Ultrafine Particle Distribution and Chemical Composition Assessment during Military Operative Trainings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Trials
2.1.1. Drone Take Off
2.1.2. Ammunition Blasting
2.1.3. LIZARD-Guided Inert Bomb Launch
2.2. Analysis
3. Results
3.1. Particle Count
3.1.1. Drone Take-Off
3.1.2. Ammunition Blasting
3.1.3. LIZARD-Guided Inert Bomb Launch
3.2. Size Distribution
3.3. SEM-EDS Analysis
4. Discussion
- The median values are slightly influenced by the ammunition blasting campaign because of the effect of the atmospheric dilution that lowers the particle count quite rapidly;
- The peak UFP counts occur immediately after the ammunition blast, within 50 m downwind from it, and they last for a short time [39];
- At a distance of 200–400 m the effect of the blast in terms of peak UFP count seems negligible, not only in respect to the background median values, but also in terms of absolute short-term exposure. In fact, the peak UFP counts we detected at such distance from the emission sources were lower than the concentrations typically measured in urban areas [40], and well lower than those observed in indoor microenvironments [41].
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Vincent, J.H. Part A: Scientific framework for aerosol sampling. In Aerosol Sampling: Science, Standards, Instrumentation and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2007. [Google Scholar]
- Marconi, A. Fine, ultrafine and nano-particles in the living and working setting: Potential health effects and measurement of inhalation exposure. G. Ital. Med. Lav. Ergon. 2006, 28, 258–265. [Google Scholar] [PubMed]
- Vincent, J.H.; Clement, C.F. Ultrafine particles in workplace atmospheres. Philos. Trans. Math. Phys. Eng. Sci. 2000, 358, 2673–2682. [Google Scholar] [CrossRef]
- Morawska, L.; Keogh, D.U.; Thomas, S.B.; Mengersen, K.L. Modality in ambient particle size distributions and its potential as a basis for developing air quality regulation. Atmos. Environ. 2008, 42, 1617–1628. [Google Scholar] [CrossRef]
- Straif, K.; Cohen, A.; Samet, J. (Eds.) Air Pollution and Cancer; No. 161; International Agency for Research on Cancer (IARC) Scientific Publications: Lyon, France, 2013. [Google Scholar]
- Kreyling, W.G.; Semmler-Behnke, M.; Möller, W. Health implications of nanoparticles. J. Nanopart. Res. 2006, 8, 543–562. [Google Scholar] [CrossRef]
- Pope, C.A.; Dockery, D.W. Health effects of fine particulate air pollution: Lines that connect. J. Air Waste Manag. Assoc. 2006, 56, 709–742. [Google Scholar] [CrossRef] [PubMed]
- Pietroiusti, A. Health implications of engineered nanomaterials. Nanoscale 2012, 4, 1231–1247. [Google Scholar] [CrossRef] [PubMed]
- Pedata, P.; Garzillo, E.M.; Sannolo, N. Ultrafine particles and effects on the body: Review of the literature. G. Ital. Med. Lav. Ergon. 2010, 32, 23–31. [Google Scholar] [PubMed]
- Cesaroni, G.; Badaloni, C.; Gariazzo, C.; Stafoggia, M.; Sozzi, R.; Davoli, M.; Forastiere, F. Long-term exposure to urban air pollution and mortality in a cohort of more than a million adults in Rome. Environ. Health Perspect. 2013, 121, 324–331. [Google Scholar] [CrossRef] [PubMed]
