Salvage External Beam Radiotherapy after Incomplete Transarterial Chemoembolization for Hepatocellular Carcinoma: A Meta-Analysis and Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Selection
2.2. Data Extraction
2.3. Statistics
2.4. Protocol Registration
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sotiropoulos, G.C.; Lang, H.; Frilling, A.; Molmenti, E.P.; Paul, A.; Nadalin, S.; Radtke, A.; Brokalaki, E.I.; Saner, F.; Hilgard, P.; et al. Resectability of hepatocellular carcinoma: Evaluation of 333 consecutive cases at a single hepatobiliary specialty center and systematic review of the literature. Hepato-Gastroenterol. 2006, 53, 322–329. [Google Scholar]
- Park, J.W.; Chen, M.; Colombo, M.; Roberts, L.R.; Schwartz, M.; Chen, P.J.; Kudo, M.; Johnson, P.; Wagner, S.; Orsini, L.S. Global patterns of hepatocellular carcinoma management from diagnosis to death: The BRIDGE Study. Liver Int. 2015, 35, 2155–2166. [Google Scholar] [CrossRef] [PubMed]
- Llovet, J.M.; Real, M.I.; Montaña, X.; Planas, R.; Coll, S.; Aponte, J.; Ayuso, C.; Sala, M.; Muchart, J.; Solà, R. Arterial embolisation or chemoembolisation versus symptomatic treatment in patients with unresectable hepatocellular carcinoma: A randomised controlled trial. Lancet 2002, 359, 1734–1739. [Google Scholar] [CrossRef]
- Lo, C.M.; Ngan, H.; Tso, W.K.; Liu, C.L.; Lam, C.M.; Poon, R.T.P.; Fan, S.T.; Wong, J. Randomized controlled trial of transarterial lipiodol chemoembolization for unresectable hepatocellular carcinoma. Hepatology 2002, 35, 1164–1171. [Google Scholar] [CrossRef]
- Yang, H.-J.; Lee, J.-H.; Lee, D.H.; Yu, S.J.; Kim, Y.J.; Yoon, J.-H.; Kim, H.-C.; Lee, J.M.; Chung, J.W.; Yi, N.-J. Small single-nodule hepatocellular carcinoma: Comparison of transarterial chemoembolization, radiofrequency ablation, and hepatic resection by using inverse probability weighting. Radiology 2014, 271, 909–918. [Google Scholar] [CrossRef]
- Bargellini, I.; Sacco, R.; Bozzi, E.; Bertini, M.; Ginanni, B.; Romano, A.; Cicorelli, A.; Tumino, E.; Federici, G.; Cioni, R. Transarterial chemoembolization in very early and early-stage hepatocellular carcinoma patients excluded from curative treatment: A prospective cohort study. Eur. J. Radiol. 2012, 81, 1173–1178. [Google Scholar] [CrossRef]
- Lencioni, R.; de Baere, T.; Soulen, M.C.; Rilling, W.S.; Geschwind, J.F.H. Lipiodol transarterial chemoembolization for hepatocellular carcinoma: A systematic review of efficacy and safety data. Hepatology 2016, 64, 106–116. [Google Scholar] [CrossRef]
- Sahara, S.; Kawai, N.; Sato, M.; Tanaka, T.; Ikoma, A.; Nakata, K.; Sanda, H.; Minamiguchi, H.; Nakai, M.; Shirai, S. Prospective evaluation of transcatheter arterial chemoembolization (TACE) with multiple anti-cancer drugs (epirubicin, cisplatin, mitomycin c, 5-fluorouracil) compared with TACE with epirubicin for treatment of hepatocellular carcinoma. Cardiovasc. Interv. Radiol. 2012, 35, 1363–1371. [Google Scholar] [CrossRef]
- Llovet, J.M.; Ricci, S.; Mazzaferro, V.; Hilgard, P.; Gane, E.; Blanc, J.-F.; De Oliveira, A.C.; Santoro, A.; Raoul, J.-L.; Forner, A. Sorafenib in advanced hepatocellular carcinoma. N. Engl. J. Med. 2008, 359, 378–390. [Google Scholar] [CrossRef]
- Cheng, A.-L.; Kang, Y.-K.; Chen, Z.; Tsao, C.-J.; Qin, S.; Kim, J.S.; Luo, R.; Feng, J.; Ye, S.; Yang, T.-S. Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: A phase III randomised, double-blind, placebo-controlled trial. Lancet Oncol. 2009, 10, 25–34. [Google Scholar] [CrossRef]
