Effect of Urinary Bisphenol A on Androgenic Hormones and Insulin Resistance in Preadolescent Girls: A Pilot Study from the Ewha Birth & Growth Cohort
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Urinary BPA Measurements
2.3. Anthropometric Measurements and Pubertal Development Assessment
2.4. Sex Hormone and Metabolic Indices Measurements
Sensitivity | Inter-assay of coefficient variation | Intra-assay of coefficient variation | |
---|---|---|---|
LH (IU/L) | 0.25 IU/L | 5.7%–8.1% | 5.8%–6.8% |
Estradiol (pg/mL) | 5.00 pg/mL | 2.2%–4.7% | 1.7%–3.3% |
Androstenedione (ng/mL) | 0.03 ng/mL | 5.9%–9.0% | 3.2%–4.5% |
DHEA (ng/mL) | 0.13 ng/mL | 10.4%–11.9% | 6.9%–7.9% |
Testosterone (ng/mL) | 0.02 ng/mL | 4.8%–6.2% | 3.3%–4.6% |
Insulin (μIU/mL) | 0.20 μIU/mL | 2.4%–4.9% | 0.8%–1.5% |
Glucose (mmol/L) | 0.11 mmol/L | 0.81%–1.12% | <5.0% |
2.5. Statistical Analysis
3. Results
Total | BPA | p | |||
---|---|---|---|---|---|
Tertile 1 (n = 27) | Tertile 2 (n = 27) | Tertile 3 (n = 26) | |||
Age | 7.45 (0.50) | 7.52 (0.51) | 7.37 (0.49) | 7.46 (0.51) | 0.55 |
Height | 126.16 (5.82) | 125.63 (5.48) | 125.90 (5.06) | 126.98 (6.94) | 0.68 |
Height z score | 0.35 (0.88) | 0.19 (0.97) | 0.39 (0.72) | 0.49 (0.93) | 0.44 |
Weight | 25.77 (5.38) | 25.62 (4.69) | 24.67 (4.06) | 27.07 (6.96) | 0.27 |
Weight z score | 0.00 (0.98) | −0.05 (0.95) | −0.14 (0.98) | 0.21 (1.02) | 0.40 |
BMI | 16.07 (2.30) | 16.13 (2.02) | 15.51 (1.91) | 16.59 (2.84) | 0.23 |
BMI z score | −0.27 (1.10) | −0.20 (0.94) | −0.53 (1.20) | −0.06 (1.14) | 0.28 |
Waist circumference (cm) | 54.82 (6.36) | 54.34 (3.94) | 54.17 (4.93) | 56.00 (9.18) | 0.52 |
Tanner’s stage (2 or more), n (%) | 10 (12.35%) | 2 (7.41%) | 4 (14.81%) | 4 (15.38%) | 0.70 † |
Paternal education level, n (%) | |||||
≤high school | 8 (10.00%) | 3 (11.11%) | 4 (14.81%) | 1 (3.85%) | 0.52 |
Above college | 72 (90.00%) | 24 (88.89%) | 23 (85.19%) | 25 (96.15%) | |
Maternal education level, n (%) | |||||
≤high school | 16 (20.00%) | 4 (14.81%) | 8 (29.63%) | 4 (15.38%) | 0.31 |