- Buonanno, G.; Marks, G.B.; Morawska, L. Health effects of daily airborne particle dose in children: Direct association between personal dose and respiratory health effects. Environ. Pollut. 2013, 180, 246–250. [Google Scholar] [CrossRef] [PubMed]
- Ott, W.R.; Wallace, L.A.; McAteer, J.M.; Hildemann, L.M. Fine and ultrafine particle exposures on 73 trips by car to 65 non-smoking restaurants in the San Francisco Bay Area. Indoor Air 2017, 27, 205–217. [Google Scholar] [CrossRef] [PubMed]
- Kero, I.; Naess, M.K.; Tranell, G. Particle Size Distributions of Particulate Emissions from the Ferroalloy Industry Evaluated by Electrical Low Pressure Impactor (ELPI). J. Occup. Environ. Hyg. 2015, 12, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Mazaheri, M.; Clifford, S.; Jayaratne, R.; Megat Mokhtar, M.A.; Fuoco, F.; Buonanno, G.; Morawska, L. School children’s personal exposure to ultrafine particles in the urban environment. Environ. Sci. Technol. 2014, 48, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.; Fruin, S.; Kozawa, K.; Mara, S.; Winer, A.M.; Paulson, S.E. Aircraft emission impacts in a neighborhood adjacent to a general aviation airport in Southern California. Environ. Sci. Technol. 2009, 43, 8039–8045. [Google Scholar] [CrossRef] [PubMed]
- Stabile, L.; Scungio, M.; Buonanno, G.; Arpino, F.; Ficco, G. Airborne particle emission of a commercial 3D printer: The effect of filament material and printing temperature. Indoor Air 2016, 27, 398–408. [Google Scholar] [CrossRef] [PubMed]
- Scungio, M.; Vitanza, T.; Stabile, L.; Buonanno, G.; Morawska, L. Characterization of particle emission from laser printers. Sci. Total Environ. 2017, 586, 623–630. [Google Scholar] [CrossRef] [PubMed]
- Falvo, M.J.; Osinubi, O.Y.; Sotolongo, A.M.; Helmer, D.A. Airborne hazards exposure and respiratory health of Iraq and Afghanistan veterans. Epidemiol. Rev. 2015, 37, 116–130. [Google Scholar] [CrossRef] [PubMed]
- Engelbrecht, J.P.; McDonald, E.V.; Gillies, J.A.; Jayanty, R.K.; Casuccio, G.; Gertler, A.W. Characterizing mineral dusts and other aerosols from the Middle East—Part 2: Grab samples and re-suspensions. Inhal. Toxicol. 2009, 21, 327–336. [Google Scholar] [CrossRef] [PubMed]
- Stabile, L.; Iannitti, G.; Vigo, P.; Ruggiero, A.; Russi, A.; Buonanno, G. Ultrafine particle generation by high-velocity impact of metal projectiles. J. Phys. Conf. Ser. 2014, 500, 182018. [Google Scholar] [CrossRef]
- Buonanno, G.; Bernabei, M.; Avino, P.; Stabile, L. Occupational exposure to airborne particles and other pollutants in an aviation base. Environ. Pollut. 2012, 170, 78–87. [Google Scholar] [CrossRef] [PubMed]
- Buonanno, G.; Stabile, L.; Ruggiero, A.; Iannitti, G.; Bonora, N. Ultrafine particle size distribution during high velocity impact of high density metals. In Proceedings of the AIP Conference, Chicago, IL, USA, 26 June–1 July 2011; Volume 1426, p. 108. [Google Scholar]
- Campagna, M.; Frattolillo, A.; Pili, S.; Marcias, G.; Angius, N.; Mastino, C.C.; Cocco, P.; Buonanno, G. Environmental Exposure to Ultrafine Particles inside and nearby a Military Airport. Atmosphere 2016, 7, 138. [Google Scholar] [CrossRef]
- Kero, I.T.; Jørgensen, R.B. Comparison of Three Real-Time Measurement Methods for Airborne Ultrafine Particles in the Silicon Alloy Industry. Int. J. Environ. Res. Public Health 2016, 13, 871. [Google Scholar] [CrossRef] [PubMed]