- Rim, C.H.; Yim, H.J.; Park, S.; Seong, J. Recent clinical applications of external beam radiotherapy for hepatocellular carcinoma according to guidelines, major trials and meta-analyses. J. Med. Imaging Radiother. Oncol. 2019, 63, 812–821. [Google Scholar] [CrossRef] [PubMed]
- Rim, C.H.; Yoon, W.S. Leaflet manual of external beam radiation therapy for hepatocellular carcinoma: A review of the indications, evidences, and clinical trials. Onco Targets 2018, 11, 2865–2874. [Google Scholar] [CrossRef] [PubMed]
- Rim, C.H.; Kim, C.Y.; Yang, D.S.; Yoon, W.S. External beam radiation therapy to hepatocellular carcinoma involving inferior vena cava and/or right atrium: A meta-analysis and systemic review. Radiother. Oncol. 2018, 129, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Rim, C.H.; Kim, C.Y.; Yang, D.S.; Yoon, W.S. Comparison of radiation therapy modalities for hepatocellular carcinoma with portal vein thrombosis: A meta-analysis and systematic review. Radiother. Oncol. 2018, 129, 112–122. [Google Scholar] [CrossRef] [PubMed]
- Wahl, D.R.; Stenmark, M.H.; Tao, Y.; Pollom, E.L.; Caoili, E.M.; Lawrence, T.S.; Schipper, M.J.; Feng, M. Outcomes after stereotactic body radiotherapy or radiofrequency ablation for hepatocellular carcinoma. J. Clin. Oncol. 2016, 34, 452. [Google Scholar] [CrossRef] [PubMed]
- Kim, N.; Cheng, J.; Jung, I.; Der Liang, J.; Shih, Y.L.; Huang, W.-Y.; Kimura, T.; Lee, V.H.; Zeng, Z.C.; Zhenggan, R. Stereotactic body radiation therapy vs. radiofrequency ablation in Asian patients with hepatocellular carcinoma. J. Hepatol. 2020, 73, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Rim, C.H.; Kim, H.J.; Seong, J. Clinical feasibility and efficacy of stereotactic body radiotherapy for hepatocellular carcinoma: A systematic review and meta-analysis of observational studies. Radiother. Oncol. 2019, 131, 135–144. [Google Scholar] [CrossRef]
- Lefebvre, C.; Glanville, J.; Briscoe, S.; Littlewood, A.; Marshall, C.; Metzendorf, M.-I.; Noel-Storr, A.; Rader, T.; Shokraneh, F.; Thomas, J.; et al. Chapter 4: Searching for and selecting studies. In Cochrane Handbook for Systematic Reviews of Interventions Version 6.2 (Updated February 2021); Higgins, J.P.T., Thomas, J., Chandler, J., Cumpston, M., Li, T., Page, M.J., Welch, V.A., Eds.; Cochrane: London, UK, 2021; Available online: www.training.cochrane.org/handbook (accessed on 1 April 2021).
- Cheng, J.C.-H.; Wu, J.-K.; Huang, C.-M.; Huang, D.Y.; Cheng, S.H.; Lin, Y.-M.; Jian, J.J.; Yang, P.-S.; Chuang, V.P.; Huang, A.T. Radiation-induced liver disease after radiotherapy for hepatocellular carcinoma: Clinical manifestation and dosimetric description. Radiother. Oncol. 2002, 63, 41–45. [Google Scholar] [CrossRef]
- Peterson, J.; Welch, V.; Losos, M.; Tugwell, P. The Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Nonrandomised Studies in Meta-Analyses; Ottawa Hospital Research Institute: Ottawa, ON, Canada, 2011. [Google Scholar]
- Higgins, J.P.; Thomas, J.; Chandler, J.; Cumpston, M.; Li, T.; Page, M.J.; Welch, V.A. Ch 24.6: Synthesis of Results from Non-randomized Studies. In Cochrane Handbook for Systematic Reviews of Interventions; John Wiley & Sons: Hoboken, NJ, USA, 2019. [Google Scholar]