Above college | 64 (80.00%) | 23 (85.19%) | 19 (70.37%) | 22 (84.62%) | |
Household income, n (%) | |||||
<3 million KRW | 12 (15.00%) | 6 (22.22%) | 5 (18.52%) | 1 (3.85%) | 0.20 ‡ |
3~4.9 million KRW | 37 (46.25%) | 14 (51.85%) | 11 (40.74%) | 12 (46.15%) | |
≥5 million KRW | 31 (38.75%) | 7 (25.93%) | 11 (40.74%) | 13 (50.00%) |
Time | Total | BPA | p | |||
---|---|---|---|---|---|---|
Tertile 1 (n = 17) | Tertile 2 (n = 16) | Tertile 3 (n = 15) | ||||
BMI (kg/m2) | T1 | 16.16 (2.31) | 15.79 (2.15) | 15.92 (1.96) | 16.82 (2.81) | 0.41 |
T2 | 16.26 (2.02) | 15.66 (1.34) | 16.32 (2.19) | 16.89 (2.37) | 0.23 | |
LH (IU/L) ‡ | T1 | 0.57 (0.25–0.93) | 0.57 (0.24–0.86) | 0.57 (0.27–0.66) | 0.75 (0.33–1.43) | 0.58 |
T2 | 0.75 (0.24–1.60) | 0.75 (0.24–2.26) | 0.47 (0.24–1.70) | 0.94 (0.24–1.51) | 0.89 | |
Estradiol (pg/mL) ‡ | T1 | 3.75 (2.50–10.30) | 2.50 (2.50–7.05) | 2.50 (2.50–9.30) | 10.35 (2.50–13.30) | 0.05 |
T2 | 7.10 (2.50–13.80) | 3.95 (2.50–7.15) | 6.95 (2.50–25.05) | 11.60 (7.10–17.80) | 0.02 | |
Androstenedione (ng/mL) ‡ | T1 | 0.55 (0.37–0.82) | 0.45 (0.32–0.64) | 0.68 (0.42–0.86) | 0.63 (0.42–0.87) | 0.22 |
T2 | 0.51 (0.37–0.80) | 0.38 (0.34–0.53) | 0.59 (0.43–0.83) | 0.66 (0.41–1.19) | 0.01 | |
DHEA (ng/mL) ‡ | T1 | 0.61 (0.05–1.05) | 0.40 (0.05–0.76) | 0.61 (0.10–0.90) | 0.85 (0.06–1.39) | 0.32 |
T2 | 0.65 (0.09–1.48) | 0.56 (0.05–0.77) | 0.60 (0.09–1.87) | 1.37 (0.23–1.88) | 0.07 | |
Testosterone (ng/mL) ‡ | T1 | 0.05 (0.04–0.07) | 0.04 (0.03–0.06) | 0.05 (0.04–0.09) | 0.06 (0.04–0.09) | 0.33 |
T2 | 0.09 (0.08–0.15) | 0.09 (0.06–0.11) | 0.09 (0.08–0.19) | 0.13 (0.08–0.20) | 0.09 | |
Insulin (μIU/mL) | T1 | 7.73 (1.96) | 7.02 (1.44) | 8.03 (2.23) | 8.23 (2.07) | 0.17 |
T2 | 8.33 (2.10) | 7.25 (1.87) | 8.95 (2.46) † | 8.94 (1.35) | 0.02 | |
Glucose (mmol/L) | T1 | 4.26 (0.32) | 4.23 (0.26) | 4.45 (0.30) | 4.20 (0.36) | 0.05 |
T2 | 4.51 (0.38) | 4.41 (0.41) | 4.64 (0.34) | 4.49 (0.37) | 0.21 | |
HOMA-IR | T1 | 1.49 (0.43) | 1.32 (0.30) | 1.60 (0.49) | 1.55 (0.46) | 0.15 |
T2 | 1.69 (0.50) | 1.42 (0.44) | 1.85 (0.55) † | 1.81 (0.38) | 0.02 |
