Reply to Comments: A Novel Low-Cost Instrumentation System for Measuring the Water Content and Apparent Electrical Conductivity of Soils, Sensors, 15, 25546–25563
Abstract
:1. Introduction
2. Measurement Technique
3. Choice of Sensor Frequencies and Instrument Bias
- (1)
- The changes are great in soil resistivity and dielectric constant when the frequency is low (below 100 kHz). When the frequency is increased, changes in soil resistivity and dielectric constant with frequency gradually slow down until they become constant.
- (2)
- At the low-frequency band (below 100 kHz), the effect of the moisture content of the soil on the frequency-dependent properties of resistivity and dielectric constant is great, whereas at the high-frequency band, the effect of the moisture content of the soil on the frequency-dependent properties of resistivity and dielectric constant is minimal.
4. Temperature Influence
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Rêgo Segundo, A.K.; Martins, J.H.; Monteiro, P.M.B.; Oliveira, R.A.; Freitas, G.M. A Novel Low-Cost Instrumentation System for Measuring the Water Content and Apparent Electrical Conductivity of Soils. Sensors 2015, 15, 25546–25563. [Google Scholar] [CrossRef] [PubMed]
- Chavanne, X.; Frangi, J. Autonomous Sensors for Measuring Continuously the Moisture and Salinity of a Porous Medium. Sensors 2017, 17, 1094. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, E.N.; Vendruscolo, T.P.; Morales, R.E.M.; Schleicher, E.; Hampel, U.; Da Silva, M.J. Dual-modality wire-mesh sensor for the visualization of three-phase flows. Meas. Sci. Technol. 2015, 26, 105302. [Google Scholar] [CrossRef]
- Vendruscolo, T.P.; Jose, M. Development of a high-speed multichannel impedance measuring system. In Proceedings of the XVIII IMEKO TC4 Symposium and IX International Congress on Electrical Metrology (XVIII IMEKO TC4 Symposium and IX Semetro), Natal, Brazil, 9 September 2011. [Google Scholar]
- Arshad, A.; Khan, S.; Zahirul Alam, A.; Tasnim, R. Automated person tracking using proximity capacitive sensors. In Proceedings of the 2014 IEEE International Conference on Smart Instrumentation, Measurement and Applications (ICSIMA), Kuala Lumpur, Malaysia, 25–27 November 2014; pp. 1–4. [Google Scholar]
- Kollias, A.T.; Avaritsiotis, J.N. Time domain simulation and measurements for piezoelectric bimorphs. Sens. Actuators A Phys. 2004, 116, 293–303. [Google Scholar] [CrossRef]
- Sihombing, D.J. Temperature Effect in Multiphase Flow Meter Using Slotted Orifice Plate. Master’s Thesis, Texas A&M University, College Station, TX, USA, 2015. [Google Scholar]
- Bao, K.; Chen, D.; Shi, Q.; Liu, L.; Chen, J.; Li, J.; Wang, J. A readout circuit for wireless passive LC sensors and its application for gastrointestinal monitoring. Meas. Sci. Technol. 2014, 25, 85104. [Google Scholar] [CrossRef]
- Necasek, J.; Vaclavik, J.; Marton, P. Fast and portable precision impedance analyzer for application in vibration damping. In Proceedings of the 2015 IEEE International Workshop of Electronics, Control, Measurement, Signals and their Application to Mechatronics (ECMSM), Liberec, Czech Republic, 22–24 June 2015; pp. 1–5. [Google Scholar]
- Hamidi, M. Development and Study of Measurement Methods for Jets and Bogging in a Fluidized Bed. Ph.D. Thesis, University of Western Ontario, London, ON, Canada, 2015. [Google Scholar]
- Benning, R.; Birrell, S.; Geiger, D. Development of a Multi-Frequency Dielectric Sensing System for Real-Time Forage Moisture Measurement. In Proceedings of the 2004 ASAE/CSAE Annual International Meeting, Ottawa, ON, Canada, 1–4 August 2004. [Google Scholar]
