Developing a Relative Humidity Correction for Low-Cost Sensors Measuring Ambient Particulate Matter
Abstract
:1. Introduction
2. Materials and Methods
2.1. Instrumentation
2.1.1. Alphasense OPC-N2
2.1.2. Palas Fidas 200 S
2.2. Study Area
2.3. Data Processing
2.3.1. Data Redistribution
2.3.2. Number Concentration to Mass Conversion
2.3.3. RH Correction Algorithm
2.3.4. RH Correction Statistical Validation
3. Results
3.1. Comparision of This Study with Previous Work
3.2. Statistical Evaluation of the RH Algorithm
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Laden, F.; Neas, L.M.; Dockery, D.W.; Schwartz, J. Association of fine particulate matter from different sources with daily mortality in six U.S. cities. Environ. Health Perspect. 2000, 108, 941–947. [Google Scholar] [CrossRef] [PubMed]
- Laden, F.; Schwartz, J.; Speizer, F.E.; Dockery, D.W. Reduction in Fine Particulate Air Pollution and Mortality. Am. J. Respir. Crit. Care Med. 2006, 173, 667–672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dockery, D.W.; Pope, C.A.; Xu, X.; Spengler, J.D.; Ware, J.H.; Fay, M.E.; Ferris, B.G.; Speizer, F.E. An Association between Air Pollution and Mortality in Six U.S. Cities. N. Engl. J. Med. 1993, 329, 1753–1759. [Google Scholar] [CrossRef] [PubMed]
- Pope, C.A.; Dockery, D.W. Health Effects of Fine Particulate Air Pollution: Lines that Connect. J. Air Waste Manag. Assoc. 2006, 56, 709–742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization (WHO). Air Quality Guidelines for Particulate Matter, Ozone, Nitrogen Dioxide and Sulfur Dioxide; WHO: Geneva, Switzerland, 2005. [Google Scholar]
- The European Parliament and of the Council of the European Union. Directive 2008/50/EC of the European Parliament and of the council of 21 May 2008 on ambient air quality and cleaner air for Europe. Off. J. Eur. Union 2008, 11, L1–L44. [Google Scholar]
- Mar, T.F.; Larson, T.V.; Stier, R.A.; Claiborn, C.; Koenig, J.Q. An Analysis of the Association between Respiratory Symptoms in Subjects with Asthma and Daily Air Pollution in Spokane, Washington. Inhal. Toxicol. 2004, 16, 809–815. [Google Scholar] [CrossRef] [PubMed]
- Lighty, J.S.; Veranth, J.M.; Sarofim, A.F. Combustion Aerosols: Factors Governing Their Size and Composition and Implications to Human Health. J. Air Waste Manag. Assoc. 2000, 50, 1565–1618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jerrett, M.; Burnett, R.T.; Ma, R.; Pope, C.A.; Krewski, D.; Newbold, K.B.; Thurston, G.; Shi, Y.; Finkelstein, N.; Calle, E.E.; et al. Spatial Analysis of Air Pollution and Mortality in Los Angeles. Epidemiology 2005, 16, 727–736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jerrett, M.; Finkelstein, M. Geographies of Risk in Studies Linking Chronic Air Pollution Exposure to Health Outcomes. J. Toxicol. Environ. Heal. Part A 2005, 68, 1207–1242. [Google Scholar] [CrossRef] [PubMed]
- Jovašević-Stojanović, M.; Bartonova, A.; Topalović, D.; Lazović, I.; Pokrić, B.; Ristovski, Z. On the use of small and cheaper sensors and devices for indicative citizen-based monitoring of respirable particulate matter. Environ. Pollut. 2015, 206, 696–704. [Google Scholar] [CrossRef] [PubMed]
