Next Article in Journal
3-Amino-6-ethoxy-4-phenyl-1H-pyrrolo[2,3-b]pyridine-2,5-dicarbonitrile
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Short Note

(Z)-2-(4-Chloro-5H-1,2,3-dithiazol-5-ylideneamino)-6-ethoxy-4-phenylpyridine-3,5-dicarbonitrile

by
Panayiotis A. Koutentis
* and
Sophia S. Michaelidou
Department of Chemistry, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus
*
Author to whom correspondence should be addressed.
Molbank 2010, 2010(3), M690; https://doi.org/10.3390/M690
Submission received: 12 July 2010 / Accepted: 30 July 2010 / Published: 3 August 2010

Abstract

:
2-Amino-6-ethoxy-4-phenylpyridine-3,5-dicarbonitrile 1 reacts with 4,5-dichloro-1,2,3-dithiazolium chloride 2 in the presence of pyridine (2 equiv.) to afford (Z)-2-(4-chloro-5H-1,2,3-dithiazol-5-ylideneamino)-6-ethoxy-4-phenylpyridine-3,5- dicarbonitrile 3 in 88% yield.

Graphical Abstract

N-Aryl-1,2,3-dithiazolimines show interesting antitumour [1], antifungal [2], antibacterial [3], and herbicidal activities [4]. Furthermore, these compounds are useful precursors for difficult to access cyano substituted heteroarenes [3,5]. N-Aryl-1,2,3-dithiazolimines are readily prepared from the condensation of anilines and 4,5-dichloro-1,2,3-dithiazolium chloride 2 commonly known as Appel’s salt [6,7].
Surprisingly, there are only a few examples, of N-heteroazine substituted 1,2,3-dithiazolimines [7,8,9]. During ongoing studies of the chemistry of 4,5-dichloro-1,2,3-dithiazolium chloride 2 [10,11,12,13], we needed access to a highly substituted N-pyridyl-1,2,3-dithiazolimine. Fully substituted 2-amino-6-ethoxy-4-phenylpyridine-3,5-dicarbonitrile 1 can be prepared from benzaldehyde and malononitrile in ethanol in the presence of base [14] and is a maxi-K channel opening agent [15].
Condensation of 2-amino-6-ethoxy-4-phenylpyridine-3,5-dicarbonitrile 1 with Appel salt 2 in the presence of a tertiary amine base gave as expected the highly crystalline dithiazolimine 3. Of the various amine bases screened (pyridine, 2,6-lutidine, DABCO, triethylamine, Hünig’s base, DBU and DBN), the use of pyridine (2 equiv.) led to the highest yield (88%).
Molbank 2010 m690 i001
Some of the chemistry of the dithiazolimine 3 has been previously reported, but no experimental procedure for its preparation nor spectroscopic/physical data, were given [16]. These details for the preparation and full characterization of dithiazolimine 3 are now reported.

Experimental

Anhydrous Na2SO4 was used for drying organic extracts and volatiles were removed under reduced pressure. The reaction mixture and column eluents were monitored by TLC, using commercial glass backed thin layer chromatography (TLC) plates (Merck Kieselgel 60 F254). The plates were observed under UV light at 254 and 365 nm. The technique of dry flash chromatography was used, using Merck Silica Gel 60 (less than 0.063 mm). Melting point was determined using a PolyTherm-A, Wagner & Munz, Kofler-Hotstage Microscope apparatus. IR spectrum was recorded on a Shimadzu FTIR-NIR Prestige-21 spectrometer with Pike Miracle Ge ATR accessory and strong, medium and weak peaks are represented by s, m and w, respectively. 1H NMR spectrum was recorded on a Bruker Avance 300 machine (at 300 MHz). Deuterated chloroform was used for deuterium lock and the signals are referenced to the residual undeuterated solvent peak. Low resolution (EI) mass spectrum was recorded on a Shimadzu Q2010 GCMS with a direct inlet probe. Microanalysis was performed at London Metropolitan University.