- Da Silva, M.J.; Dos Santos, E.N.; Vendruscolo, T.P. High-speed multichannel impedance measuring system. ACTA IMEKO 2012, 1, 36. [Google Scholar] [CrossRef]
- Da Silva, M.J. Impedance Sensors for Fast Multiphase Flow Measurement and Imaging. Ph.D. Thesis, Technische Universität Dresden, Dresden, Germany, 2008. [Google Scholar]
- Aliau-Bonet, C.; Pallas-Areny, R. Effects of Stray Capacitance to Ground in Bipolar Material Impedance Measurements Based on Direct-Contact Electrodes. IEEE Trans. Instrum. Meas. 2014, 63, 2414–2421. [Google Scholar] [CrossRef]
- Modafe, A. Benzocyclobutene-Based Electric Micromachines Supported on Microball Bearings: Design, Fabrication, and Characterization. Ph.D. Thesis, University of Maryland, College Park, MD, USA, 2007. [Google Scholar]
- Li, N. Development of Real-Time Cellular Impedance Analysis System. Ph.D. Thesis, University of Sussex, Brighton, UK, 2014. [Google Scholar]
- Mesmin, F.; Ahmadi, B.; Chazal, H.; Kedous-Lebouc, A.; Sixdenier, F. Improving reliability of magnetic mutual impedance measurement at high excitation level. In Proceedings of the 2011 IEEE International Instrumentation and Measurement Technology Conference, Hangzhou, China, 9–12 May 2011; pp. 1–6. [Google Scholar]
- Duqi, E. Continuos Flow Single Cell Separation into Open Microwell Arrays. Ph.D. Thesis, University of Bologna, Bologna, Italy, 2012. [Google Scholar]
- Lagha, H.; Belmabrouk, H.; Chazal, H. Complex Permeability Measurements in a Nanocrystalline Toroidal Core. J. Mod. Mater. 2016, 1, 2–8. [Google Scholar] [CrossRef]
- Besri, A.; Chazal, H.; Keradec, J.; Margueron, X. Using confidence factor to improve reliability of wide frequency range impedance measurement. Application to H.F. transformer characterization. In Proceedings of the 2009 IEEE Intrumentation and Measurement Technology Conference, Singapore, 5–7 May 2009; pp. 104–109. [Google Scholar]
- Li, N.; Xu, H.; Zhou, Z.; Sun, Z.; Xu, X.; Wang, W. Wide bandwidth cell impedance spectroscopy based on digital auto balancing bridge method. In Proceedings of the 2011 IEEE Biomedical Circuits and Systems Conference (BioCAS), Turin, Italy, 19–21 October 2011; pp. 53–56. [Google Scholar]
- Ruiz-Vargas, A.; Arkwright, J.W.; Ivorra, A. A portable bioimpedance measurement system based on Red Pitaya for monitoring and detecting abnormalities in the gastrointestinal tract. In Proceedings of the 2016 IEEE EMBS Conference on Biomedical Engineering and Sciences (IECBES), Kuala Lumpur, Malaysia, 4–8 December 2016; pp. 150–154. [Google Scholar]
- Li, N.; Xu, H.; Wang, W.; Zhou, Z.; Qiao, G.; Li, D.D.U. A high-speed bioelectrical impedance spectroscopy system based on the digital auto-balancing bridge method. Meas. Sci. Technol. 2013, 24, 065701. [Google Scholar] [CrossRef]
- Nolen, C.R. Design, Construction, and Evaluation of Low-Cost Electrical Impedance-Based Multiphase Flow Meter with Two-Phase Flow in Large Diameter Pipes. Master’s Thesis, Texas A&M University, College Station, TX, USA, 2015. [Google Scholar]
- Petersons, O. A Self-Balancing High-Voltage Capacitance Bridge. IEEE Trans. Instrum. Meas. 1964, Im-13, 216–224. [Google Scholar] [CrossRef]
- Leuthold, H.; Rudolf, F. An ASIC for high-resolution capacitive microaccelerometers. Sens. Actuators A Phys. 1990, 21, 278–281. [Google Scholar] [CrossRef]
- Giffard, R.P. A simple low power self-balancing resistance bridge. J. Phys. E 1973, 6, 719–723. [Google Scholar] [CrossRef]
- Aalto, M.I.; Ehnholm, G.J. Related content A self-balancing resistance bridge. J. Phys. E Sci. Instrum. 1973, 6, 614–618. [Google Scholar] [CrossRef]
