Meteo and Hydrodynamic Measurements to Detect Physical Processes in Confined Shallow Seas
Abstract
:1. Introduction
2. Materials and Methods: Set Up and Equipment
2.1. Study Site
2.2. Instrumentations Settlement, System Configurations and Data Transmission
3. Data Analysis and Discussion of Results
3.1. Data Analysis in MG Station
3.1.1. Winds and Waves
3.1.2. Currents
3.2. Data Analysis in MP Station
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Mossa, M.; De Serio, F. Rethinking the process of detrainment: Jets in obstructed natural flows. Sci. Rep. 2016, 6, 39103. [Google Scholar] [CrossRef] [PubMed]
- Mossa, M.; Ben Meftah, M.; De Serio, F.; Nepf, H.M. How vegetation in flows modifies the turbulent mixing and spreading of jets. Sci. Rep. 2017, 7, 6587. [Google Scholar] [CrossRef] [PubMed]
- De Serio, F.; Mossa, M. A laboratory study of irregular shoaling waves. Exp. Fluids 2013, 54, 1536. [Google Scholar] [CrossRef]
- Ben Meftah, M.; De Serio, F.; Malcangio, D.; Mossa, M.; Petrillo, A.F. Experimental study of a vertical jet in a vegetated crossflow. J. Env. Manag. 2015, 164, 19–31. [Google Scholar] [CrossRef] [PubMed]
- Panda, U.S.; Mahanty, M.M.; Rao, V.R.; Patra, S.; Mishra, P. Hydrodynamics and water quality in Chilika Lagoon. A modelling approach. Proced. Eng. 2015, 116, 639–646. [Google Scholar] [CrossRef]
- Suursaar, Ü.; Tõnisson, H.; Alari, V.; Raudsepp, U.; Rästas, H.; Anderson, A. Projected changes in wave conditions in the Baltic Sea by the end of 21st century and the corresponding shoreline change. J. Coast. Res. Spec. Issue 2016, 75, 1012–1016. [Google Scholar] [CrossRef]
- Serrano, D.; Ramírez-Félix, E.; Valle-Levinson, A. Tidal hydrodynamics in a two-inlet coastal lagoon in the Gulf of California. Cont. Shelf Res. 2013, 63, 1–12. [Google Scholar] [CrossRef]
- De Serio, F.; Malcangio, D.; Mossa, M. Circulation in a Southern Italy coastal basin: modelling and field measurements. Cont. Shelf Res. 2007, 27, 779–797. [Google Scholar] [CrossRef]
- Samaras, A.G.; Gaeta, M.G.; Miquel, A.M.; Archetti, R. High-resolution wave and hydrodynamics modelling in coastal areas: operational applications for coastal planning, decision support and assessment. Nat. Hazards Earth Syst. Sci. 2016, 16, 1499–1518. [Google Scholar] [CrossRef]
- Monti, P.; Leuzzi, G. Lagrangian models of dispersion in marine environment. Env. Fluid Mech. 2010, 10, 637–656. [Google Scholar] [CrossRef]
- Federico, I.; Pinardi, N.; Coppini, G.; Oddo, P.; Lecci, R.; Mossa, M. Coastal ocean forecasting with an unstructured grid model in the southern Adriatic and northern Ionian Sea. Nat. Hazards Earth Syst. Sci. 2017, 17, 45–59. [Google Scholar] [CrossRef]
- De Dominicis, M.; Leuzzi, G.; Monti, P.; Pinardi, N.; Poulain, P.M. Eddy diffusivity derived from drifter data for dispersion model applications. Ocean Dyn. 2012, 62, 1381–1398. [Google Scholar] [CrossRef] [Green Version]
- Armenio, E.; De Serio, F.; Mossa, M. Analysis of data characterizing tide and current fluxes in coastal basins. Hydrol. Earth Syst. Sci. 2017, 21, 3441. [Google Scholar] [CrossRef]
- Reeve, D.E.; Karunarathna, H.; Pan, S.; Horrillo-Caraballo, J.M.; Różyński, G.; Ranasinghe, R. Data-driven and hybrid coastal morphological prediction methods for mesoscale forecasting. J. Geomorph. 2016, 256, 49–67. [Google Scholar] [CrossRef]