- Gao, M.; Cao, J.; Seto, E. A distributed network of low-cost continuous reading sensors to measure spatiotemporal variations of PM2.5 in Xi’an, China. Environ. Pollut. 2015, 199, 56–65. [Google Scholar] [CrossRef] [PubMed]
- Sousan, S.; Koehler, K.; Hallett, L.; Peters, T.M. Evaluation of the Alphasense Optical Particle Counter (OPC-N2) and the Grimm Portable Aerosol Spectrometer (PAS-1.108). Aerosol Sci. Technol. 2016, 50, 1352–1365. [Google Scholar] [CrossRef] [PubMed]
- Steinle, S.; Reis, S.; Sabel, C.E.; Semple, S.; Twigg, M.M.; Braban, C.F.; Leeson, S.R.; Heal, M.R.; Harrison, D.; Lin, C.; et al. Personal exposure monitoring of PM2.5 in indoor and outdoor microenvironments. Sci. Total Environ. 2015, 508, 383–394. [Google Scholar] [CrossRef] [PubMed]
- Lundgren, D.A.; Cooper, D.W. Effect of Humidity on Light-Scattering Methods of Measuring Particle Concentration. J. Air Pollut. Control Assoc. 1969, 19, 243–247. [Google Scholar] [CrossRef]
- Crilley, L.R.; Shaw, M.; Pound, R.; Kramer, L.J.; Price, R.; Young, S.; Lewis, A.C.; Pope, F.D. Evaluation of a low-cost optical particle counter (Alphasense OPC-N2) for ambient air monitoring. Atmos. Meas. Tech. 2018, 11, 709–720. [Google Scholar] [CrossRef] [Green Version]
- Kohler, H. The Nucleus in and the Growth of Hygroscopic Droplets. Trans. Faraday Soc. 1936, 32, 1152–1161. [Google Scholar] [CrossRef]
- Alphasense Ltd. OPC-N2 Technical Specification. Available online: http://www.alphasense.com/WEB1213/wp-content/uploads/2017/05/OPC-N2.pdf (accessed on 18 July 2017).
- Fidas® 200 S Technical Specification. Available online: https://www.palas.de/en/product/fidas200s (accessed on 18 July 2017).
- European Committee for Standardization. Workplace Atmospheres-Size Fraction Definitions for Measurement of Airborne Particles; CEN: London, UK, 1993. [Google Scholar]
- Zieger, P.; Fierz-Schmidhauser, R.; Weingartner, E.; Baltensperger, U. Effects of relative humidity on aerosol light scattering: Results from different European sites. Atmos. Chem. Phys. 2013, 13, 10609–10631. [Google Scholar] [CrossRef]
- Petters, M.D.; Kreidenweis, S.M. A single parameter representation of hygroscopic growth and cloud condensation nucleus activity. Atmos. Chem. Phys. 2007, 7, 1961–1971. [Google Scholar] [CrossRef] [Green Version]
- Allan, J.D.; Alfarra, M.R.; Bower, K.N.; Williams, P.I.; Gallagher, M.W.; Jimenez, J.L.; Mcdonald, A.G.; Nemitz, E.; Canagaratna, M.R.; Jayne, J.T.; et al. Quantitative sampling using an Aerodyne aerosol mass spectrometer 2. Measurements of fine particulate chemical composition in two U.K. cities. J. Geophys. Res. 2003, 108, 107–118. [Google Scholar]
- John, W.; Wall, S.M.; Ondo, J.L.; Winklmayr, W. Modes in the size distributions of atmospheric inorganic aerosol. Atmos. Environ. Part A. Gen. Top. 1990, 24, 2349–2359. [Google Scholar] [CrossRef]
- Clegg, S.L.; Brimblecombe, P.; Wexler, A.S. Thermodynamic Model of the System H+−NH4+−SO42−−NO3−−H2O at Tropospheric Temperatures. J. Phys. Chem. A 1998, 102, 2137–2154. [Google Scholar] [CrossRef]
- Svenningsson, B.; Rissler, J.; Swietlicki, E.; Mircea, M.; Bilde, M.; Facchini, M.C.; Decesari, S.; Fuzzi, S.; Zhou, J.; Mønster, J.; et al. Hygroscopic growth and critical supersaturations for mixed aerosol particles of inorganic and organic compounds of atmospheric relevance. Atmos. Chem. Phys. 2006, 6, 1937–1952. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Yang, Z.; Desyaterik, Y.; Gassman, P.L.; Wang, H.; Laskin, A. Hygroscopic Behavior of Substrate-Deposited Particles Studied by Micro-FT-IR Spectroscopy and Complementary Methods of Particle Analysis. Anal. Chem. 2008, 80, 7179. [Google Scholar] [CrossRef]
- Richardson, C.B.; Snyder, T.D. A Study of Heterogeneous Nucleation in Aqueous Solutions. Langmuir 1994, 10, 2462–2465. [Google Scholar] [CrossRef]
- Northcross, A.L.; Edwards, R.J.; Johnson, M.A.; Wang, Z.M.; Zhu, K.; Allen, T.; Smith, K.R. A low-cost particle counter as a realtime fine-particle mass monitor. Environ. Sci. Process. Impacts 2013, 15, 433–439. [Google Scholar] [CrossRef] [PubMed]
Alphasense OPC-N2 | |
---|---|
Sampling time (s) | 1.4 |
Size range (µm) | 0.38–17.0 |
Number of size bins | 16 |
Flow rate (L/min) | 1.2 |
Data storage (GB) | 16 |
Weight (Kg) | 0.105 |
Dimensions H·W·D (mm) | 63.5 × 75 × 60 |
Temperature range (°C) | −10 to +50 |
Palas Fidas 200 S | |
---|---|
Sampling time (s) | 60 (average) |
Size range (µm) | 0.18–18.0 |
Number of size bins | 64 |
Flow rate (L/min) | 4.8 |
Data storage (GB) | 4 |
Weight (Kg) | 60 |
Dimensions H·W·D (mm) | 1810 × 600 × 400 |
Temperature range (°C) | −20 to +50 |
Reference | Crilley et al. | This Work | |
---|---|---|---|
PM1 (μg/m3) | 1.74 | 2.36 | 1.55 |
PM2.5 (μg/m3) | 3.64 | 4.25 | 3.03 |
OPC | PM1 | PM2.5 | ||
---|---|---|---|---|
Gradient | R2 | Gradient | R2 | |
1 | 1.00 | 1.00 | 1.00 | 1.00 |
2 | 1.03 | 0.99 | 0.99 | 0.99 |
PM1 | Reference | OPC (Uncorrected) | OPC (RH Corrected) | OPC (RH Combined) |
---|---|---|---|---|
Mean (µg/m3) | 3.02 | 13.45 | 3.46 | 3.20 |
SD (µg/m3) | 2.25 | 18.24 | 3.03 | 2.72 |
RMSE (µg/m3) | N.A. | 19.84 | 1.66 | 1.37 |
Gradient | 1.00 | 5.25 | 1.15 | 1.05 |
R2 | 1.00 | 0.42 | 0.73 | 0.75 |
Number of points | 43,000 | 43,000 | 43,000 | 43,000 |
PM2.5 | Reference | OPC (Uncorrected) | OPC (RH Corrected) | OPC (RH Combined) |
---|---|---|---|---|
Mean (µg/m3) | 5.12 | 26.10 | 6.47 | 5.44 |
SD (µg/m3) | 3.69 | 28.85 | 6.07 | 4.21 |
RMSE (µg/m3) | N.A. | 35.78 | 5.91 | 3.74 |
Gradient | 1.00 | 4.59 | 1.43 | 1.01 |
R2 | 1.00 | 0.34 | 0.75 | 0.78 |
Number of points | 43,000 | 43,000 | 43,000 | 43,000 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Antonio, A.; Popoola, O.A.M.; Ouyang, B.; Saffell, J.; Jones, R.L. Developing a Relative Humidity Correction for Low-Cost Sensors Measuring Ambient Particulate Matter. Sensors 2018, 18, 2790. https://doi.org/10.3390/s18092790
Di Antonio A, Popoola OAM, Ouyang B, Saffell J, Jones RL. Developing a Relative Humidity Correction for Low-Cost Sensors Measuring Ambient Particulate Matter. Sensors. 2018; 18(9):2790. https://doi.org/10.3390/s18092790
Chicago/Turabian StyleDi Antonio, Andrea, Olalekan A. M. Popoola, Bin Ouyang, John Saffell, and Roderic L. Jones. 2018. "Developing a Relative Humidity Correction for Low-Cost Sensors Measuring Ambient Particulate Matter" Sensors 18, no. 9: 2790. https://doi.org/10.3390/s18092790
APA StyleDi Antonio, A., Popoola, O. A. M., Ouyang, B., Saffell, J., & Jones, R. L. (2018). Developing a Relative Humidity Correction for Low-Cost Sensors Measuring Ambient Particulate Matter. Sensors, 18(9), 2790. https://doi.org/10.3390/s18092790