Cell-Penetrating Recombinant Peptides for Potential Use in Agricultural Pest Control Applications
Abstract
:1. Introduction
2. Diverse Applications of CPPs and CPP-Like Molecules
3. Interest in CPPs and CPP-Like Molecules for Bioinsecticides
4. Development of Recombinant Venom Peptide for Pest Control
4.1. Selection of Spider Venom Peptide for Potential Pest Control Application
4.2. Optimization of Lycotoxin-1 Sequence and Lethality of Mutants to Armyworms
4.3. Expression of Spider Toxins in Transgenic Plants
5. Conclusions
References
- Madani, F.; Lindberg, S.; Langel, Ü.; Futaki, S.; Gräslund, A. Mechanisms of cellular uptake of cell-penetrating peptides. J. Biophys. 2011. [Google Scholar] [CrossRef]
- Henriques, S.T.; Melo, M.N.; Castanho, M.A.R.B. Cell-penetrating peptides and antimicrobial peptides: How different are they? Biochem. J. 2006, 399, 1–7. [Google Scholar] [CrossRef]
- Azad, M.A.; Huttunen-Hennelly, H.E.K.; Friedman, C.R. Bioactivity and the first transmission electron microscopy immunogold studies of short de novo-designed antimicrobial peptides. Antimicrob. Agents Chemother. 2011, 55, 2137–2145. [Google Scholar] [CrossRef]
- Wimley, W.C. Describing the mechanism of antimicrobial peptide action with the interfacial activity model. ACS Chem. Biol. 2010, 5, 905–917. [Google Scholar] [CrossRef]
- Wimley, W.C.; Hristova, K. Antimicrobial peptides: Successes, challenges and unanswered questions. J. Membr. Biol. 2011, 239, 27–34. [Google Scholar] [CrossRef]
- Saez, N.J.; Senff, S.; Jensen, J.E.; Er, S.Y.; Herzig, V.; Rash, L.D.; King, G.F. Spider-venom peptides as therapeutics. Toxins 2010, 2, 2851–2871. [Google Scholar] [CrossRef]
- Adão, R.; Seixas, R.; Gomes, P.; Pessoa, J.C.; Bastos, M. Membrane structure and interactions of a short Lycotoxin I analogue. J. Pept. Sci. 2008, 14, 528–534. [Google Scholar]
- Yan, L.; Adams, M.E. Lycotoxins, antimicrobial peptides from venom of the wolf spider Lycosa carolinensis. J. Biol. Chem. 1998, 273, 2059–2066. [Google Scholar]
- Böröczky, K.; Park, K.C.; Minard, R.D.; Jones, T.H.; Baker, T.C.; Tumlinson, J.H. Differences in cuticular lipid composition in the antennae of Helicoverpa zea, Heliothis virescens, and Manduca sexta. J. Insect Physiol. 2008, 54, 1385–1391. [Google Scholar] [CrossRef]
- Nachman, R.J.; Teal, P.E.A.; Ben-Aziz, O.; Davidovitch, M.; Zubrzak, P.; Alstein, M. An amphiphilic, PK/PBAN analog is a selective pheromonotropic antagonist that penetrates the cuticle of a heliothine insect. Peptides 2009, 30, 616–621. [Google Scholar] [CrossRef]