(Z)-2-(4-Chloro-5H-1,2,3-dithiazol-5-ylideneamino)-6-ethoxy-4-phenylpyridine-3,5-dicarbonitrile (3)

To a stirred suspension of 4,5-dichloro-1,2,3-dithiazolium chloride 2 (79 mg, 0.38 mmol) in DCM (4 mL) at ca. 20 °C and protected with a CaCl2 drying tube, was added 2-amino-6-ethoxy-4-phenylpyridine-3,5-dicarbonitrile 1 (100 mg, 0.38 mmol). After 1 h, to the reaction mixture was added dropwise pyridine (61.5 μL, 0.76 mmol) and the mixture was then left to stir at ca. 20 °C for an additional 2 h. The reaction mixture was then adsorbed onto silica and chromatography (hexane) gave S8 (traces). Further elution (hexane/DCM, 8:2) gave 4-chloro-5H-1,2,3-dithiazole-5-thione (8.3 mg, 8%) and further elution (hexane/DCM 7:3) gave the title compound (133.4 mg, 88%) as yellow-orange cotton-like fibers, mp 264–265 °C (from toluene); (Found C, 51.2; H, 2.4; N, 17.5 C17H10ClN5OS2 requires C, 51.1; H, 2.5; N, 17.5%); λmax (DCM) 229 (log ε 4.53), 264 (4.50), 279 inf (4.39), 301 inf (4.19), 329 inf (3.98), 403 inf (4.21), 424 (4.45), 447 (4.51), 472 (4.24); vmax/cm-1 3061w, 2976w, 2224m (C≡N), 1553s, 1518m, 1508s, 1468s, 1443m, 1429m, 1412m, 1373s, 1339s, 1237w, 1186m, 1165m, 1078w, 1022w, 883m, 804m, 745m, 710s; δH (300 MHz; DMSO-d6) 7.64 (5H, s, Ph H), 4.71 (2H, q, J 6.8, OCH2), 1.48 (3H, t, J 6.9, OCH2CH3); δC (75 MHz; DMSO-d6) 164.9, 164.7, 160.5, 158.7, 149.3, 133.1, 130.8 (Ph CH), 128.8 (Ph CH), 128.7 (Ph CH), 114.4 (C≡N), 113.9 (C≡N), 98.6, 92.1, 67.0 (CH2), 14.3 (CH3); m/z (EI); 401 (M++2, 40%), 400 (M+ + 1, 55), 399 (M+, 100), 398 (88), 372 (25), 364 (9), 336 (80), 305 (11), 278 (11), 272 (16), 246 (41), 218 (37), 191 (21), 165 (58), 138 (22), 127 (12), 125 (12), 102 (9), 91 (12), 77 (20), 70 (10), 64 (91), 51 (19).

Supplementary materials

Supplementary File 1Supplementary File 2Supplementary File 3

Acknowledgements

The authors wish to thank the Cyprus Research Promotion Foundation [Grant No. ΤΕΧΝΟΛΟΓΙΑ/ΘΕΠΙΣ/0308(ΒΕ)/08] and the following organisations in Cyprus for generous donations of chemicals and glassware: the State General Laboratory, the Agricultural Research Institute and the Ministry of Agriculture. Furthermore we thank the A.G. Leventis Foundation for helping to establish the NMR facility in the University of Cyprus.