Time | Urinary BPA tertiles | p value | |||||
---|---|---|---|---|---|---|---|
Tertile 1 (n = 17) | Tertile 2 (n = 16) | Tertile 3 (n = 15) | p1 | p2 | p3 | ||
BMI (kg/m2) | T1 | 16.33 (15.21–17.45) | 15.47 (14.34–16.60) | 16.62 (15.44–17.81) | 0.35 | 0.48 | 0.43 |
T2 | 16.18 (15.20–17.16) | 15.99 (15.00–16.98) | 16.72 (15.69–17.76) | 0.57 | |||
LH (IU/L) | T1 | 0.67 (0.46–0.98) | 0.53 (0.37–0.78) | 0.65 (0.44–0.97) | 0.65 | 0.81 | 0.85 |
T2 | 0.73 (0.47–1.14) | 0.74 (0.48–1.15) | 0.71 (0.45–1.12) | 0.99 | |||
Estradiol (pg/mL) | T1 | 5.68 (4.20–7.69) | 9.08 (6.63–12.43) | 9.05 (6.53–12.54) | 0.06 | 0.62 | 0.01 |
T2 | 6.28 (4.32–9.14) | 12.20 (8.26–18.03) | 12.87 (8.59–19.29) † | 0.02 | |||
Androstenedione (ng/mL) | T1 | 0.40 (0.30–0.52) | 0.65 (0.50–0.85) † | 0.62 (0.47–0.82) | 0.02 | 0.20 | 0.01 |
T2 | 0.30 (0.22–0.41) | 0.64 (0.47–0.89) † | 0.65 (0.46–0.90) † | 0.01 | |||
DHEA (ng/mL) | T1 | 0.19 (0.09–0.42) | 0.35 (0.16–0.76) | 0.52 (0.24–1.18) | 0.20 | 0.61 | 0.07 |
T2 | 0.22 (0.10–0.51) | 0.37 (0.16–0.87) | 0.93 (0.39–2.22) | 0.07 | |||
Testosterone (ng/mL) | T1 | 0.04 (0.03–0.06) | 0.05 (0.04–0.08) | 0.07 (0.05–0.10) | 0.26 | 0.96 | 0.12 |
T2 | 0.08 (0.06–0.11) | 0.10 (0.08–0.14) | 0.13 (0.10–0.16) | 0.08 | |||
Insulin (μIU/mL) | T1 | 7.95 (6.69–9.21) | 8.75 (7.39–10.10) | 8.87 (7.59–10.14) | 0.38 | 0.86 | 0.10 |
T2 | 7.60 (6.30–8.89) | 8.87 (7.48–10.27) | 8.88 (7.58–10.19) | 0.14 | |||
Glucose (mmol/L) | T1 | 4.23 (4.04–4.43) | 4.40 (4.19–4.60) | 4.15 (3.96–4.35) | 0.09 | 0.43 | 0.19 |
T2 | 4.51 (4.26–4.75) | 4.68 (4.42–4.93) | 4.59 (4.34–4.83) | 0.48 | |||
HOMA-IR | T1 | 1.51 (1.22–1.79) | 1.72 (1.42–2.02) | 1.66 (1.37–1.94) | 0.40 | 0.76 | 0.09 |
T2 | 1.51 (1.21–1.82) | 1.83 (1.51–2.15) | 1.82 (1.51–2.12) | 0.12 |
4. Discussion
5. Conclusions
Acknowledgments
Conflicts of Interest
References
- Statistics Korea. The Trend of Birth and Death Rate. Available online: http://www.index.go.kr/egams/stts/jsp/potal/stts/PO_STTS_IdxSearch.jsp?idx_cd=1011&stts_cd=101101&clas_div=&idx_sys_cd=&idx_clas_cd=1 (accessed on 11 March 2013).