- Higgins, J.P.; Thomas, J.; Chandler, J.; Cumpston, M.; Li, T.; Page, M.J.; Welch, V.A. Ch 24.5: Assessing risk of bias in non-randomized studies. In Cochrane Handbook for Systematic Reviews of Interventions; John Wiley & Sons: Hoboken, NJ, USA, 2019. [Google Scholar]
- Higgins, J.P.; Thomas, J.; Chandler, J.; Cumpston, M.; Li, T.; Page, M.J.; Welch, V.A. Ch 9.5.4 Incorporating heterogeneity into random-effects models. In Cochrane Handbook for Systematic Reviews of Interventions; John Wiley & Sons: Hoboken, NJ, USA, 2019. [Google Scholar]
- Egger, M.; Smith, G.D.; Schneider, M.; Minder, C. Bias in meta-analysis detected by a simple, graphical test. Br. Med. J. 1997, 315, 629–634. [Google Scholar] [CrossRef]
- Duval, S.; Tweedie, R. Trim and fill: A simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics 2000, 56, 455–463. [Google Scholar] [CrossRef]
- Chun, Y.H.; Kim, S.U.; Park, J.Y.; Han, K.-H.; Chon, C.Y.; Kim, B.K.; Choi, G.H.; Kim, K.S.; Choi, J.S.; Ahn, S.H. Prognostic value of the 7th edition of the AJCC staging system as a clinical staging system in patients with hepatocellular carcinoma. Eur. J. Cancer 2011, 47, 2568–2575. [Google Scholar] [CrossRef]
- Dai, C.-Y.; Lin, C.-Y.; Tsai, P.-C.; Lin, P.-Y.; Yeh, M.-L.; Huang, C.-F.; Chang, W.-T.; Huang, J.-F.; Yu, M.-L.; Chen, Y.-L. Impact of tumor size on the prognosis of hepatocellular carcinoma in patients who underwent liver resection. J. Chin. Med. Assoc. 2018, 81, 155–163. [Google Scholar] [CrossRef]
- Pawlik, T.M.; Delman, K.A.; Vauthey, J.N.; Nagorney, D.M.; Ng, I.O.L.; Ikai, I.; Yamaoka, Y.; Belghiti, J.; Lauwers, G.Y.; Poon, R.T. Tumor size predicts vascular invasion and histologic grade: Implications for selection of surgical treatment for hepatocellular carcinoma. Liver Transplant. 2005, 11, 1086–1092. [Google Scholar] [CrossRef]
- Nakazawa, T.; Hidaka, H.; Takada, J.; Okuwaki, Y.; Tanaka, Y.; Watanabe, M.; Shibuya, A.; Minamino, T.; Kokubu, S.; Koizumi, W. Early increase in α-fetoprotein for predicting unfavorable clinical outcomes in patients with advanced hepatocellular carcinoma treated with sorafenib. Eur. J. Gastroenterol. Hepatol. 2013, 25, 683–689. [Google Scholar] [CrossRef]
- Tangkijvanich, P.; Anukulkarnkusol, N.; Suwangool, P.; Lertmaharit, S.; Hanvivatvong, O.; Kullavanijaya, P.; Poovorawan, Y. Clinical Characteristics and Prognosis of Hepatocellular Carcinoma: Analysis Based on Serum Alpha-fetoprotein Levels. J. Clin. Gastroenterol. 2000, 31, 302–308. [Google Scholar] [CrossRef]
- Zhu, A.X.; Finn, R.S.; Kang, Y.-K.; Yen, C.-J.; Galle, P.R.; Llovet, J.M.; Assenat, E.; Brandi, G.; Motomura, K.; Ohno, I.; et al. Serum alpha-fetoprotein and clinical outcomes in patients with advanced hepatocellular carcinoma treated with ramucirumab. Br. J. Cancer 2021, 124, 1388–1397. [Google Scholar] [CrossRef]
- Byun, H.K.; Kim, H.J.; Im, Y.R.; Han, K.-H.; Seong, J. Dose escalation in radiotherapy for incomplete transarterial chemoembolization of hepatocellular carcinoma. Strahlenther. Und Onkol. 2020, 196, 132–141. [Google Scholar] [CrossRef]
- Chiang, C.; Chan, M.K.; Yeung, C.S.; Ho, C.H.; Lee, F.A.; Lee, V.W.; Wong, F.C.; Blanck, O. Combined stereotactic body radiotherapy and trans-arterial chemoembolization as initial treatment in BCLC stage B–C hepatocellular carcinoma. Strahlenther. Und Onkol. 2019, 195, 254–264. [Google Scholar] [CrossRef] [PubMed]
- Choi, C.; Koom, W.S.; Kim, T.H.; Yoon, S.M.; Kim, J.H.; Lee, H.-S.; Nam, T.-K.; Seong, J. A prospective phase 2 multicenter study for the efficacy of radiation therapy following incomplete transarterial chemoembolization in unresectable hepatocellular carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 2014, 90, 1051–1060. [Google Scholar] [CrossRef] [PubMed]
- Jacob, R.; Turley, F.; Redden, D.T.; Saddekni, S.; Aal, A.K.; Keene, K.; Yang, E.; Zarzour, J.; Bolus, D.; Smith, J.K. Adjuvant stereotactic body radiotherapy following transarterial chemoembolization in patients with non-resectable hepatocellular carcinoma tumours of ≥3 cm. Hpb 2015, 17, 140–149. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.K.; Kim, M.S.; Cho, C.K.; Yang, K.M.; Yoo, H.J.; Kim, J.H.; Bae, S.H.; Jung, D.H.; Kim, K.B.; Lee, D.H. Stereotactic body radiation therapy for inoperable hepatocellular carcinoma as a local salvage treatment after incomplete transarterial chemoembolization. Cancer 2012, 118, 5424–5431. [Google Scholar] [CrossRef]
- Kibe, Y.; Takeda, A.; Tsurugai, Y.; Eriguchi, T. Local control by salvage stereotactic body radiotherapy for recurrent/residual hepatocellular carcinoma after other local therapies. Acta Oncol. 2020, 59, 888–894. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.H.; Kim, D.Y.; Park, J.-W.; Kim, Y.I.; Kim, S.H.; Park, H.S.; Lee, W.J.; Park, S.J.; Hong, E.K.; Kim, C.-M. Three-dimensional conformal radiotherapy of unresectable hepatocellular carcinoma patients for whom transcatheter arterial chemoembolization was ineffective or unsuitable. Am. J. Clin. Oncol. 2006, 29, 568–575. [Google Scholar] [CrossRef] [PubMed]
- Oh, D.; Lim, D.H.; Park, H.C.; Paik, S.W.; Koh, K.C.; Lee, J.H.; Choi, M.S.; Yoo, B.C.; Lim, H.K.; Lee, W.J. Early three-dimensional conformal radiotherapy for patients with unresectable hepatocellular carcinoma after incomplete transcatheter arterial chemoembolization: A prospective evaluation of efficacy and toxicity. Am. J. Clin. Oncol. 2010, 33, 370–375. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Yoon, W.S.; Jang, M.H.; Rim, C.H. Clinical efficacy of external beam radiotherapy complementing incomplete transarterial chemoembolization for hepatocellular carcinoma. Int. J. Radiat. Biol. 2020, 96, 1541–1549. [Google Scholar] [CrossRef] [PubMed]
- Shim, S.J.; Seong, J.; Han, K.H.; Chon, C.Y.; Suh, C.O.; Lee, J.T. Local radiotherapy as a complement to incomplete transcatheter arterial chemoembolization in locally advanced hepatocellular carcinoma. Liver Int. 2005, 25, 1189–1196. [Google Scholar] [CrossRef] [PubMed]
- Yao, E.; Chen, J.; Zhao, X.; Zheng, Y.; Wu, X.; Han, F.; Huang, H.; Liang, P.; Liu, J.; Wu, F. Efficacy of stereotactic body radiotherapy for recurrent or residual hepatocellular carcinoma after transcatheter arterial chemoembolization. BioMed Res. Int. 2018, 2018. [Google Scholar] [CrossRef] [PubMed]
- Zhong, N.B.; Lv, G.M.; Chen, Z.H. Stereotactic body radiotherapy combined with transarterial chemoembolization for huge (≥ 10 cm) hepatocellular carcinomas: A clinical study. Mol. Clin. Oncol. 2014, 2, 839–844. [Google Scholar] [CrossRef]
- Hall, E.J.; Giaccia, A.J. Radiobiology for the Radiologist; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2006; Volume 6. [Google Scholar]
- Miyayama, S.; Matsui, O.; Taki, K.; Minami, T.; Ryu, Y.; Ito, C.; Nakamura, K.; Inoue, D.; Takamatsu, S. Arterial blood supply to the posterior aspect of segment IV of the liver from the caudate branch: Demonstration at CT after iodized oil injection. Radiology 2005, 237, 1110–1114. [Google Scholar] [CrossRef]