- Kiggen, H.J.; Laumen, H. Self-balancing high-precision ac Wheatstone bridge for observing diffusion processes in electrolyte solutions. Rev. Sci. Instrum. 1981, 52, 1761–1764. [Google Scholar] [CrossRef]
- Chidester, D.H.; Schroeder, R.R. Self-Balancing Bridge for Differential Capacitance Measurements. Anal. Chem. 1972, 44, 985–992. [Google Scholar] [CrossRef]
- Chase, R.L. Self-Balancing Conductance Bridge for Low Temperature Thermometry. Rev. Sci. Instrum. 1971, 319–321, 1–4. [Google Scholar] [CrossRef]
- Marioli, D.; Sardini, E.; Taroni, A. Measurement of small capacitance variations. IEEE Trans. Instrum. Meas. 1991, 40, 426–428. [Google Scholar] [CrossRef]
- Pallás-Areny, R.; Webster, J.G. Sensors and Signal Conditioning, 2nd ed.; IEEE: Piscataway, NJ, USA, 2001; ISBN 978-0-471-33232-9. [Google Scholar]
- Chavanne, X.; Frangi, J.; de Rosny, G. A New Device for In Situ Measurement of an Impedance Profile at 1–20 MHz. IEEE Trans. Instrum. Meas. 2010, 59, 1850–1859. [Google Scholar] [CrossRef]
- Wang, S.; Li, Z.; Zhang, J.; Wang, J.; Cheng, L.; Yuan, T.; Zhu, B. Experimental study on frequency-dependent properties of soil electrical parameters. Electr. Power Syst. Res. 2016, 139, 116–120. [Google Scholar] [CrossRef]
- Hilhorst, M.A. A Pore Water Conductivity Sensor. Soil Sci. Soc. Am. J. 2000, 64, 1922–1925. [Google Scholar] [CrossRef]
- Corwin, D.L.; Lesch, S.M. Protocols and Guidelines for Field-scale Measurement of Soil Salinity Distribution with ECa-Directed Soil Sampling. J. Environ. Eng. Geophys. 2013, 18, 1–25. [Google Scholar] [CrossRef]
- Rhoades, J.; Chanduvi, F.; Lesch, S. Soil Salinity Assessment: Methods and Interpretation of Electrical Conductivity Measurements; Food and Agriculture Organization of the United Nations: Rome, Italy, 1999; ISBN 92-5-104281-0. [Google Scholar]
- Revil, A. Effective conductivity and permittivity of unsaturated porous materials in the frequency range 1 mHz-1GHz. Water Resour. Res. 2013, 49, 306–327. [Google Scholar] [CrossRef] [PubMed]
- Segundo, A.K.R.; Pinto, E.S.; de Barros Monteiro, P.M.; Martins, J.H. Sensor for measuring electrical parameters of soil based on auto-balancing bridge circuit. In 2017 IEEE SENSORS; IEEE: Glasgow, UK, 2017; pp. 1–3. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rêgo Segundo, A.K.; Da Silva, M.J.; Freitas, G.M.; De Barros Monteiro, P.M.; Martins, J.H. Reply to Comments: A Novel Low-Cost Instrumentation System for Measuring the Water Content and Apparent Electrical Conductivity of Soils, Sensors, 15, 25546–25563. Sensors 2018, 18, 1742. https://doi.org/10.3390/s18061742
Rêgo Segundo AK, Da Silva MJ, Freitas GM, De Barros Monteiro PM, Martins JH. Reply to Comments: A Novel Low-Cost Instrumentation System for Measuring the Water Content and Apparent Electrical Conductivity of Soils, Sensors, 15, 25546–25563. Sensors. 2018; 18(6):1742. https://doi.org/10.3390/s18061742
Chicago/Turabian StyleRêgo Segundo, Alan Kardek, Marco Jose Da Silva, Gustavo Medeiros Freitas, Paulo Marcos De Barros Monteiro, and José Helvecio Martins. 2018. "Reply to Comments: A Novel Low-Cost Instrumentation System for Measuring the Water Content and Apparent Electrical Conductivity of Soils, Sensors, 15, 25546–25563" Sensors 18, no. 6: 1742. https://doi.org/10.3390/s18061742
APA StyleRêgo Segundo, A. K., Da Silva, M. J., Freitas, G. M., De Barros Monteiro, P. M., & Martins, J. H. (2018). Reply to Comments: A Novel Low-Cost Instrumentation System for Measuring the Water Content and Apparent Electrical Conductivity of Soils, Sensors, 15, 25546–25563. Sensors, 18(6), 1742. https://doi.org/10.3390/s18061742