References and Notes

  1. Konstantinova, L.S.; Bol’shakov, O.I.; Obruchnikova, N.V.; Laborie, H.; Tanga, A.; Sopéna, V.; Lanneluc, I.; Picot, L.; Sablé, S.; Thiéry, V.; Rakitin, O.A. One-pot synthesis of 5-phenylimino, 5-thieno or 5-oxo-1,2,3-dithiazoles and evaluation of their antimicrobial and antitumor activity. Bioorg. Med. Chem. Lett. 2009, 19, 136–141. [Google Scholar] [CrossRef] [PubMed]
  2. Thiery, V.; Rees, C.W.; Besson, T.; Cottenceau, G.; Pons, A.M. Antimicrobial activity of novel N-quinolinyl and N-naphthylimino-1,2,3-dithiazoles. Eur. J. Med. Chem. 1998, 33, 149–153. [Google Scholar] [CrossRef]
  3. Besson, T.; Rees, C.W.; Cottenceau, G.; Pons, A.M. Antimicrobial evaluation of 3,1-benzoxazin-4-ones, 3,1-benzothiazin-4-ones, 4-alkoxyquinazolin-2-carbonitriles and N-arylimino-1,2,3-dithiazoles. Bioorg. Med. Chem. Lett. 1996, 6, 2343–2348. [Google Scholar] [CrossRef]
  4. Mayer, R.; Foerster, E. Verfahren zur Herstellung von aromatisch oder heteroaromatisch substituierten Cyanthioformamiden. DD Pat. 212387, 1984. [Google Scholar]
  5. Christoforou, I.C.; Kalogirou, A.S.; Koutentis, P.A. The preparation of dicyano-1,3,4-thiadiazole and tricyanothiazole via 1,2,3-dithiazole chemistry. Tetrahedron 2009, 65, 9967–9972. [Google Scholar] [CrossRef]
  6. Appel, R.; Janssen, H.; Siray, M.; Knoch, F. Synthese und Reaktionen des 4,5-Dichlor-1,2,3-dithiazolium-chlorids. Chem. Ber. 1985, 118, 1632–1643. [Google Scholar] [CrossRef]
  7. English, R.F.; Rakitin, Ο.Α.; Rees, C.W.; Vlasova, O.G. Conversion of imino-1,2,3-dithiazoles into 2-cyanobenzothiazoles, cyanoimidoyl chlorides and diatomic sulfur. J. Chem. Soc. Perkin Trans. 1 1997, 201–206. [Google Scholar] [CrossRef]
  8. Konstantinova, L.S.; Rakitin, O.A.; Rees, C.W.; Sivadasan, S.; Torroba, T. New route to 2-cyanobenzimidazoles. Tetrahedron 1998, 54, 9639–9650. [Google Scholar] [CrossRef]
  9. Besson, T.; Rees, C.W.; Thiery, V. Convenient Synthesis of Dithiooxamides from N-Arylimino-1,2,3-dithiazoles. Synthesis 1999, 1345–1348. [Google Scholar] [CrossRef]
  10. Michaelidou, S.S.; Koutentis, P.A. The conversion of 2-(4-chloro-5H-1,2,3-dithiazolylidene-amino)benzonitriles into 3-aminoindole-2-carbonitriles using triphenylphosphine. Tetrahedron 2009, 65, 8428–8433. [Google Scholar] [CrossRef]
  11. Kalogirou, A.S.; Koutentis, P.A. The reaction of 4,5-dichloro-1,2,3-dithiazolium chloride with dimethylsulfonium dicyanomethylide: an improved synthesis of (4-chloro-1,2,3-dithiazolylidene)-malononitrile. Tetrahedron 2009, 65, 6850–6854. [Google Scholar] [CrossRef]
  12. Kalogirou, A.S.; Koutentis, P.A. The reaction of 4,5-dichloro-1,2,3-dithiazolium chloride with DMSO: An improved synthesis of 4-chloro-1,2,3-dithiazol-5H-one. Tetrahedron 2009, 65, 6855–6858. [Google Scholar] [CrossRef]
  13. Kalogirou, A.S.; Koutentis, P.A. The degradation of 4,5-dichloro-1,2,3-dithiazolium chloride in wet solvents. Tetrahedron 2009, 65, 6859–6862. [Google Scholar] [CrossRef]
  14. Alvarez-Insúa, A.S.; Lora-Tamayo, M.; Soto, J.L. Synthesis of heterocyclic compounds. II. A simple one-step synthesis of pyridines from aldehydes and malononitrile. J. Heterocycl. Chem. 1970, 7, 1305–1309. [Google Scholar] [CrossRef]
  15. Harada, H.; Watanuki, S.; Takuwa, T.; Kawaguchi, K.; Okazaki, T.; Hirano, Y.; Saitoh, C. Medicine comprising dicyanopyridine derivative. Eur. Pat. 1302463A1, 2003. [Google Scholar]
  16. Christoforou, I.C.; Koutentis, P.A.; Michaelidou, S.S. 1,2,3-Dithiazole chemistry in heterocyclic synthesis. Arkivoc 2006, 7, 207–223. [Google Scholar] [CrossRef]

Share and Cite

MDPI and ACS Style

Koutentis, P.A.; Michaelidou, S.S. (Z)-2-(4-Chloro-5H-1,2,3-dithiazol-5-ylideneamino)-6-ethoxy-4-phenylpyridine-3,5-dicarbonitrile. Molbank 2010, 2010, M690. https://doi.org/10.3390/M690

AMA Style

Koutentis PA, Michaelidou SS. (Z)-2-(4-Chloro-5H-1,2,3-dithiazol-5-ylideneamino)-6-ethoxy-4-phenylpyridine-3,5-dicarbonitrile. Molbank. 2010; 2010(3):M690. https://doi.org/10.3390/M690

Chicago/Turabian Style

Koutentis, Panayiotis A., and Sophia S. Michaelidou. 2010. "(Z)-2-(4-Chloro-5H-1,2,3-dithiazol-5-ylideneamino)-6-ethoxy-4-phenylpyridine-3,5-dicarbonitrile" Molbank 2010, no. 3: M690. https://doi.org/10.3390/M690

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop