Antiproliferative Activity of Neem Leaf Extracts Obtained by a Sequential Pressurized Liquid Extraction
Abstract
:1. Introduction
2. Results and Discussion
2.1. Pressurized Liquid Extraction Process
2.2. Liquid Chromatography Analysis
2.3. Cytotoxicity Evaluation of Neem Leaves Extracts
3. Materials and Methods
3.1. Neem Samples
3.2. Pressurized Liquid Extraction Process
3.3. HPLC-PDA-ESI-MS Analysis
3.4. Cytotoxicity Assays
3.5. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Raphael, E. Phytochemical constituents of some leaves extract of Aloe vera and Azadirachta indica plant species. GARJEST 2012, 1, 14–17. [Google Scholar]
- Hashmat, I.; Azad, H.; Ahmed, A. Neem (Azadirachta indica A. Juss)—A nature’s drugstore: An overview. Int. Res. J. Biol. Sci. 2012, 1, 76–79. [Google Scholar]
- Al-Jadidi, H.S.K.; Hossain, M.A. Studies on total phenolics, total flavonoids and antimicrobial activity from the leaves crude extracts of neem traditionally used for the treatment of cough and nausea. BJBAS 2015, 4, 93–98. [Google Scholar] [Green Version]
- Hossain, M.A.; Al-Toubi, W.A.; Weli, A.M.; Al-Riyami, Q.A.; Al-Sabahi, J.N. Identification and characterization of chemical compounds in different crude extracts from leaves of Omani neem. JTUSCI 2013, 7, 181–188. [Google Scholar] [CrossRef]
- Patel, S.M.; Venkata, K.C.N.; Bhattacharyya, P.; Sethi, G.; Bishayee, A. Potential of neem (Azadirachta indica L.) for prevention and treatment of oncologic diseases. Sem. Cancer Biol. 2016, 40, 100–115. [Google Scholar] [CrossRef] [PubMed]
- Dixit, S.; Ali, H. Anticancer activity of medicinal plant extract-a review. J. Chem. Chem. Sci. 2010, 1, 79–85. [Google Scholar]
- Atawodi, S.E.; Atawodi, J.C. Azadirachta indica (neem): A plant of multiple biological and pharmacological activities. Phytoch. Rev. 2009, 8, 601–620. [Google Scholar] [CrossRef]
- Sharma, C.; Vas, A.J.; Goala, P.; Gheewala, T.M.; Rizvi, T.A.; Hussain, A. Ethanolic Neem (Azadirachta indica) leaf extract prevents growth of MCF-7 and HeLa cells and potentiates the therapeutic index of Cisplatin. J. Oncol. 2014, 2014, 321754. [Google Scholar] [CrossRef] [PubMed]
- Azmir, J.; Zaidul, I.; Rahman, M.; Sharif, K.; Mohamed, A.; Sahena, F.; Jahurul, M.; Ghafoor, K.; Norulaini, N.; Omar, A. Techniques for extraction of bioactive compounds from plant materials: A review. J. Food Eng. 2013, 117, 426–436. [Google Scholar] [CrossRef] [Green Version]
- Sasidharan, S.; Chen, Y.; Saravanan, D.; Sundram, K.M.; Yoga Latha, L. Extraction, isolation and characterization of bioactive compounds from plants’ extracts. Afr. J. Tradit. Comple. Altern. Med. 2011, 8, 1–10. [Google Scholar] [CrossRef]
- Garmus, T.T.; Paviani, L.C.; Queiroga, C.L.; Cabral, F.A. Extraction of phenolic compounds from pepper-rosmarin (Lippia sidoides Cham.) leaves by sequential extraction in fixed bed extractor using supercritical CO2, ethanol and water as solvents. J. Supercrit. Flui. 2015, 99, 68–75. [Google Scholar] [CrossRef]