- Miyayama, S.; Yamashiro, M.; Hattori, Y.; Orito, N.; Matsui, K.; Tsuji, K.; Yoshida, M.; Matsui, O. Angiographic evaluation of feeding arteries of hepatocellular carcinoma in the caudate lobe of the liver. Cardiovasc. Interv. Radiol. 2011, 34, 1244–1253. [Google Scholar] [CrossRef]
- Cerrito, L.; Annicchiarico, B.E.; Iezzi, R.; Gasbarrini, A.; Pompili, M.; Ponziani, F.R. Treatment of hepatocellular carcinoma in patients with portal vein tumor thrombosis: Beyond the known frontiers. World J. Gastroenterol. 2019, 25, 4360. [Google Scholar] [CrossRef]
- Lee, J.S.; Kim, B.K.; Kim, S.U.; Park, J.Y.; Ahn, S.H.; Seong, J.S.; Han, K.-H.; Kim, D.Y. A survey on transarterial chemoembolization refractoriness and a real-world treatment pattern for hepatocellular carcinoma in Korea. Clin. Mol. Hepatol. 2020, 26, 24. [Google Scholar] [CrossRef]
- EASL. EASL clinical practice guidelines: Management of hepatocellular carcinoma. J. Hepatol. 2018, 69, 182–236. [Google Scholar] [CrossRef]
- Ogasawara, S.; Chiba, T.; Ooka, Y.; Kanogawa, N.; Motoyama, T.; Suzuki, E.; Tawada, A.; Kanai, F.; Yoshikawa, M.; Yokosuka, O. Efficacy of sorafenib in intermediate-stage hepatocellular carcinoma patients refractory to transarterial chemoembolization. Oncology 2014, 87, 330–341. [Google Scholar] [CrossRef]
- Llovet, J.M.; Brú, C.; Bruix, J. Prognosis of hepatocellular carcinoma: The BCLC staging classification. In Proceedings of the Seminars in Liver Disease; Thieme Medical Publishers, Inc.: New York, NY, USA, 1999; pp. 329–338. [Google Scholar]
- Wu, J.; Li, A.; Yang, J.; Lu, Y.; Li, J. Efficacy and safety of TACE in combination with sorafenib for the treatment of TACE-refractory advanced hepatocellular carcinoma in Chinese patients: A retrospective study. Onco Targets 2017, 10, 2761–2768. [Google Scholar] [CrossRef]
- Yoon, S.M.; Ryoo, B.-Y.; Lee, S.J.; Kim, J.H.; Shin, J.H.; An, J.H.; Lee, H.C.; Lim, Y.-S. Efficacy and safety of transarterial chemoembolization plus external beam radiotherapy vs sorafenib in hepatocellular carcinoma with macroscopic vascular invasion: A randomized clinical trial. JAMA Oncol. 2018, 4, 661–669. [Google Scholar] [CrossRef] [PubMed]
- Ungefroren, H.; Sebens, S.; Seidl, D.; Lehnert, H.; Hass, R. Interaction of tumor cells with the microenvironment. Cell Commun. Signal. 2011, 9, 18. [Google Scholar] [CrossRef] [PubMed]
- Finn, R.S.; Qin, S.; Ikeda, M.; Galle, P.R.; Ducreux, M.; Kim, T.-Y.; Kudo, M.; Breder, V.; Merle, P.; Kaseb, A.O. Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma. N. Engl. J. Med. 2020, 382, 1894–1905. [Google Scholar] [CrossRef] [PubMed]
- Abou-Alfa, G.K.; Meyer, T.; Cheng, A.-L.; El-Khoueiry, A.B.; Rimassa, L.; Ryoo, B.-Y.; Cicin, I.; Merle, P.; Chen, Y.; Park, J.-W. Cabozantinib in patients with advanced and progressing hepatocellular carcinoma. N. Engl. J. Med. 2018, 379, 54–63. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, M.; Morizane, C.; Ueno, M.; Okusaka, T.; Ishii, H.; Furuse, J. Chemotherapy for hepatocellular carcinoma: Current status and future perspectives. Jpn. J. Clin. Oncol. 2018, 48, 103–114. [Google Scholar] [CrossRef]
- National Cancer Comprehensive Network. NCCN Guidelines Version 4. 2021: Hepatocellular Carcinoma. 2021. Available online: http://www.nccn.org/professionals/physicians_gls/pdf/hepatobiliary.pdf (accessed on 1 April 2021).
- Frieden, T.R. Evidence for health decision making—Beyond randomized, controlled trials. N. Engl. J. Med. 2017, 377, 465–475. [Google Scholar] [CrossRef] [PubMed]
- Shin, I.-S.; Rim, C.H. Updating Perspectives on Meta-Analyses in the Field of Radiation Oncology. Medicina 2021, 57, 117. [Google Scholar] [CrossRef] [PubMed]
First Author | Affiliation | Country | Inclusion Period | Study Design | n | Etiology | Age | Female (%) | Performance Status | AFP of ≥400 ng/mL (%) | PVT | CPC A | Tumor Size |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Oh [33] | Samsung hospital | Korea | 2006–2007 | P | 40 | M59.5 (36–92) | 22.5% | 0–1 (97.5%) | 38.5% | 25.0% | 90.0% | ≥5 cm (55%) | |
Kim [32] | National Cancer Center | Korea | 2001–2005 | R | 70 | HBV 82.9% | M57 (30–78) | 10.0% | 0–2 (100%) | 62.7% | 58.6% | 88.1% | M7.5 cm (2–17) |
Choi [28] | Multicenter (prospective) | Korea | 2008–2011 | P | 31 | HBV 77.4% | M63.2 (36–74) | 19.4% | 0 (77.4%), 1 (22.6%) | 38.7% | * 29% | 96.8% | M6.6 cm (5.1–17) |
Kang [30] | Korea Institute of Radiological and Medical Science | Korea | 2008–2011 | R | 47 | HBV 68% | 21.3% | 0–1 (100%) | 10.6% | 87.2% | M2.9 cm (1.3–8) | ||
Shim [35] | Yonsei Cancer Center | Korea | 1992–2002 | R | 38 | M53 (38–79) | 15.8% | 0–1 (86.8%) | 47.4% | * 31.6% | 86.8% | M10.2 (5–17) | |
Zhong [37] | Fuzhou General Hospital | China | 2006–2012 | R | 72 | HBV 75.7% | ~M52.5 | 20.8% | 0–1 (75%), 2 (25%) | 81.9% | NA | NA | ≥10 cm only |
Chiang [27] | Tuen Mun Hospital | Hong Kong | 2008–2015 | R | 72 | HBV 84.7% | M60 (28–87) | 15.0% | 0 (71%), | M893.5 (ng/mL) | * 25% | 100% | M 11.2 cm (5–23.6) |
1 (6%), | |||||||||||||
2 (22%) | |||||||||||||
Jacob [29] | Univ. of Birmingham | United | 2008–2013 | R | 37 | HCV 51.4%; Alcohol 18.9% | Mean 64.4 | 27.2% | Mean 32.7 | NA | Mean score 6.3 ± 1.2 | Mean 6.1 cm ± 2.4 | |
States | |||||||||||||
‡ Kibe [31] | Ofuna Chuo Hospital | Japan | 2005–2017 | R | 144 | HCV 73% | M73 (40–89) | 33.0% | BCLC C 28% | 90.3% | M2.3 cm (1–6.2) | ||
† Yao [36] | Guangxi Traditional Chinese Medicine University | China | 2008–2015 | R | 33 | HBV 100% | M55 (42–75) | 24.2% | All KPS ≥70 | 15.2% | 0% | 100% | mean PTV 128 cm3 |
Byun (high dose) [26] | Yonsei Cancer Center | Korea | 2001–2016 | R | 62 | HBV 69.4%; HCV 16.1% | M68 (37–83) | 24.2% | 0–2 (100%) | M21.1 (ng/mL) | 21.0% | 87.1% | M3 cm (1–20) |
Byun (low dose) [26] | 62 | HBV 61.3%; HCV 17.7% | M68 (41–84) | 25.8% | M18.0 (ng/mL) | 19.4% | 82.3% | M4 cm (1–15) | |||||
Park [34] | Korea University Ansan Hospital | Korea | 2010–2019 | R | 40 | HBV 62.5% | M60 (43–77) | 17.5% | 0 (33%); 1 (65%) | 22.5% | 30% (main PVT 25%) | 77.5% | M3.4 cm (0.8–20) |
NBNC 22.5% |
First Author | RTx (Dose per Fraction) | Median † EQD210 Gy | Sorafenib during Follow-Up | Follow-Up (Months) | OS | CR/PR | Pattern of Failure | m/c EHM Site | Grade ≥3 Toxicity | Grade 5 Toxicity | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
In-Field | Out-Field, Intrahepatic | Extrahepatic | GI | RILD | Hepatic | Hemato-Logic | |||||||||
Oh | M54 Gy, 3DCRT (3 Gy) | 58.5 | Pre-sorafenib era | M17.8 | M19 months, 72.0% and 45.6% for 1- and 2-year OS rates, respectively | 20.9%; 41.9% | 22.5% | 40.0% | 32.5% | 0.0% | 12.5% | 0.0% | 0.0% | None | |
Kim | M54 Gy, 3DCRT (2–3 Gy) | 54 | Pre-sorafenib era | M8.8 | M10.8 months; 43.1% and 17.6% for 1- and 2-year OS rates, respectively | 5.7%; 48.6% | 2.8% | 45.7% | 35.7% | Lung | 12.9% | NA | 5.7% | NA | None |
