Sensitive, Fast, and Specific Immunoassays for Methyltestosterone Detection
Abstract
:1. Introduction
2. Experimental
2.1. Reagents and Materials
2.2. Instruments
2.3. Artificial Antigen Preparation
2.4. Preparation of Monoclonal Antibody (mAb) against MT
2.4.1. Immunization of Mice
2.4.2. Cell Fusion
2.4.3. Production of Anti-MT mAb
2.5. icELISA Procedure
2.6. icELISA Optimization
2.7. Cross-Reactivity
2.8. Gold Nanoparticle (GNP) Preparation
2.9. Labelling of the MT mAb with GNPs
2.10. Immunochromatographic Strip Preparation
2.10.1. Preparation of the Conjugate Pad
2.10.2. Immobilization of Capture Reagents
2.10.3. Preparation of the Sample Pad and Absorbent Pad
2.10.4. Assembly of the Immunochromatographic Strip
2.11. Test Procedure and Principle
2.12. Sample Analysis
2.12.1. Sample Pretreatment
2.12.2. For ELISA analysis
2.12.3. For Immunochromatographic Strip Assay
2.12.4. Recovery
3. Results and Discussion
3.1. Hapten Conjugation
3.2. Production and Characterization of mAb
3.3. Development and Optimization of icELISA
3.4. Specificity of mAb
Analogs | IC50 (ng/mL) | CR (%) |
---|---|---|
Methyltestosterone | 0.26 | 100 |
Testosterone | 12 | 2.17 |
Nor-testosterone | 25 | 1.04 |
Estradiol | 50 | 0.52 |
Estriol | >100 | <0.26 |
Progesterone | >100 | <0.26 |
Epitestosterone | >100 | <0.26 |
Dihydrotestosterone | >100 | <0.26 |
Dexamethasone | >100 | <0.26 |
3.5. Analytical Characteristics of the Immunochromatographic Strip
3.6. Sample Matrix Effects on the Immunochromatographic Strip Assay
3.7. Comparisons among icELISA, Immunochromatographic Strip Assay and GC-MS
icELISA | GC-MS | Test Strips | ||||
---|---|---|---|---|---|---|
Samples | Spiked (ng/g) | Detected (ng/g), Mean ± SD | Recovery (%) | Detected (ng/g), Mean ± SD | Recovery (%) | Detected a |
Fish feed | 0 | ND | NC b | ND | NC b | --- |
1.25 | 1.03 ± 0.07 | 82.4 | 1.17 ± 0.13 | 93.6 | ±±± | |
2.5 | 2.51 ± 0.12 | 100.4 | 2.43 ± 0.02 | 97.2 | +++ | |
5 | 4.49 ± 0.22 | 89.8 | 4.51 ± 0.09 | 90.2 | +++ | |
Pig feed | 0 | ND | NC b | ND | NC b | --- |
1.25 | 1.19 ± 0.12 | 95.2 | 1.21 ± 0.23 | 96.8 | ±±± | |
2.5 | 2.34 ± 0.08 | 93.6 | 2.51 ± 0.09 | 100.4 | +++ | |
5 | 5.03 ± 0.15 | 100.6 | 4.97 ± 0.14 | 99.4 | +++ |
4. Conclusions
Supplementary Files
Supplementary File 1Acknowledgments
Author Contributions
Conflicts of Interest
References
- Sillence, M.N. Technologies for the control of fat and lean deposition in livestock. Vet. J. 2004, 167, 242–257. [Google Scholar] [CrossRef] [PubMed]
- Conneely, G.; Aherne, M.; Lu, H.; Guilbault, G. Electrochemical immunosensors for the detection of 19-nortestosterone and methyltestosterone in bovine urine. Sens. Actuators B Chem. 2007, 121, 103–112. [Google Scholar] [CrossRef]
- Kang, I.J.; Yokota, H.; Oshima, Y.; Tsuruda, Y.; Shimasaki, Y.; Honjo, T. The effects of methyltestosterone on the sexual development and reproduction of adult medaka (Oryzias latipes). Aquat. Toxicol. 2008, 87, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Gist, G.L. National Environmental Health Association position on endocrine disrupters-Adopted July 2, 1997. J. Environ. Health 1998, 60, 21–23. [Google Scholar]
- Rivero-Wendt, C.L.; Borges, A.C.; Oliveira-Filho, E.C.; Miranda-Vilela, A.L.; Ferreira, M.F.; Grisolia, C.K. Effects of 17alpha-methyltestosterone on the reproduction of the freshwater snail Biomphalaria glabrata. Genet. Mol. Res. GMR 2014, 13, 605–615. [Google Scholar] [CrossRef]