- Monroy, Y.M.; Rodrigues, R.A.; Sartoratto, A.; Cabral, F.A. Extraction of bioactive compounds from cob and pericarp of purple corn (Zea mays L.) by sequential extraction in fixed bed extractor using supercritical CO2, ethanol, and water as solvents. J. Supercrit. Flui. 2016, 107, 250–259. [Google Scholar] [CrossRef]
- Garmus, T.T.; Paviani, L.C.; Queiroga, C.L. Magalhães, P.M.; Cabral, F.A. Extraction of phenolic compounds from pitanga (Eugenia uniflora L.) leaves by sequential extraction in fixed bed extractor using supercritical CO2, ethanol and water as solvents. J. Supercrit. Flui. 2014, 86, 4–14. [Google Scholar] [CrossRef]
- Ong, E.S.; Len, S.M. Pressurized hot water extraction of berberine, baicalein and glycyrrhizin in medicinal plants. Anal. Chim. Act. 2003, 482, 81–89. [Google Scholar] [CrossRef]
- Eng, A.T.W.; Heng, M.Y.; Ong, E.S. Evaluation of surfactant assisted pressurized liquid extraction for the determination of glycyrrhizin and ephedrine in medicinal plants. Anal. Chim. Acta 2007, 583, 289–295. [Google Scholar] [CrossRef] [PubMed]
- Smith, R.M. Extractions with superheated water. J. Chromatog. A 2002, 975, 31–46. [Google Scholar] [CrossRef]
- Mustafa, A.; Turner, C. Pressurized liquid extraction as a green approach in food and herbal plants extraction: A review. Anal. Chim. Acta 2011, 703, 8–18. [Google Scholar] [CrossRef] [PubMed]
- Subedi, B.; Aguilar, L.; Robinson, E.M.; Hageman, K.J.; Björklund, E.; Sheesley, R.J.; Usenko, S. Selective pressurized liquid extraction as a sample-preparation technique for persistent organic pollutants and contaminants of emerging concern. Trends Ana. Chem. 2015, 68, 119–132. [Google Scholar] [CrossRef]
- Shirsath, S.; Sonawane, S.; Gogate, P. Intensification of extraction of natural products using ultrasonic irradiations—A review of current status. Chem. Eng. Process 2012, 53, 10–23. [Google Scholar] [CrossRef]
- Mahapatra, S.; Young, C.Y.; Kohli, M.; Karnes, R.J.; Klee, E.W.; Holmes, M.W.; Tindall, D.J.; Donkena, K.V. Antiangiogenic effects and therapeutic targets of azadirachta indica leaf extract in endothelial cells. J. Evid. Based Complement. Alter. Med. 2012. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Yuan, H.; Zhang, L.; Zhang, Y. Recent advances on multidimensional liquid chromatography–mass spectrometry for proteomics: From qualitative to quantitative analysis—A review. Anal. Chim. Acta 2012, 731, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gika, H.G.; Theodoridis, G.A.; Plumb, R.S.; Wilson, I.D. Current practice of liquid chromatography–mass spectrometry in metabolomics and metabonomics. J. Pharm. Biomed. Anal. 2014, 87, 12–25. [Google Scholar] [CrossRef] [PubMed]
- Haldar, S.; Mulani, F.A.; Aarthy, T.; Dandekar, D.S.; Thulasiram, H.V. Expedient preparative isolation and tandem mass spectrometric characterization of C-seco triterpenoids from Neem oil. J. Chromatogr. A 2014, 1366, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Yadav, D.K.; Bharitkar, Y.P.; Chatterjee, K.; Ghosh, M.; Mondal, N.B.; Swarnakar, S. Importance of Neem Leaf: An insight into its role in combating diseases. NISCAIR 2016, 54, 708–718. [Google Scholar]
- Bhajoni, P.S.; Meshram, G.G.; Lahkar, M. Evaluation of the antiulcer activity of the leaves of Azadirachta indica: An experimental study. Int. Med. Int. 2016, 3, 10–16. [Google Scholar] [CrossRef]
