Review. Pediatr. Neurol. 2015, 53, 293–300. [Google Scholar] [CrossRef] [Green Version]
- Kariyawasam, D.S.; D’Silva, A.M.; Sampaio, H.; Briggs, N.; Herbert, K.; Wiley, V.; Farrar, M.A. Newborn Screening for Spinal Muscular Atrophy in Australia: A Non-Randomised Cohort Study. Lancet Child Adolesc. Health 2023, 7, 159–170. [Google Scholar] [CrossRef] [PubMed]
- Noguchi, Y.; Bo, R.; Nishio, H.; Matsumoto, H.; Matsui, K.; Yano, Y.; Sugawara, M.; Ueda, G.; Wijaya, Y.O.S.; Niba, E.T.E.; et al. PCR-Based Screening of Spinal Muscular Atrophy for Newborn Infants in Hyogo Prefecture, Japan. Genes 2022, 13, 2110. [Google Scholar] [CrossRef]
- Glascock, J.; Sampson, J.; Haidet-Phillips, A.; Connolly, A.; Darras, B.; Day, J.; Finkel, R.; Howell, R.R.; Klinger, K.; Kuntz, N.; et al. Treatment Algorithm for Infants Diagnosed with Spinal Muscular Atrophy through Newborn Screening. J. Neuromuscul. Dis. 2018, 5, 145–158. [Google Scholar] [CrossRef]
- Glascock, J.; Sampson, J.; Connolly, A.M.; Darras, B.T.; Day, J.W.; Finkel, R.; Howell, R.R.; Klinger, K.W.; Kuntz, N.; Prior, T.; et al. Revised Recommendations for the Treatment of Infants Diagnosed with Spinal Muscular Atrophy Via Newborn Screening Who Have 4 Copies of SMN2. J. Neuromuscul. Dis. 2020, 7, 97–100. [Google Scholar] [CrossRef]
- Müller-Felber, W.; Vill, K.; Schwartz, O.; Gläser, D.; Nennstiel, U.; Wirth, B.; Burggraf, S.; Röschinger, W.; Becker, M.; Durner, J.; et al. Infants Diagnosed with Spinal Muscular Atrophy and 4 SMN2 Copies through Newborn Screening—Opportunity or Burden? J. Neuromuscul. Dis. 2020, 7, 109–117. [Google Scholar] [CrossRef] [PubMed]
- Vill, K.; Schwartz, O.; Blaschek, A.; Gläser, D.; Nennstiel, U.; Wirth, B.; Burggraf, S.; Röschinger, W.; Becker, M.; Czibere, L.; et al. Newborn Screening for Spinal Muscular Atrophy in Germany: Clinical Results after 2 Years. Orphanet J. Rare Dis. 2021, 16, 153. [Google Scholar] [CrossRef]
- Kariyawasam, D.S.T.; D’Silva, A.M.; Vetsch, J.; Wakefield, C.E.; Wiley, V.; Farrar, M.A. “We Needed This”: Perspectives of Parents and Healthcare Professionals Involved in a Pilot Newborn Screening Program for Spinal Muscular Atrophy. EClinicalMedicine 2021, 33, 100742. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.; Tokunaga, S.; Taniguchi, N.; Fujino, T.; Saito, M.; Shimomura, H.; Takeshima, Y. Views of the General Population on Newborn Screening for Spinal Muscular Atrophy in Japan. Children 2021, 8, 694. [Google Scholar] [CrossRef]
- Farrar, M.A.; Park, S.B.; Vucic, S.; Carey, K.A.; Turner, B.J.; Gillingwater, T.H.; Swoboda, K.J.; Kiernan, M.C. Emerging Therapies and Challenges in Spinal Muscular Atrophy. Ann. Neurol. 2017, 81, 355–368. [Google Scholar] [CrossRef] [Green Version]
- Sumner, C.J.; Crawford, T.O. Two Breakthrough Gene-Targeted Treatments for Spinal Muscular Atrophy: Challenges Remain. J. Clin. Investig. 2018, 128, 3219–3227. [Google Scholar] [CrossRef]