Choi | M54 Gy, 3DCRT (1.8–2 Gy) | 54 | NA | M30 | 61.3% and 61.3% for 1- and 2-year OS rates, respectively | 12.9%; 64.5% | 32.3% | 35.5% | 41.9% | Lung | 0.0% | 0.0% | 22.6% | 12.9% | None |
Kang | Up to 60 Gy/3 F, SBRT | Up to 150 | NA | M17 | 86.4% and 68.7% for 1- and 2-year OS rates, respectively | 38.3%; 38.3% | 5.4% (2-year) | 46.8% | 21.3% | Lung | 10.6% | NA | 8.6% | 10.6% | None |
Shim | Mean 54 Gy, 3DCRT (1.8 Gy) | 53.1 | Pre-sorafenib era | 65.8% and 36.8% for 1- and 2-year OS rates, respectively | 0%; 65.8% | 2.6% | 21.1% | 0% | NA | 13.2% | 0.0% | None | |||
Zhong | 35.6 Gy; (2.6–3 Gy) HFRT | 37.8 | NA | M18 | M12.2 months; 38% and 27.8% for 1- and 2-year OS rates, respectively | 8.3%; 70.8% | 0.0% | 0.0% | 0.0% | 0.0% | None | ||||
Chiang | 30–39 Gy/6 F or 24–40 Gy/6–10 F SBRT | 37.3 | 17.5% | M16.8 | M19.9 months | 0%; 68% | 16.1% (2-year) | 61.1% | 27.7% | 2.8% | 0.0% | 4.2% | NA | 1 case | |
Jacob | 45 Gy/3 F, SBRT | 93.8 | 41.9% | M33 months; 81.1% and 67.6% for 1- and 2-year OS rates, respectively | 30.3%; 57.6% | 10.8% | 2.7% | 0.0% | 0.0% | 0.0% | None | ||||
Kibe | 35 or 40 Gy/5F, SBRT | 60 | NA | M34.8 | 95.1, 79.6, 66.1% (1-, 2-, and 3-year) | 11.1% | 0.0% | 0.0% | 0.0% | NA | None | ||||
Yao | 39–45 Gy/3-5F, SBRT | NA | M19 months, 75.8% and 45.5% (1- and 2-year OS rates, respectively | 18.9%; 56.9% | 3.0% | NA | 6.1% | 3.0% | None | ||||||
Byun (high dose) | M60 Gy (2–6 Gy) ‡ conventional, SBRT | 65.1 | NA | M14.2 | 75.8% (1-year) | 11.3% | 40.3% | 17.7% | Lung | 3.2% | 5.3% | NA | NA | None | |
Byun (low dose) | M50 Gy (1.8–5 Gy) ‡ conventional, SBRT | 49.6 | 62.9% (1-year) | 30.6% | 53.2% | 11.3% | Lung | * (n = 261) 6.1% | 13.8% | NA | NA | None | |||
Park | M40 ‡ conventional, SBRT | 47.8 (conventional) 57 (SBRT) | 32.5% | M14.4 | 82.2% and 55.8% for 1- and 2-year OS rates, respectively | 37%; 41.3% | 10.9% (2-year) | 60.0% | 30.0% | Lung | 0.0% | 0.0% | 5.0% | 5.0% | None |
Subgroups | Cohorts (n) | Patients (n) | Events % (95% CI) | p, Subgroup Difference | Egger’s Test, p | Trimmed Value a | |
---|---|---|---|---|---|---|---|
Overall survival | |||||||
1-year OS | |||||||
All studies | 12 | 485 | 72.3 (60.2–81.9) | 0.002, no change | |||
Tumor size of ≥5 cm | 7 | 321 | 62.4 (48.6–74.5) | 0.036 | |||
Tumor size of <5 cm | 5 | 355 | 82.8 (68.0–91.7) | ||||
b High AFP level (≥400 ng/mL) | 2 | 142 | 40.5 (32.8–48.8) | <0.001 | |||
Low AFP level (<400 ng/mL) | 8 | 343 | 71.7 (65.8–76.9) | ||||
2-year OS | |||||||
All studies | 10 | 552 | 50.5 (35.6–65.4) | 0.252 | |||
Tumor size of ≥5 cm | 7 | 321 | 41.8 (28.7–56.2) | 0.011 | |||
Tumor size of <5 cm | 3 | 231 | 69.6 (53.7–81.8) | ||||
b High AFP level (≥400 ng/mL) | 6 | 219 | 22.7 (14.2–34.3) | <0.001 | |||
Low AFP level (<400 ng/mL) | 2 | 142 | 51.9 (42.7–61.1) | ||||
Response rate | |||||||
Complete response | |||||||
All studies | 10 | 480 | 15.9 (9.2–36.3) | 0.004, 19.4 (11.2–31.6) | |||
Tumor size of ≥5 cm | 8 | 393 | 11.7 (6.3–20.7) | <0.001 | |||
Tumor size of <5 cm | 2 | 87 | 37.7 (28.2–48.3) | ||||
b High AFP level (≥400 ng/mL) | 3 | 214 | 5.7 (2.5–12.7) | 0.004 | |||
Low AFP level (<400 ng/mL) | 6 | 219 | 21.9 (13.7–33.2) | ||||
Overall response | |||||||
All studies | 10 | 480 | 72.2 (65.4–78.1) | 0.018, 68.1 (60.8–74.5) | |||
Tumor size of ≥5 cm | 8 | 393 | 71.0 (62.8–78.0) | 0.295 | |||