- Wolfender, J.L.; Ndjoko, K.; Hostettmann, K. Liquid chromatography with ultraviolet absorbance-mass spectrometric detection and with nuclear magnetic resonance spectrometry: A powerful combination for the on-line structural investigation of plant metabolites. J. Chromatogr. A 2003, 1000, 437–455. [Google Scholar] [CrossRef]
- Jiang, B.; Kronenberg, F.; Balick, M.; Kennelly, E. Analysis of formononetin from black cohosh (Actaea racemosa). Phytomedicine 2006, 13, 477–486. [Google Scholar] [CrossRef] [PubMed]
- Ji, X.; Avula, B.; Khan, I.A. Quantitative and qualitative determination of six xanthones in Garcinia mangostana L. by LC-PDA and LC-ESI-MS. J. Pharm. Biomed. Anal. 2007, 43, 1270–1276. [Google Scholar] [CrossRef] [PubMed]
- Pavei, C.; Kaiser, S.; Verza, S.G.; Borre, G.L.; Ortega, G.G. HPLC-PDA method for quinovic acid glycosides assay in Cat’s claw (Uncaria tomentosa) associated with UPLC/Q-TOF-MS analysis. J. Pharm. Biomed. Anal. 2012, 62, 250–257. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Nie, M.; Shi, S.; You, Q.; Guo, J.; Liu, L. Integration of magnetic solid phase fishing and off-line two-dimensional high-performance liquid chromatography-diode array detector-mass spectrometry for screening and identification of human serum albumin binders from Radix Astragali. Food Chem. 2014, 146, 56–64. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Fang, Y.; Yang, L.; Qin, X.; Du, G.; Gao, X. A qualitative, and quantitative determination and pharmacokinetic study of four polyacetylenes from Radix Bupleuri by UPLC-PDA-MS. J. Pharm. Biomed. Anal. 2015, 111, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Schaaf, O.; Jarvis, A.P.; van der Esch, S.A.; Giagnacovo, G.; Oldham, N.J. Rapid and sensitive analysis of azadirachtin and related triterpenoids from neem (Azadirachta indica) by high-performance liquid chromatography-atmospheric pressure chemical ionization mass spectrometry. Chromatogr. A 2000, 886, 89–97. [Google Scholar] [CrossRef]
- Savic, S.; Vojinovic, K.; Milenkovic, S.; Smelcerovic, A.; Lamshoeft, M.; Petronijevic, Z. Enzymatic oxidation of rutin by horseradish peroxidase: Kinetic mechanism and identification of a dimeric product by LC-Orbitrap mass spectrometry. Food Chem. 2013, 141, 4194–4199. [Google Scholar] [CrossRef] [PubMed]
- Hao, F.; Kumar, S.; Yadav, N.; Chandra, D. Neem components as potential agents for cancer prevention and treatment. BBA Rev. Cancer 2014, 1846, 247–257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cowan, M.M. Plant products as antimicrobial agents. Clin. Microbiol. Rev. 1999, 12, 564–582. [Google Scholar] [PubMed]
- Sánchez-Camargo, A.; Mendiola, J.; Valdés, A.; Castro-Puyana, M.; García-Cañas, V.; Cifuentes, A.; Herrero, M.; Ibáñez, E. Supercritical antisolvent fractionation of rosemary extracts obtained by pressurized liquid extraction to enhance their antiproliferative activity. J. Supercrit. Fluid. 2016, 107, 581–589. [Google Scholar] [CrossRef] [Green Version]