- Schorling, D.C.; Pechmann, A.; Kirschner, J. Advances in Treatment of Spinal Muscular Atrophy—New Phenotypes, New Challenges, New Implications for Care. J. Neuromuscul. Dis. 2020, 7, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Mercuri, E. Spinal Muscular Atrophy: From Rags to Riches. Neuromuscul. Disord. NMD 2021, 31, 998–1003. [Google Scholar] [CrossRef] [PubMed]
- Day, J.W.; Howell, K.; Place, A.; Long, K.; Rossello, J.; Kertesz, N.; Nomikos, G. Advances and Limitations for the Treatment of Spinal Muscular Atrophy. BMC Pediatr. 2022, 22, 632. [Google Scholar] [CrossRef] [PubMed]
- Moshe-Lilie, O.; Visser, A.; Chahin, N.; Ragole, T.; Dimitrova, D.; Karam, C. Nusinersen in Adult Patients with Spinal Muscular Atrophy: Observations from a Single Center. Neurology 2020, 95, e413–e416. [Google Scholar] [CrossRef]
- Sansone, V.A.; Coratti, G.; Pera, M.C.; Pane, M.; Messina, S.; Salmin, F.; Albamonte, E.; De Sanctis, R.; Sframeli, M.; Di Bella, V.; et al. Sometimes They Come Back: New and Old Spinal Muscular Atrophy Adults in the Era of Nusinersen. Eur. J. Neurol. 2021, 28, 602–608. [Google Scholar] [CrossRef]
- Okamoto, K.; Nishio, H.; Motoki, T.; Jogamoto, T.; Aibara, K.; Kondo, Y.; Kawamura, K.; Konishi, Y.; Tokorodani, C.; Nishiuchi, R.; et al. Changes in the Incidence of Infantile Spinal Muscular Atrophy in Shikoku, Japan between 2011 and 2020. Int. J. Neonatal Screen. 2022, 8, 52. [Google Scholar] [CrossRef]
- Agosto, C.; Benedetti, F.; Salamon, E.; Mercante, A.; Papa, S.; Giacomelli, L.; Santini, A.; Benini, F. How Children and Caregivers Viewed the Change from Nusinersen to Risdiplam for Treating Spinal Muscular Atrophy. Acta Paediatr. 2023, 112, 311–312. [Google Scholar] [CrossRef]
- Agosto, C.; Salamon, E.; Divisic, A.; Benedetti, F.; Giacomelli, L.; Shah, A.; Perilongo, G.; Benini, F. Do We Always Need to Treat Patients with Spinal Muscular Atrophy? A Personal View and Experience. Orphanet J. Rare Dis. 2021, 16, 78. [Google Scholar] [CrossRef]
- Pitarch-Castellano, I.; Ibáñez-Albert, E.; Ñungo-Garzón, N.C.; Vázquez-Costa, J.F.; Sevilla, T. Sequential Treatment with Nusinersen and Risdiplam in a Paediatric Patient with Spinal Muscular Atrophy: A Case Report. Examines Phys. Med. Rehabil. Open Access 2022, 3, 000574. [Google Scholar]
- Ramos-Platt, L.; Elman, L.; Shieh, P.B. Experience and Perspectives in the US on the Evolving Treatment Landscape in Spinal Muscular Atrophy. Int. J. Gen. Med. 2022, 15, 7341–7353. [Google Scholar] [CrossRef]
- Ferrante, L.; Melendez-Zaidi, A.; Lindsey, W.; Lotze, T. Novel Use of Nusinersen as a Therapeutic Bridge to Onasemnogene Abeparvovec-Xioi in a Premature Neonate with Type 1 Spinal Muscular Atrophy. Muscle Nerve 2022, 66, E8–E10. [Google Scholar] [CrossRef] [PubMed]
- Tosi, M.; Catteruccia, M.; Cherchi, C.; Mizzoni, I.; D’Amico, A. Switching Therapies: Safety Profile of Onasemnogene Abeparvovec-Xioi in a SMA1 Patient Previously Treated with Risdiplam. Acta Myol. Myopathies Cardiomyopathies Off. J. Mediterr. Soc. Myol. 2022, 41, 117–120. [Google Scholar] [CrossRef]