Tumor size of <5 cm | 2 | 87 | 77.4 (67.4–85.0) | ||||
b High AFP level (≥400 ng/mL) | 3 | 214 | 67.6 (52.3–79.9) | 0.41 | |||
Low AFP level (<400 ng/mL) | 6 | 219 | 74.2 (66.0–81.0) | ||||
Failure pattern | |||||||
In-field failure | |||||||
All studies | 11 | 643 | 13.4 (8.8–19.9) | 0.043, 17.2 (11.3–25.3) | |||
Tumor size of ≥5 cm | 6 | 288 | 13.2 (6.7–24.1) | 0.989 | |||
Tumor size of <5 cm | 5 | 355 | 13.1 (7.0–23.1) | ||||
b High AFP level (≥400 ng/mL) | 2 | 142 | 7.7 (1.3–34.5) | 0.359 | |||
Low AFP level (<400 ng/mL) | 7 | 310 | 17.0 (10.4–26.7) | ||||
Intrahepatic recurrence | |||||||
All studies | 9 | 462 | 45.6 (37.9–53.4) | ||||
Tumor size of ≥5 cm | 5 | 251 | 41.2 (28.9–54.8) | 0.304 | |||
Tumor size of <5 cm | 4 | 211 | 49.5 (41.4–57.6) | ||||
b High AFP level (≥400 ng/mL) | 2 | 142 | 53.5 (38.4–67.9) | 0.228 | |||
Low AFP level (<400 ng/mL) | 6 | 273 | 42.0 (31.9–52.8) | ||||
Extrahepatic recurrence | |||||||
All studies | 8 | 424 | 26.6 (20.3–34.0) | ||||
Tumor size of ≥5 cm | 4 | 213 | 33.5 (27.4–40.1) | 0.01 | |||
Tumor size of <5 cm | 4 | 211 | 19.5 (13.1–28.1) | ||||
b High AFP level (≥400 ng/mL) | 2 | 142 | 31.8 (24.5–40.1) | 0.35 | |||
Low AFP level (<400 ng/mL) | 5 | 235 | 25.2 (15.9–37.4) |
Subgroups | Cohort (n) | Patients (n) | Events % (95% CI) | p, Subgroup Difference | Egger’s Test, p | Trimmed Value a |
---|---|---|---|---|---|---|
Gastrointestinal | ||||||
All studies | 13 | 947 | 4.1 (2.4–7.0) | 0.001, 6.0 (3.6–10.1) | ||
Tumor size of ≥5 cm | 8 | 393 | 3.1 (1.2–7.6) | 0.503 | ||
Tumor size of <5 cm | 5 | 554 | 4.7 (2.2–9.9) | |||
RILD | ||||||
All studies | 9 | 759 | 3.5 (1.4–8.4) | |||
Tumor size of ≥5 cm | 5 | 252 | 2.3 (0.5–10.3) | 0.571 | ||
Tumor size of <5 cm | 4 | 507 | 4.1 (1.0–14.9) | |||
Hepatotoxicity | ||||||
All studies | 11 | 624 | 5.7 (3.1–10.5) | 0.001, 8.5 (4.5–15.5) | ||
Tumor size of ≥5 cm | 8 | 393 | 6.3 (3.0–12.8) | 0.572 | ||
Tumor size of <5 cm | 3 | 231 | 4.0 (1.0–14.7) | |||
Hematotoxicity | ||||||
All studies | 8 | 338 | 4.9 (2.3–10.0) | |||
Tumor size of ≥5 cm | 6 | 251 | 2.9 (0.9–8.9) | 0.116 | ||
Tumor size of <5 cm | 2 | 87 | 8.5 (4.1–16.8) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, D.S.; Park, S.; Rim, C.H.; Yoon, W.S.; Shin, I.-S.; Lee, H.A. Salvage External Beam Radiotherapy after Incomplete Transarterial Chemoembolization for Hepatocellular Carcinoma: A Meta-Analysis and Systematic Review. Medicina 2021, 57, 1000. https://doi.org/10.3390/medicina57101000
Yang DS, Park S, Rim CH, Yoon WS, Shin I-S, Lee HA. Salvage External Beam Radiotherapy after Incomplete Transarterial Chemoembolization for Hepatocellular Carcinoma: A Meta-Analysis and Systematic Review. Medicina. 2021; 57(10):1000. https://doi.org/10.3390/medicina57101000
Chicago/Turabian StyleYang, Dae Sik, Sunmin Park, Chai Hong Rim, Won Sup Yoon, In-Soo Shin, and Han Ah Lee. 2021. "Salvage External Beam Radiotherapy after Incomplete Transarterial Chemoembolization for Hepatocellular Carcinoma: A Meta-Analysis and Systematic Review" Medicina 57, no. 10: 1000. https://doi.org/10.3390/medicina57101000
APA StyleYang, D. S., Park, S., Rim, C. H., Yoon, W. S., Shin, I.-S., & Lee, H. A. (2021). Salvage External Beam Radiotherapy after Incomplete Transarterial Chemoembolization for Hepatocellular Carcinoma: A Meta-Analysis and Systematic Review. Medicina, 57(10), 1000. https://doi.org/10.3390/medicina57101000