- Klejnowski, K.; Krasa, A.; Rogula-Kozłowska, W.; Błaszczak, B. Number size distribution of ambient particles in a typical urban site: The first Polish assessment based on long-term (9 months) measurements. Sci. World J. 2013, 2013, 539568. [Google Scholar] [CrossRef] [PubMed]
- Meléndez, A.; García, E.; Carnicer, P.; Pena, E.; Larrión, M.; Legarreta, J.A.; Gutiérrez-Cañas, C. Fine and ultrafine emission dynamics from a ferrous foundry cupola furnace. J. Air Waste Manag. Assoc. 2010, 60, 556–567. [Google Scholar] [CrossRef] [PubMed]
- Cristaldi, M.; Foschi, C.; Szpunar, G.; Brini, C.; Marinelli, F.; Triolo, L. Toxic Emissions from a Military Test Site in the Territory of Sardinia, Italy. Int. J. Environ. Res. Public Health 2013, 10, 1631–1646. [Google Scholar] [CrossRef] [PubMed]
- Agenzia Regionale per la Protezione Ambientale Della Sardegna (ARPAS); Programma di Monitoraggio Ambientale del Poligono Interforze del Salto di Quirra (PISQ). Stato di Avanzamento Delle Attività Dell’ARPAS Nella Supervisione del Programma di Monitoraggio Ambientale del PISQ; ARPAS: Cagliari, Italy, 2012. (In Italian) [Google Scholar]
- Istituto Zooprofilattico Sperimentale Della Sardegna (IZS). Relazione Sui Risultati Preliminari dei Piani di Monitoraggio Sugli Inquinanti Ambientali Nell’area del Poligono Interforze del Salto di Quirra. 2011. Available online: http://www.izs-sardegna.it/doc_news/08-11-2011_Relazione_conferenza_stampa.pdf (accessed on 11 April 2017). (In Italian).
- Marjamäki, M.; Keskinen, J.; Chen, D.R.; Pui, D.Y.H. Performance evaluation of the electrical low-pressure impactor (ELPI). J. Aerosol Sci. 2000, 31, 249–261. [Google Scholar] [CrossRef]
- Marjamäki, M.; Lemmetty, M.; Keskinen, J. ELPI response and data reduction I: Response functions. Aerosol Sci. Technol. 2005, 39, 575–582. [Google Scholar] [CrossRef]
- Lemmetty, M.; Keskinen, J.; Marjamäki, M. The ELPI response and data reduction II: Properties of kernels and data inversion. Aerosol Sci. Technol. 2005, 39, 583–595. [Google Scholar] [CrossRef]
- ELPI+TM User Manual—Version 1.2; Dekati Limited: Tampere, Finland, 2012.
- Hsu, H.H.; Adamkiewicz, G.; Houseman, E.A.; Vallarino, J.; Melly, S.J.; Wayson, R.L.; Spengler, J.D.; Levy, J.I. The relationship between aviation activities and ultrafine particulate matter concentrations near a mid-sized airport. Atmos. Environ. 2012, 50, 328–337. [Google Scholar] [CrossRef]
- Buonanno, G.; Fuoco, F.; Stabile, L. Influence parameters on particle exposure of pedestrians in urban microenvironments. Atmos. Environ. 2011, 45, 1434–1443. [Google Scholar] [CrossRef]
- Kumar, P.; Morawska, L.; Birmili, W.; Paasonen, P.; Hu, M.; Kulmala, M.; Harrison, R.M.; Norford, L.; Britter, R. Ultrafine particles in cities. Environ. Int. 2014, 66, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Jørgensen, R.B.; Buhagen, M.; Føreland, S. Personal exposure to ultrafine particles from PVC welding and concrete work during tunnel rehabilitation. Occup. Environ. Med. 2016, 73, 467–473. [Google Scholar] [CrossRef] [PubMed]
- Ragde, S.F.; Jørgensen, R.B.; Føreland, S. Characterisation of Exposure to Ultrafine Particles from Surgical Smoke by Use of a Fast Mobility Particle Sizer. Ann. Occup. Hyg. 2016, 60, 860–874. [Google Scholar] [CrossRef] [PubMed]