- Jukosky, J.A.; Watzin, M.C.; Leiter, J.C. The effects of environmentally relevant mixtures of estrogens on Japanese medaka (Oryzias latipes) reproduction. Aquat. Toxicol. 2008, 86, 323–331. [Google Scholar] [CrossRef] [PubMed]
- Pawlowski, S.; Sauer, A.; Shears, J.A.; Tyler, C.R.; Braunbeck, T. Androgenic and estrogenic effects of the synthetic androgen 17alpha-methyltestosterone on sexual development and reproductive performance in the fathead minnow (Pimephales promelas) determined using the gonadal recrudescence assay. Aquat. Toxicol. 2004, 68, 277–291. [Google Scholar] [CrossRef] [PubMed]
- Arslan, T.; Phelps, R.P. Production of monosex male black crappie, Pomoxis nigromaculatus, populations by multiple androgen immersion. Aquaculture 2004, 234, 561–573. [Google Scholar] [CrossRef]
- Gonzalo-Lumbreras, R.; Izquierdo-Hornillos, R. Optimization and validation of conventional and micellar LC methods for the analysis of methyltestosterone in sugar-coated pills. J. Pharm. Biomed. Anal. 2003, 31, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, I.R.; Lopes, S.; Oliveira, R.; Domingues, I.; Soares, A.M.; Nogueira, A.J. Determination of 17α-Methyltestosterone in Freshwater Samples of Tilapia Farming by High Performance Liquid Chromatography. Am. J. Anal. Chem. 2013, 4, 207. [Google Scholar] [CrossRef]
- Regal, P.; Nebot, C.; Vázquez, B.; Cepeda, A.; Fente, C. Determination of the hormonal growth promoter 17α-methyltestosterone in food-producing animals: Bovine hair analysis by HPLC–MS/MS. Meat Sci. 2010, 84, 196–201. [Google Scholar] [CrossRef] [PubMed]
- Becue, I.; Poucke, C.V.; Peteghem, C.V. An LC–MS screening method with library identification for the detection of steroidsin dietary supplements. J. Mass Spectrom. 2011, 46, 327–335. [Google Scholar] [CrossRef] [PubMed]
- Zeng, D.-P.; Lin, C.-P.; Zeng, Z.-L.; Huang, X.-H.; He, L.-M. Multi-residue determination of eight anabolic steroids by GC-MS in muscle tissues from pigs. Agric. Sci. China 2010, 9, 306–312. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, L.; Fan, L.; Lin, Z.; Cai, Y.; Wei, Z.; Chen, G. An improved hollow fiber solvent-stir bar microextraction for the preconcentration of anabolic steroids in biological matrix with determination by gas chromatography-mass spectrometry. J. Chromatogr. A 2012, 1233, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Leporati, M.; Bergoglio, M.; Capra, P.; Bozzetta, E.; Abete, M.; Vincenti, M. Development, validation and application to real samples of a multiresidue LC-MS/MS method for determination of β2-agonists and anabolic steroids in bovine hair. J. Mass Spectrom. 2014, 49, 936–946. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, K.; Stachel, C. In-house validation and factorial effect analysis of a LC-MS/MS method for the determination of steroids in bovine and porcine blood plasma. Food Addit. Contam. Part A 2013, 30, 1027–1036. [Google Scholar] [CrossRef]
- Serafin, V.; Eguílaz, M.; Agüí, L.; Yáñez-Sedeño, P.; Pingarrón, J. An electrochemical immunosensor for testosterone using gold nanoparticles—Carbon nanotubes composite electrodes. Electroanalysis 2011, 23, 169–176. [Google Scholar] [CrossRef]
- Jansen, E.; Laan, C.; van den Berg, R.; Stephany, R.; Zomer, G. A solid-phase chemiluminescence immunoassay for 17α-methyltestosterone. Anal. Chim. Acta 1985, 170, 29–34. [Google Scholar] [CrossRef]