- Deniz, I.; Ozen, M.O.; Yesil-Celiktas, O. Supercritical fluid extraction of phycocyanin and investigation of cytotoxicity on human lung cancer cells. J. Supercrit. Fluid. 2016, 108, 13–18. [Google Scholar] [CrossRef]
- Vicente, G.; Molina, S.; González-Vallinas, M.; García-Risco, M.R.; Fornari, T.; Reglero, G.; Molina, A.R. Supercritical rosemary extracts, their antioxidant activity and effect on hepatic tumor progression. J. Supercrit. Fluid. 2013, 79, 101–108. [Google Scholar] [CrossRef] [Green Version]
- Cvetanović, A.; Švarc-Gajić, J.; Zeković, Z.; Mašković, P.; Durović, S.; Zengin, G.; Delerue-Matos, C.; Lozano-Sánchez, J.; Jakišić, A. Chemical and biological insights on aronia stems extracts obtained by different extraction techniques: From wastes to functional products. J. Supercrit. Fluid. 2017, 128, 173–181. [Google Scholar] [CrossRef]
- Pereira, E.; Pimenta, A.I.; Calhelha, R.C.; Antonio, A.L.; Verde, S.C.; Barros, L.; Santos-Buelga, C.; Ferreira, I.C. Effects of gamma irradiation on cytotoxicity and phenolic compounds of Thymus vulgaris L. and Mentha x piperita L. LWT Food Sci. Technol. 2016, 71, 370–377. [Google Scholar] [CrossRef]
- Pereira, C.; Calhelha, R.C.; Barros, L.; Ferreira, I.C. Antioxidant properties, anti-hepatocellular carcinoma activity and hepatotoxicity of artichoke, milk thistle and borututu. Ind. Crop Prod. 2013, 49, 61–65. [Google Scholar] [CrossRef] [Green Version]
- Donno, D.; Mellano, M.G.; Cerutti, A.K.; Beccaro, G.L. Biomolecules and Natural Medicine Preparations: Analysis of New Sources of Bioactive Compounds from Ribes and Rubus spp. Buds. Pharmaceuticals 2016, 9. [Google Scholar] [CrossRef] [PubMed]
- Guimarães, R.; Barros, L.; Dueñas, M.; Calhelha, R.C.; Carvalho, A.M.; Santos-Buelga, C.; Queiroz, M.J.R.; Ferreira, I.C. Nutrients, phytochemicals and bioactivity of wild Roman chamomile: A comparison between the herb and its preparations. Food Chem. 2013, 136, 718–725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Neem Leaves (20 g) | One-Step Extraction (g) | Three-Step Extraction (g) |
---|---|---|
Hexane (SH) | ____ | 0.07 ± 0.01 b |
Ethyl acetate (SEA) | ____ | 0.06 ± 0.01 b |
Etanol 80% (SE) | ____ | 1.50 ± 0.12 a |
Etanol 80% (EE) | 1.58 ± 0.26 a | _____ |
Extract | Peak | tR (min) | Area | Compound | Observed Ions (m/z) |
---|---|---|---|---|---|
SH | 1 | 8.42 | 45724118 | Nimbandiol | 371, 401, 421, 425, 441, 444, 457 [M + H]+, 474 [M + H2O]+ |
SEA | 8.46 | 38701542 | |||
SE | 8.56 | 20010994 | |||
EE | 8.40 | 25006988 | |||
SH | 2 | 11.29 | 29873977 | 6-Deacetylnimbin | 389, 453, 467, 499 [MH]+, 516 [M + H2O]+ |
SEA | 11.42 | 22241890 | |||
SE | 11.32 | 2818278 | |||
EE | 11.46 | 14511268 | |||
SH | 3 | 12.77 | 81159631 | 2,3-Dihydronimbolide | 178, 315, 426, 433, 441, 450, 469 [MH]+, 486 [M + H2O]+ |
SEA | 12.75 | 37973099 | |||
SE | 12.76 | 28340365 | |||
EE | 12.84 | 36750310 | |||
SH | 4 | 13.91 | 13066767 | Rutin | 266, 480, 546, 558, 611 [M + H]+, 628 [M + H2O]+ |
SEA | 14.02 | 17659833 | |||
SE | 13.95 | 14990955 | |||
EE | 14.02 | 15674396 | |||
SH | 5 | 15.56 | 36960991 | Nimonol | 274, 293, 353, 421, 439, 453 [M + H]+, 470 [M + H2O]+ |
SEA | 15.59 | 31070403 | |||