- Elshorbagy, A.; Corzo, G.; Srinivasulu, S.; Solomatine, D.P. Experimental investigation of the predictive capabilities of data driven modeling techniques in hydrology-Part 1: Concepts and methodology. Hydrol. Earth Syst. Sci. 2010, 4, 1931–1941. [Google Scholar] [CrossRef]
- Różyński, G.; Larson, M.; Pruszak, Z. Forced and self-organized shoreline response for a beach in the southern Baltic Sea determined through singular spectrum analysis. Coast. Eng. 2001, 43, 41–58. [Google Scholar] [CrossRef]
- Różyński, G. Data-driven modeling of multiple alongshore bars and their interactions. Coast. Eng. 2003, 48, 151–170. [Google Scholar] [CrossRef]
- Horrillo-Caraballo, J.M.; Reeve, D.E. An investigation of the link between beach morphology and wave climate at Duck, North Carolina, USA. J. Flood Risk Manag. 2008, 1, 110–122. [Google Scholar] [CrossRef]
- Armenio, E.; Ben Meftah, M.; Bruno, M.F.; De Padova, D.; De Pascalis, F.; De Serio, F.; Di Bernardino, A.; Mossa, M.; Leuzzi, G.; Monti, P. Semi enclosed basin monitoring and analysis of meteo, wave, tide and current data. In Proceedings of the IEEE Conference on Environmental, Energy and Structural Monitoring Systems, Bari, Italy, 13–14 June 2016. [Google Scholar]
- De Serio, F.; Mossa, M. Environmental monitoring in the Mar Grande basin (Ionian Sea, Southern Italy). J. Env. Sci. Poll. Res. 2016, 23, 12662–12674. [Google Scholar] [CrossRef] [PubMed]
- De Serio, F.; Mossa, M. Assessment of hydrodynamics, biochemical parameters and eddy diffusivity in a semi-enclosed Ionian basin. J. Deep-Sea Res. II 2016. [Google Scholar] [CrossRef]
- De Serio, F.; Mossa, M. Analysis of mean velocity and turbulence measurements with ADCPs. J. Adv. Water Res. 2015, 81, 172–185. [Google Scholar] [CrossRef]
- Hwang, P.A.; Teague, W.J.; Jacobs, G.A.; Wang, W.D. A statistical comparison of wind speed, wave height and wave period derived from satellite altimeters and ocean buoys in the Gulf of Mexico region. J. Geophysi. Res. 1998, 103, 10451–10468. [Google Scholar] [CrossRef]
- De Farias, E.G.G.; Lorenzzetti, J.A.; Chapron, B. Swell and wind-sea distributions over the mid-latitude and Tropical North Atlantic for the period 2002–2008. Int. J. Oceanogr. 2012. [Google Scholar] [CrossRef]
- Umgiesser, G.; Scroccaro, I.; Alabiso, G. Mass exchange mechanisms in the Taranto Sea. Transit. Waters Bull. 2007, 1, 59–71. [Google Scholar] [CrossRef]
- De Pascalis, F.; Petrizzo, A.; Ghezzo, M.; Lorenzetti, G.; Manfè, G.; Alabiso, G.; Zaggia, L. Estuarine circulation in the Taranto Seas. J. Env. Sci. Poll. Res. 2016, 23, 12515–12534. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Serio, F.; Mossa, M. Meteo and Hydrodynamic Measurements to Detect Physical Processes in Confined Shallow Seas. Sensors 2018, 18, 280. https://doi.org/10.3390/s18010280
De Serio F, Mossa M. Meteo and Hydrodynamic Measurements to Detect Physical Processes in Confined Shallow Seas. Sensors. 2018; 18(1):280. https://doi.org/10.3390/s18010280
Chicago/Turabian StyleDe Serio, Francesca, and Michele Mossa. 2018. "Meteo and Hydrodynamic Measurements to Detect Physical Processes in Confined Shallow Seas" Sensors 18, no. 1: 280. https://doi.org/10.3390/s18010280
APA StyleDe Serio, F., & Mossa, M. (2018). Meteo and Hydrodynamic Measurements to Detect Physical Processes in Confined Shallow Seas. Sensors, 18(1), 280. https://doi.org/10.3390/s18010280