- Lim, J.W. The changing trends in live birth statistics in Korea, 1970 to 2010. Korean J. Pediatr. 2011, 54, 429–435. [Google Scholar] [CrossRef]
- Lee, H.J.; Chattopadhyay, S.; Gong, E.Y.; Ahn, R.S.; Lee, K. Antiandrogenic effects of bisphenol A and nonylphenol on the function of androgen receptor. Toxicol. Sci. 2003, 75, 40–46. [Google Scholar] [CrossRef]
- Vandenberg, L.N. Human exposure to bisphenol A. Reprod. Toxicol. 2007, 24, 139–177. [Google Scholar] [CrossRef]
- Takeuchi, T.; Tsutsumi, O. Serum bisphenol a concentrations showed gender differences, possibly linked to androgen levels. Biochem. Biophys. Res. Commun. 2002, 291, 76–78. [Google Scholar] [CrossRef]
- Déchaud, H.; Ravard, C.; Claustrat, F.; de la Perrière, A.B.; Pugeat, M. Xenoestrogen interaction with human sex hormone-binding globulin (hSHBG). Steroids 1999, 64, 328–334. [Google Scholar] [CrossRef]
- Kandaraki, E.; Chatzigeorgiou, A.; Livadas, S.; Palioura, E.; Economou, F.; Koutsilieris, M.; Palimeri, S.; Panidis, D.; Diamanti-Kandarakis, E. Endocrine disruptors and polycystic ovary syndrome (PCOS): Elevated serum levels of bisphenol A in women with PCOS. J. Clin. Endocrinol. Metab. 2011, 96, E480–E484. [Google Scholar] [CrossRef]
- Pugeat, M.; Crave, J.C.; Tourniaire, J.; Forest, M.G. Clinical utility of sex hormone-binding globulin measurement. Horm. Res. 1996, 45, 148–155. [Google Scholar] [CrossRef]
- Takeuchi, T.; Tsutsumi, O.; Ikezuki, Y.; Kamei, Y.; Osuga, Y.; Fujiwara, T.; Takai, Y.; Momoeda, M.; Yano, T.; Taketani, Y. Elevated serum bisphenol A levels under hyperandrogenic conditions may be caused by decreased UDP-glucuronosyltransferase activity. Endocr. J. 2006, 53, 485–491. [Google Scholar] [CrossRef]
- Forrester-Dumont, K.; Galescu, O.; Kolesnikov, A.; Raissouni, N.; Bhangoo, A.; Ten, S.; Suss, A. Hyperandrogenism does not influence metabolic parameters in adolescent girls with PCOS. Int. J. Endocrinol. 2012. [Google Scholar] [CrossRef]
- Ropero, A.B.; Alonso-Magdalena, P.; García-García, E.; Ripoll, C.; Fuentes, E.; Nadal, A. Bisphenol-A disruption of the endocrine pancreas and blood glucose homeostasis. Int. J. Androl. 2008, 31, 194–200. [Google Scholar] [CrossRef]
- Lang, I.A.; Galloway, T.S.; Scarlett, A.; Henley, W.E.; Depledge, M.; Wallace, R.B.; Melzer, D. Association of urinary bisphenol A concentration with medical disorders and laboratory abnormalities in adults. JAMA 2008, 300, 1303–1310. [Google Scholar] [CrossRef]
- Calafat, A.M.; Ye, X.; Wong, L.Y.; Reidy, J.A.; Needham, L.L. Exposure of the US population to bisphenol A and 4-tertiary-octylphenol: 2003–2004. Environ. Health Perspect. 2008, 116, 39–44. [Google Scholar]
- Min, J.W.; Kong, K.A.; Park, B.H.; Hong, J.H.; Park, E.A.; Cho, S.J.; Ha, E.H.; Park, H. Effect of postnatal catch-up growth on blood pressure in children at 3 years of age. J. Hum. Hypertens. 2007, 21, 868–874. [Google Scholar] [CrossRef]
- Korea Center for Disease Control and Prevention; Korean Pediatric Society. 2007 Korean Children and Adolescents Growth Standard. Available online: http://www.cdc.go.kr/CDC/notice/CdcKrInfo0301.jsp?menuIds=HOME001-MNU0004-MNU0036-MNU0037&cid=12103 (accessed on 28 September 2009).