- Hughes, S.R.; Dowd, P.F.; Hector, R.E.; Panavas, T.; Sterner, D.E.; Qureshi, N.; Bischoff, K.M.; Bang, S.B.; Mertens, J.A. Lycotoxin-1 insecticidal peptide optimized by amino acid scanning mutagenesis and expressed as a co-product in an ethanologenic Saccharomyces cerevisiae strain. J. Pept. Sci. 2008, 14, 1039–1050. [Google Scholar] [CrossRef]
- Heitz, F.; Morris, M.C.; Divita, G. Twenty years of cell-penetrating peptides: From molecular mechanisms to therapeutics. Brit. J. Pharmacol. 2009, 157, 195–206. [Google Scholar] [CrossRef]
- Drin, G.; Cottin, S.; Blanc, E.; Rees, A.R. Studies on the internalization mechanism of cationic cell-penetrating peptides. J. Biol. Chem. 2003, 278, 31192–31201. [Google Scholar]
- Cermenati, G.; Terracciano, I.; Castelli, I; Giordana, B.; Rao, R.; Pennacchio, F.; Casartelli, M. The CPP Tat enhances eGFP cell internalization and transepithelial transport by the larval midgut of Bombyx mori (Lepidoptera, Bombycidae). J. Insect Physiol. 2011, 57, 1689–1697. [Google Scholar] [CrossRef]
- Almeida, P.F.; Pokorny, A. Mechanisms of antimicrobial, cytolytic, and cell-penetrating peptides: From kinetics to thermodynamics. Biochemistry 2009, 48, 8083–8093. [Google Scholar] [CrossRef]
- Oerke, E.C.; Dehne, H.W. Safeguarding production-losses in major crops and the role of crop protection. Crop Prot. 2004, 23, 275–285. [Google Scholar] [CrossRef]
- Hopper, K.R. United States Department of Agriculture-Agricultural Research Service research on biological control of arthropods. Pest Manag. Sci. 2003, 59, 643–653. [Google Scholar] [CrossRef]
- Van Frankenhuyzen, K. Insecticidal activity of Bacillus thuringiensis crystal proteins. J. Invertebr. Pathol. 2009, 101, 1–16. [Google Scholar] [CrossRef]
- Sanahuja, G.; Banakar, R.; Twyman, R.M.; Capell, T.; Christou, P. Bacillus thuringiensis: A century of research, development and commercial applications. Plant Biotechnol. J. 2011, 9, 283–300. [Google Scholar] [CrossRef]
- Kennedy, G.G. Integration of insect-resistant genetically modified crops within IPM programs. Prog. Biol. Control 2008, 5, 1–26. [Google Scholar]
- Kumar, S.; Chandra, A.; Pandey, K.C. Bacillus thuringiensis (Bt) transgenic crop: An environment friendly insect-pest management strategy. J. Environ. Biol. 2008, 29, 641–653. [Google Scholar]
- Dowd, P.F.; Johnson, E.T.; Williams, W.P. Strategies for insect management targeted toward mycotoxin management. In Aflatoxin and Food Safety; Abbas, H., Ed.; Marcel Dekker: New York, NY, USA, 2005; pp. 517–541. [Google Scholar]
- Peairs, F.B. Managing corn pests with Bt corn. Available online: http://www.ext.colostate.edu/Pubs/crops/00708.html (accessed on 24 September 2012).