- Harada, Y.; Rao, V.K.; Arya, K.; Kuntz, N.L.; DiDonato, C.J.; Napchan-Pomerantz, G.; Agarwal, A.; Stefans, V.; Katsuno, M.; Veerapandiyan, A. Combination Molecular Therapies for Type 1 Spinal Muscular Atrophy. Muscle Nerve 2020, 62, 550–554. [Google Scholar] [CrossRef] [PubMed]
- Pagliarini, V.; Guerra, M.; Di Rosa, V.; Compagnucci, C.; Sette, C. Combined Treatment with the Histone Deacetylase Inhibitor LBH589 and a Splice-Switch Antisense Oligonucleotide Enhances SMN2 Splicing and SMN Expression in Spinal Muscular Atrophy Cells. J. Neurochem. 2020, 153, 264–275. [Google Scholar] [CrossRef] [PubMed]
- Marasco, L.E.; Dujardin, G.; Sousa-Luís, R.; Liu, Y.H.; Stigliano, J.N.; Nomakuchi, T.; Proudfoot, N.J.; Krainer, A.R.; Kornblihtt, A.R. Counteracting Chromatin Effects of a Splicing-Correcting Antisense Oligonucleotide Improves Its Therapeutic Efficacy in Spinal Muscular Atrophy. Cell 2022, 185, 2057–2070.e15. [Google Scholar] [CrossRef] [PubMed]
- Miccio, A.; Antoniou, P.; Ciura, S.; Kabashi, E. Novel Genome-Editing-Based Approaches to Treat Motor Neuron Diseases: Promises and Challenges. Mol. Ther. J. Am. Soc. Gene Ther. 2022, 30, 47–53. [Google Scholar] [CrossRef]
Type | Onset | Function | Median Survival | SMN2 Copy Number in SMN1-Deleted Patients |
---|---|---|---|---|
0 | Prenatal | Respiratory failure at birth | Weeks | 1 |
I | 0–6 months | Never sit | <1 years | 2–3 |
II | <18 months | Sit | >25 years | 3 |
III | >18 months | Stand or ambulatory | adult | 3–4 |
IV | >30 years | Ambulatory | adult | ≥4 |
Nusinersen | Onasemnogene Abeparvovec | Risdiplam | |
---|---|---|---|
Drug type | Antisense oligonucleotide | Adeno-associated viral vector | Small molecular compound |
Mechanism of action | Modification of SMN2 pre-mRNA Splicing | SMN gene transfer | Modification of SMN2 pre-mRNA Splicing |
Administration | Intrathecal | Intravenous | Oral |
FDA approved year | 2016 | 2019 | 2020 |
Patient age | All | <2 years | >2 months * |
Clinical trials involving symptomatic patients | ENDEAR CHERISH | START | FIREFISH SUNFISH |
Clinical trials involving pre-symptomatic patients | NURTURE | SPR1NT | RAINBOWFISH |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nishio, H.; Niba, E.T.E.; Saito, T.; Okamoto, K.; Takeshima, Y.; Awano, H. Spinal Muscular Atrophy: The Past, Present, and Future of Diagnosis and Treatment. Int. J. Mol. Sci. 2023, 24, 11939. https://doi.org/10.3390/ijms241511939
Nishio H, Niba ETE, Saito T, Okamoto K, Takeshima Y, Awano H. Spinal Muscular Atrophy: The Past, Present, and Future of Diagnosis and Treatment. International Journal of Molecular Sciences. 2023; 24(15):11939. https://doi.org/10.3390/ijms241511939
Chicago/Turabian StyleNishio, Hisahide, Emma Tabe Eko Niba, Toshio Saito, Kentaro Okamoto, Yasuhiro Takeshima, and Hiroyuki Awano. 2023. "Spinal Muscular Atrophy: The Past, Present, and Future of Diagnosis and Treatment" International Journal of Molecular Sciences 24, no. 15: 11939. https://doi.org/10.3390/ijms241511939