- Jansen, E.; van den Berg, R.; Zomer, G.; Stephany, R. A chemiluminescent immunoassay for 17α-methyltestosterone. Food Addit. Contam. 1985, 2, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhang, Y.; Liu, G.; Zhang, C.; Wang, S. A time-resolved fluorescence immunoassay for the ultrasensitive determination of diethylstilbestrol based on the double-codified gold nanoparticles. Steroids 2014, 89, 41–46. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Luo, X.; Yang, S.; Cao, X.; Wang, Z.; Shi, W.; Zhang, S. High specific monoclonal antibody production and development of an ELISA method for monitoring T-2 toxin in rice. J. Agric. Food Chem. 2014, 62, 1492–1497. [Google Scholar] [CrossRef] [PubMed]
- Xu, N.; Xu, L.; Ma, W.; Kuang, H.; Xu, C. Development and characterisation of an ultrasensitive monoclonal antibody for chloramphenicol. Food Agric. Immunol. 2014. [Google Scholar] [CrossRef]
- Kong, D.; Liu, L.; Xing, C.; Kuang, H.; Xu, C. Sensitive and highly specific detection of Cronobacter sakazakii based on monoclonal sandwich ELISA. Food Agric. Immunol. 2015. [Google Scholar] [CrossRef]
- Chen, H.X.; Zhang, X.X. Antibody development to testosterone and its application in capillary electrophoresis-based immunoassay. Electrophoresis 2008, 29, 3406–3413. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Wang, Z.; Zhang, H.; Zhang, X.; Liu, X.; Wang, S. Monoclonal antibody-based ELISA and colloidal gold immunoassay for detecting 19-nortestosterone residue in animal tissues. J. Agric. Food Chem. 2011, 59, 9763–9769. [Google Scholar] [CrossRef] [PubMed]
- Yin, Y.; Liu, L.; Song, S.; Kuang, H.; Xu, C. Development of a highly sensitive icELISA to detect semicarbazide based on a monoclonal antibody. Food Agric. Immunol. 2014. [Google Scholar] [CrossRef]
- Kong, N.; Guo, L.; Guan, D.; Liu, L.; Kuang, H.; Xu, C. An Ultrasensitive ELISA for Medroxyprogesterone Residues in Fish Tissues Based on a Structure-Specific Hapten. Food Anal. Methods 2014. [Google Scholar] [CrossRef]
- Köhler, G.; Milstein, C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 1975, 256, 495–497. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wei, D.; Yang, H.; Yang, Y.; Xing, W.; Li, Y.; Deng, A. Development of a highly sensitive and specific monoclonal antibody-based enzyme-linked immunosorbent assay (ELISA) for detection of Sudan I in food samples. Talanta 2009, 77, 1783–1789. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Plhak, L.C. Monoclonal antibodies for the analysis of gossypol in cottonseed products. J. Agric. Food Chem. 2004, 52, 709–712. [Google Scholar] [CrossRef] [PubMed]
- Kuang, H.; Xu, L.; Cui, G.; Ma, W.; Xu, C. Development of determination of di-n-octyl phthalate (DOP) residue by an indirect enzyme-linked immunosorbent assay. Food Agricul. Immunol. 2010, 21, 265–277. [Google Scholar] [CrossRef]
- Yan, W.; Xu, L.; Xu, C.; Ma, W.; Kuang, H.; Wang, L.; Kotov, N.A. Self-assembly of chiral nanoparticle pyramids with strong R/S optical activity. J. Am. Chem. Soc. 2012, 134, 15114–15121. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Lin, M.; Zhang, S.; Vardhanabhuti, B. Detection of aflatoxin M1 in milk by dynamic light scattering coupled with superparamagnetic beads and gold nanoprobes. J. Agric. Food Chem. 2013, 61, 4520–4525. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Liu, L.; Xue, F.; Xing, C.; Song, S.; Kuang, H.; Xu, C. Development of a monoclonal antibody-based immunochromatographic strip for cephalexin. Food Agric. Immunol. 2014, 26, 282–292. [Google Scholar] [CrossRef]