- Windley, M.J.; Herzig, V.; Dziemborowicz, S.A.; Hardy, M.C.; King, G.F.; Nicholson, G.M. Spider-venom peptides as bioinsecticides. Toxins 2012, 4, 191–227. [Google Scholar] [CrossRef]
- Wood, D.L.A.; Miljenović, T.; Cai, S.; Raven, R.J.; Kaas, Q.; Escoubas, P.; Herzig, V.; Wilson, D.; King, G.F. ArachnoServer: A database of protein toxins from spiders. BMC Genomics 2009. [Google Scholar] [CrossRef]
- King, G.F.; Escoubas, P.; Nicholson, G.M. Peptide toxins that selectively target insect Nav and Cav channels. Channels 2008, 2, 100–116. [Google Scholar] [CrossRef]
- Vetter, I.; Davis, J.L.; Rash, L.D.; Anangi, R.; Mobli, M.; Alewood, P.F.; Lewis, R.J.; King, G.F. Venomics: A new paradigm for natural products-based drug discovery. Amino Acids 2011, 40, 15–28. [Google Scholar] [CrossRef]
- Sainsbury, F.; Benchabane, M.; Goulet, M.C.; Michaud, D. Multimodal protein constructs for herbivore insect control. Toxins 2012, 4, 455–475. [Google Scholar] [CrossRef]
- Budnik, B.A.; Olsen, J.V.; Egorov, T.A.; Anisimova, V.E.; Galkina, T.G.; Musolyamov, A.K.; Grishin, E.V.; Zubarev, R.A. De novo sequencing of antimicrobial peptides isolated from the venom glands of the wolf spider Lycosa singoriensis. J. Mass Spectrom. 2004, 39, 193–201. [Google Scholar] [CrossRef]
- Stahl, D.J.; Kloos, D.U.; Hehl, R. A sugar beet chlorophyll a/b binding protein promoter void of G-box like elements confers strong and leaf specific reporter gene expression in transgenic sugar beet. BMC Biotechnol. 2004, 4, 31–42. [Google Scholar] [CrossRef]
- Hughes, S.R.; Dowd, P.F.; Hector, R.E.; Riedmuller, S.B.; Bartolett, S.; Mertens, J.A.; Qureshi, N.; Liu, S.; Bischoff, K.M. Cost-effective high-throughput fully automated construction of a multiplex library of mutagenized open reading frames for an insecticidal peptide using a plasmid-based functional proteomic robotic workcell with an improved vacuum system. J. Assoc. Lab. Autom. 2007, 12, 202–212. [Google Scholar] [CrossRef]
- Mayo, K.H.; Haseman, J.; Young, H.C.; Mayo, J.W. Structure-function relationships in novel peptide dodecamers with broad-spectrum bactericidal and endotoxin-neutralizing activities. Biochem. J. 2000, 349, 717–728. [Google Scholar]
- Khan, S.A.; Zafar, Y.; Briddon, R.W.; Malik, K.A.; Mukhtar, Z. Spider venom toxin protects plants from insect attack. Transgenic Res. 2006, 15, 349–357. [Google Scholar] [CrossRef]
- Shah, A.D.; Ahmed, M.; Mukhtar, Z.; Khan, S.A.; Habib, I.; Malik, Z.A.; Mansoor, S.; Saeed, N.A. Spider toxin (Hvt) gene cloned under phloem specific RSs1 and RolC promoters provides resistance against American bollworm (Heliothis armigera). Biotechnol. Lett. 2011, 33, 1457–1463. [Google Scholar] [CrossRef]
- Hernández-Campuzano, B.; Suárez, R.; Lina, L.; Hernández, V.; Villegas, E.; Corzo, G.; Iturriaga, G. Expression of a spider venom peptide in transgenic tobacco confers insect resistance. Toxicon 2009, 53, 122–128. [Google Scholar] [CrossRef]
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Hughes, S.R.; Dowd, P.F.; Johnson, E.T. Cell-Penetrating Recombinant Peptides for Potential Use in Agricultural Pest Control Applications. Pharmaceuticals 2012, 5, 1054-1063. https://doi.org/10.3390/ph5101054
Hughes SR, Dowd PF, Johnson ET. Cell-Penetrating Recombinant Peptides for Potential Use in Agricultural Pest Control Applications. Pharmaceuticals. 2012; 5(10):1054-1063. https://doi.org/10.3390/ph5101054
Chicago/Turabian StyleHughes, Stephen R., Patrick F. Dowd, and Eric T. Johnson. 2012. "Cell-Penetrating Recombinant Peptides for Potential Use in Agricultural Pest Control Applications" Pharmaceuticals 5, no. 10: 1054-1063. https://doi.org/10.3390/ph5101054
APA StyleHughes, S. R., Dowd, P. F., & Johnson, E. T. (2012). Cell-Penetrating Recombinant Peptides for Potential Use in Agricultural Pest Control Applications. Pharmaceuticals, 5(10), 1054-1063. https://doi.org/10.3390/ph5101054