- Vandenberg, L.N.; Chahoud, I.; Heindel, J.J.; Padmanabhan, V.; Paumgartten, F.J.; Schoenfelder, G. Urinary, circulating, and tissue biomonitoring studies indicate widespread exposure to bisphenol A. Environ. Health Perspect. 2010, 118, 1055–1070. [Google Scholar] [CrossRef]
- Carmina, E.; Lobo, R.A. Polycystic ovary syndrome (PCOS): Arguably the most common endocrinopathy is associated with significant morbidity in women. J. Clin. Endocrinol. Metab. 1999, 84, 1897–1899. [Google Scholar] [CrossRef]
- Dunaif, A. Insulin resistance and the polycystic ovary syndrome: Mechanism and implications for pathogenesis. Endocr. Rev. 1997, 18, 774–800. [Google Scholar] [CrossRef]
- Barbieri, R.L.; Makris, A.; Randall, R.W.; Daniels, G.; Kistner, R.W.; Ryan, K.J. Insulin stimulates androgen accumulation in incubations of ovarian stroma obtained from women with hyperandrogenism. J. Clin. Endocrinol. Metab. 1986, 62, 904–910. [Google Scholar] [CrossRef]
- Burger, H.G. Androgen production in women. Fertil. Steril. 2002, 77 (Suppl. 4), S3–S5. [Google Scholar] [CrossRef]
- Agarwal, S.K.; Judd, H.L.; Magoffin, D.A. A mechanism for the suppression of estrogen production in polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 1996, 81, 3686–3691. [Google Scholar] [CrossRef]
- Barbieri, R.L. Induction of ovulation in infertile women with hyperandrogenism and insulin resistance. Am. J. Obstet. Gynecol. 2000, 183, 1412–1418. [Google Scholar] [CrossRef]
- l’Allemand, D.; Schmidt, S.; Rousson, V.; Brabant, G.; Gasser, T.; Grüters, A. Associations between body mass, leptin, IGF-I and circulating adrenal androgens in children with obesity and premature adrenarche. Eur. J. Endocrinol. 2002, 146, 537–543. [Google Scholar] [CrossRef]
- Takeuchi, T.; Tsutsumi, O.; Ikezuki, Y.; Takai, Y.; Taketani, Y. Positive relationship between androgen and the endocrine disruptor, bisphenol A, in normal women and women with ovarian dysfunction. Endocr. J. 2004, 51, 165–169. [Google Scholar] [CrossRef]
- Zhou, W.; Liu, J.; Liao, L.; Han, S.; Liu, J. Effect of bisphenol A on steroid hormone production in rat ovarian theca-interstitial and granulosa cells. Mol. Cell. Endocrinol. 2008, 283, 12–18. [Google Scholar] [CrossRef]
- Hanioka, N.; Jinno, H.; Nishimura, T.; Ando, M. Suppression of male-specific cytochrome P450 isoforms by bisphenol A in rat liver. Arch. Toxicol. 1998, 72, 387–394. [Google Scholar] [CrossRef]
- Gaido, K.W.; Maness, S.C.; McDonnell, D.P.; Dehal, S.S.; Kupfer, D.; Safe, S. Interaction of methoxychlor and related compounds with estrogen receptor alpha and beta, and androgen receptor: Structure-activity studies. Mol. Pharmacol. 2000, 58, 852–858. [Google Scholar]
- Peretz, J.; Gupta, R.K.; Singh, J.; Hernández-Ochoa, I.; Flaws, J.A. Bisphenol A impairs follicle growth, inhibits steroidogenesis, and downregulates rate-limiting enzymes in the estradiol biosynthesis pathway. Toxicol. Sci. 2011, 119, 209–217. [Google Scholar] [CrossRef]
- Baker, M.B.; Hernandez, I.; Stanczyk, F.; Azen, C.; Hsu, Y.H.; Spruijt-Metz, D. Endocrine disruptors in the pubertal transition: Bisphenol A is negatively correlated with testosterone in early puberty. Endocr. Rev. 2011, 32, P3–P722. [Google Scholar] [CrossRef]
- Harley, K.G.; Aguilar Schall, R.; Chevrier, J.; Tyler, K.; Aguirre, H.; Bradman, A.; Holland, N.T.; Lustig, R.H.; Calafat, A.M.; Eskenazi, B. Prenatal and postnatal bisphenol A exposure and body mass index in childhood in the CHAMACOS cohort. Environ. Health Perspect. 2013, 121, 514–520. [Google Scholar] [CrossRef]