SE | 15.67 | 15495619 | |||
EE | 15.52 | 20995715 | |||
SH | 6 | 16.39 | 70699349 | Nimbolide | 277, 435, 435, 467 [M + H]+,484 [M + H2O]+ |
SEA | 16.54 | 86571238 | |||
SE | 16.42 | 50917437 | |||
EE | 16.45 | 57586856 | |||
SH | 6 | 16.39 | 70699349 | 3-Deacetylsalannin | 555 [M + H]+, 572 [M + H2O]+ |
SEA | 16.54 | 86571238 | |||
SE | 16.42 | 50917437 | |||
EE | 16.45 | 57586856 | |||
SH | 7 | 18.22 | 32928497 | 6-Deacetylnimbinene | 363, 393, 409, 441 [M + H]+, 458 [M + H2O]+ |
SEA | 18.18 | 37398457 | |||
SE | 18.12 | 15714996 | |||
EE | 18.32 | 21712675 | |||
SH | 8 | 19.88 | 15628192 | Nimbanal | 221, 265, 339, 345, 405, 428, 451,453, 455, 471, 482,493, 511 [M + H]+, 528 [M + H2O]+ |
SEA | 19.93 | 23156736 | |||
SE | 19.87 | 6245251 | |||
EE | 19.74 | 11010022 | |||
SH | 9 | 24.96 | 14175318 | Salannin | 199, 230, 278, 319, 378, 481, 515, 571, 597 [M + H]+, 614 [M + H2O]+ |
SEA | 24.86 | 12952957 | |||
SE | 24.87 | 5526287 | |||
EE | 24.93 | 2517812 | |||
SH | 10 | 25.49 | 17132995 | Gedunin | 184, 259, 287, 344, 372, 405, 425, 451, 483 [M + H]+, 500 [M + H2O]+ |
SEA | 25.67 | 13462271 | |||
SE | 25.75 | 6429235 | |||
EE | 25.70 | 7359673 |
Lines | Extract (µg/mL) | Control (µg/mL) | |||
---|---|---|---|---|---|
SH | SEA | SE | EE | Ellipticine | |
MCF-7 | 188.8 ± 6.4 a | 82.3 ± 4.3 b | >250 c | >250 c | 0.9 ± 0.1 d |
NCI-H460 | 224.4 ± 14.4 a | 60.6 ± 4.3 b | >250 c | >250 c | 1.0 ± 0.1 d |
HeLa | 203.9 ± 13.6 a | 48.8 ± 4.3 b | >250 c | >250 c | 1.9 ± 0.1 d |
HepG2 | 115.5 ± 14.4 a | 52.3 ± 4.8 b | >250 c | >250 c | 1.1 ± 0.2 d |
PLP2 | >250 a | 201.3 ± 17.0 b | >250 a | >250 a | 3.2 ± 0.7 c |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, K.S.; Barbosa, A.M.; Freitas, V.; Muniz, A.V.C.S.; Mendonça, M.C.; Calhelha, R.C.; Ferreira, I.C.F.R.; Franceschi, E.; Padilha, F.F.; Oliveira, M.B.P.P.; et al. Antiproliferative Activity of Neem Leaf Extracts Obtained by a Sequential Pressurized Liquid Extraction. Pharmaceuticals 2018, 11, 76. https://doi.org/10.3390/ph11030076
Santos KS, Barbosa AM, Freitas V, Muniz AVCS, Mendonça MC, Calhelha RC, Ferreira ICFR, Franceschi E, Padilha FF, Oliveira MBPP, et al. Antiproliferative Activity of Neem Leaf Extracts Obtained by a Sequential Pressurized Liquid Extraction. Pharmaceuticals. 2018; 11(3):76. https://doi.org/10.3390/ph11030076
Chicago/Turabian StyleSantos, Klebson S., Andriele M. Barbosa, Victor Freitas, Ana Veruska C. S. Muniz, Marcelo C. Mendonça, Ricardo C. Calhelha, Isabel C. F. R. Ferreira, Elton Franceschi, Francine F. Padilha, Maria Beatriz P. P. Oliveira, and et al. 2018. "Antiproliferative Activity of Neem Leaf Extracts Obtained by a Sequential Pressurized Liquid Extraction" Pharmaceuticals 11, no. 3: 76. https://doi.org/10.3390/ph11030076
APA StyleSantos, K. S., Barbosa, A. M., Freitas, V., Muniz, A. V. C. S., Mendonça, M. C., Calhelha, R. C., Ferreira, I. C. F. R., Franceschi, E., Padilha, F. F., Oliveira, M. B. P. P., & Dariva, C. (2018). Antiproliferative Activity of Neem Leaf Extracts Obtained by a Sequential Pressurized Liquid Extraction. Pharmaceuticals, 11(3), 76. https://doi.org/10.3390/ph11030076