- Manigrasso, M.; Stabile, L.; Avino, P.; Buonanno, G. Influence of measurement frequency on the evaluation of short-term dose of sub-micrometric particles during indoor and outdoor generation events. Atmos. Environ. 2013, 67, 130–142. [Google Scholar] [CrossRef]
- Scungio, M.; Arpino, F.; Stabile, L.; Buonanno, G. Numerical simulation of ultrafine particle dispersion in urban street canyons with the Spalart-Allmaras turbulence model. Aerosol Air Qual. Res. 2013, 13, 1423–1437. [Google Scholar] [CrossRef]
- Buonanno, G.; Johnson, G.; Morawska, L.; Stabile, L. Volatility characterization of cooking-generated aerosol particles. Aerosol Sci. Technol. 2011, 45, 1069–1077. [Google Scholar] [CrossRef]
- Bzdek, B.R.; Horan, A.J.; Pennington, M.R.; Janechek, N.J.; Baek, J.; Stanier, C.O.; Johnston, M.V. Silicon is a frequent component of atmospheric nanoparticles. Environ. Sci. Technol. 2014, 48, 11137–11145. [Google Scholar] [CrossRef] [PubMed]
ID | Day | Start (Hour) | End (Hour) | Distance, Position from the Source | Wind Direction—Max Speed (km/h) | Blasting Time (Hour) |
---|---|---|---|---|---|---|
A | 17 April | 9:32 | 10:31 | 10 m, E (downwind *) | W 44.5 | 9:39 |
B | 17 April | 11:07 | 12:27 | 50 m, E (downwind *) | W 44.5 | 11:39 |
C | 25 May | 8:58 | 11:09 | 20 m, W (downwind *) | SE 29.6 | 9:16 and 10:02 |
D | 25 May | 14:45 | 16:32 | 200 m, W (downwind *) | SE 29.6 | 14:47 and 16:04 |
E | 26 May | 8:52 | 11:00 | 10 m, E (downwind *) | W 46.3 | 9:24 and 10:02 |
F | 26 May | 14:08 | 16:17 | 400 m, E (downwind *) | W 46.3 | 14:40 and 15:49 |
ID | Day | Start (Hour) | End (Hour) | Distance, Position from the Source | Wind Direction—Max Speed (km/h) | Launch Time (Hour) |
---|---|---|---|---|---|---|
I | 26 May | 11:21 | 15:21 | 100 m, WNW (downwind *) | SE 29.6 | 14:50:11 |
II | 27 May | 09:24 | 17:42 | 40 m, WNW (upwind *) | W 24.1 | 12:11:52 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Campagna, M.; Pilia, I.; Marcias, G.; Frattolillo, A.; Pili, S.; Bernabei, M.; D’Aloja, E.; Cocco, P.; Buonanno, G. Ultrafine Particle Distribution and Chemical Composition Assessment during Military Operative Trainings. Int. J. Environ. Res. Public Health 2017, 14, 579. https://doi.org/10.3390/ijerph14060579
Campagna M, Pilia I, Marcias G, Frattolillo A, Pili S, Bernabei M, D’Aloja E, Cocco P, Buonanno G. Ultrafine Particle Distribution and Chemical Composition Assessment during Military Operative Trainings. International Journal of Environmental Research and Public Health. 2017; 14(6):579. https://doi.org/10.3390/ijerph14060579
Chicago/Turabian StyleCampagna, Marcello, Ilaria Pilia, Gabriele Marcias, Andrea Frattolillo, Sergio Pili, Manuele Bernabei, Ernesto D’Aloja, Pierluigi Cocco, and Giorgio Buonanno. 2017. "Ultrafine Particle Distribution and Chemical Composition Assessment during Military Operative Trainings" International Journal of Environmental Research and Public Health 14, no. 6: 579. https://doi.org/10.3390/ijerph14060579
APA StyleCampagna, M., Pilia, I., Marcias, G., Frattolillo, A., Pili, S., Bernabei, M., D’Aloja, E., Cocco, P., & Buonanno, G. (2017). Ultrafine Particle Distribution and Chemical Composition Assessment during Military Operative Trainings. International Journal of Environmental Research and Public Health, 14(6), 579. https://doi.org/10.3390/ijerph14060579