- Yang, M.; Kim, S.Y.; Chang, S.S.; Lee, I.S.; Kawamoto, T. Urinary concentrations of bisphenol A in relation to biomarkers of sensitivity and effect and endocrine-related health effects. Environ. Mol. Mutagen. 2006, 47, 571–578. [Google Scholar] [CrossRef]
- Yi, B.; Shin, H.J.; Na, H.; Lee, N.K.; Yang, M. Bisphenol A exposure and childhood obesity. J. Environ. Toxicol. 2009, 24, 287–292. (in Korean). [Google Scholar] [CrossRef]
- Mahalingaiah, S.; Meeker, J.D.; Pearson, K.R.; Calafat, A.M.; Ye, X.; Petrozza, J.; Hauser, R. Temporal variability and predictors of urinary bisphenol A concentrations in men and women. Environ. Health Perspect. 2008, 116, 173–178. [Google Scholar]
- Teitelbaum, S.L.; Britton, J.A.; Calafat, A.M.; Ye, X.; Silva, M.J.; Reidy, J.A.; Galvez, M.P.; Brenner, B.L.; Wolff, M.S. Temporal variability in urinary concentrations of phthalate metabolite, phytoestrogens and phenols among minority children in the United States. Environ. Res. 2008, 106, 257–269. [Google Scholar] [CrossRef]
- Nepomnaschy, P.A.; Baird, D.D.; Weinberg, C.R.; Hoppin, J.A.; Longnecker, M.P.; Wilcox, A.J. Within-person variability in urinary bisphenol A concentrations: Measurements from specimens after long-term frozen storage. Environ. Res. 2009, 109, 734–737. [Google Scholar] [CrossRef]
- Stahlhut, R.W.; van Wijngaarden, E.; Dye, T.D.; Cook, S.; Swan, S.H. Concentrations of urinary phthalate metabolites are associated with increased waist circumference and insulin resistance in adult U.S. males. Environ. Health Perspect. 2007, 115, 876–882. [Google Scholar] [CrossRef]
- Trasande, L.; Spanier, A.J.; Sathyanarayana, S.; Attina, T.M.; Blustein, J. Urinary phthalates and increased insulin resistance in adolescents. Pediatrics 2013, 132, e646–e655. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Lee, H.A.; Kim, Y.J.; Lee, H.; Gwak, H.S.; Park, E.A.; Cho, S.J.; Kim, H.S.; Ha, E.H.; Park, H. Effect of Urinary Bisphenol A on Androgenic Hormones and Insulin Resistance in Preadolescent Girls: A Pilot Study from the Ewha Birth & Growth Cohort. Int. J. Environ. Res. Public Health 2013, 10, 5737-5749. https://doi.org/10.3390/ijerph10115737
Lee HA, Kim YJ, Lee H, Gwak HS, Park EA, Cho SJ, Kim HS, Ha EH, Park H. Effect of Urinary Bisphenol A on Androgenic Hormones and Insulin Resistance in Preadolescent Girls: A Pilot Study from the Ewha Birth & Growth Cohort. International Journal of Environmental Research and Public Health. 2013; 10(11):5737-5749. https://doi.org/10.3390/ijerph10115737
Chicago/Turabian StyleLee, Hye Ah, Young Ju Kim, Hwayoung Lee, Hye Sun Gwak, Eun Ae Park, Su Jin Cho, Hae Soon Kim, Eun Hee Ha, and Hyesook Park. 2013. "Effect of Urinary Bisphenol A on Androgenic Hormones and Insulin Resistance in Preadolescent Girls: A Pilot Study from the Ewha Birth & Growth Cohort" International Journal of Environmental Research and Public Health 10, no. 11: 5737-5749. https://doi.org/10.3390/ijerph10115737
APA StyleLee, H. A., Kim, Y. J., Lee, H., Gwak, H. S., Park, E. A., Cho, S. J., Kim, H. S., Ha, E. H., & Park, H. (2013). Effect of Urinary Bisphenol A on Androgenic Hormones and Insulin Resistance in Preadolescent Girls: A Pilot Study from the Ewha Birth & Growth Cohort. International Journal of Environmental Research and Public Health, 10(11), 5737-5749. https://doi.org/10.3390/ijerph10115737