- Liu, L.; Xing, C.; Yan, H.; Kuang, H.; Xu, C. Development of an ELISA and immunochromatographic strip for highly sensitive detection of microcystin-LR. Sensors 2014, 14, 14672–14685. [Google Scholar] [CrossRef] [PubMed]
- Shim, W.B.; Kim, K.Y.; Chung, D.H. Development and validation of a gold nanoparticle immunochromatographic assay (ICG) for the detection of zearalenone. J. Agric. Food Chem. 2009, 57, 4035–4041. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Liu, L.; Kuang, H.; Song, S.; Xu, C. A strip-based immunoassay for rapid determination of fenpropathrin. Anal. Methods 2013, 5, 6234. [Google Scholar] [CrossRef]
- Song, C.; Liu, Q.; Zhi, A.; Yang, J.; Zhi, Y.; Li, Q.; Hu, X.; Deng, R.; Casas, J.; Tang, L.; et al. Development of a Lateral Flow Colloidal Gold Immunoassay Strip for the Rapid Detection of Olaquindox Residues. J. Agric. Food Chem. 2011, 59, 9319–9326. [Google Scholar] [CrossRef] [PubMed]
- Peng, C.-F.; Chen, Y.-W.; Chen, W.; Xu, C.-L.; Kim, J.-M.; Jin, Z.-Y. Development of a sensitive heterologous ELISA method for analysis of acetylgestagen residues in animal fat. Food Chem. 2008, 109, 647–653. [Google Scholar] [CrossRef]
- Zhang, L.; Gong, Y.; Zhang, M.; Xi, X.; Li, M.; Chen, Z.; Yu, X.; Zhou, Y. Development of a monoclonal antibody-based direct competitive enzyme-linked immunosorbent assay for a new β-adrenergic agonist phenylethanolamine A. Anal. Methods 2014, 6, 5942. [Google Scholar] [CrossRef]
- Reverberi, R.; Reverberi, L. Factors affecting the antigen-antibody reaction. Blood Trans. Trasfus. Sangue 2007, 5, 227–240. [Google Scholar]
- Risto, U.; Zehra, H.-M.; Biljana, S.-D.; Elizabeta, D.-S.; Aleksandra, T.; Velimir, S. Validation of screening method for determination of methyltestosterone in fish. Maced. Vet. Rev. 2013, 36, 19–23. [Google Scholar]
- Lu, H.; Conneely, G.; Crowe, M.A.; Aherne, M.; Pravda, M.; Guilbault, G.G. Screening for testosterone, methyltestosterone, 19-nortestosterone residues and their metabolites in bovine urine with enzyme-linked immunosorbent assay (ELISA). Anal. Chim. Acta 2006, 570, 116–123. [Google Scholar] [CrossRef]
- Qi, X.H.; Zhang, L.W.; Zhang, X.X. Simultaneous determination of nandrolone, testosterone, and methyltestosterone by multi-immunoaffinity column and capillary electrophoresis. Electrophoresis 2008, 29, 3398–3405. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kong, N.; Song, S.; Peng, J.; Liu, L.; Kuang, H.; Xu, C. Sensitive, Fast, and Specific Immunoassays for Methyltestosterone Detection. Sensors 2015, 15, 10059-10073. https://doi.org/10.3390/s150510059
Kong N, Song S, Peng J, Liu L, Kuang H, Xu C. Sensitive, Fast, and Specific Immunoassays for Methyltestosterone Detection. Sensors. 2015; 15(5):10059-10073. https://doi.org/10.3390/s150510059
Chicago/Turabian StyleKong, Na, Shanshan Song, Juan Peng, Liqiang Liu, Hua Kuang, and Chuanlai Xu. 2015. "Sensitive, Fast, and Specific Immunoassays for Methyltestosterone Detection" Sensors 15, no. 5: 10059-10073. https://doi.org/10.3390/s150510059
APA StyleKong, N., Song, S., Peng, J., Liu, L., Kuang, H., & Xu, C. (2015). Sensitive, Fast, and Specific Immunoassays for Methyltestosterone Detection. Sensors, 15(5), 10059-10073. https://doi.org/10.3390/s150510059