Comparison of Toxic Metal Distribution Characteristics and Health Risk between Cultured and Wild Fish Captured from Honghu City, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection and Preparation
2.3. Sample Digestion and Analysis
2.4. Health Risk Assessment
3. Results and Discussion
3.1. Trace Element Distributions in Muscle of Cultured and Wild Fish
3.2. Trace Element Distributions in Different Tissues of Cultured and Wild Fish
3.3. Comparison of Health Risk Assessment for Cultured and Wild Fish
3.4. Comparison of the Maximum Allowable Fish Daily Consumption Limit for Cultured and Wild Fish
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- China Fishery Government Network. 2016 National Fisheries Statistics Bulletin. 2017. Available online: http://www.moa.gov.cn/sjzz/yzjzw/yyywyzj/201707/t20170725_5759859.htm (accessed on 25 July 2017). (In Chinese)
- Food and Agriculture Organization (FAO). Fishery and Aquaculture Statistics for 2014; Food and Agriculture Organization: Rome, Italy, 2016. [Google Scholar]
- Zhang, L.; Zhang, D.W.; Wei, Y.H.; Luo, L.G.; Dai, T.C. Risk assessment of trace elements in cultured freshwater fish from Jiangxi province, China. Environ. Monit. Assess. 2014, 186, 2185–2194. [Google Scholar] [CrossRef] [PubMed]
- Omar, W.A.; Zaghloul, K.H.; Abdel-Khalek, A.A.; Abo-Hegab, S. Risk assessment and toxic effects of metal pollution in two cultured and wild fish species from highly degraded aquatic habitats. Arch. Environ. Contam. Toxicol. 2013, 65, 753–764. [Google Scholar] [CrossRef] [PubMed]
- Makokha, V.A.; Qi, Y.L.; Shen, Y.; Wang, J. Concentrations, distribution, and ecological risk assessment of heavy metals in the east Dongting and Honghu Lake, China. Expo. Health 2016, 8, 31–41. [Google Scholar] [CrossRef]
- Chen, H.; Liu, S.; Xu, X.R.; Diao, Z.H.; Sun, K.F.; Hao, Q.W.; Liu, S.S.; Ying, G.G. Tissue distribution, bioaccumulation characteristics and health risk of antibiotics in cultured fish from a typical aquaculture area. J. Hazard. Mater. 2017, 343, 140–148. [Google Scholar] [CrossRef] [PubMed]
- Song, C.; Li, L.; Zhang, C.; Kamira, B.; Qiu, L.P.; Fan, L.M.; Wu, W.; Meng, S.L.; Hu, G.D.; Chen, J.Z. Occurrence and human dietary assessment of sulfonamide antibiotics in cultured fish around Tai Lake, China. Environ. Sci. Pollut. Res. Int. 2017, 24, 17493–174997. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.; Mo, W.Y.; Man, Y.B.; Nie, X.P.; Li, K.B.; Wong, M.H. Replacing fish meal by food waste in feed pellets to culture lower trophic level fish containing acceptable levels of organochlorine pesticides: Health risk assessments. Environ. Int. 2014, 73, 22–27. [Google Scholar] [CrossRef] [PubMed]
- Abdallah, M.A.M.; Morsy, F.A.E. Persistent organochlorine pollutants and metals residues in sediment and freshwater fish species cultured in a shallow lagoon, Egypt. Environ. Technol. 2013, 34, 2389–2399. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.K.; Shaheen, N.; Islam, M.S.; Habibullah-al-Mamun, M.; Islam, S.; Mohiduzzaman, M.; Bhattacharjee, L. Dietary intake of trace elements from highly consumed cultured fish (Labeo rohita, Pangasius pangasius and Oreochromis mossambicus) and human health risk implications in Bangladesh. Chemosphere 2015, 128, 284–292. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.H.; Li, F.; Zeng, G.M.; Liu, W.C.; Huang, X.L.; Xiao, Z.H.; Wu, H.P.; Gu, Y.L.; Li, X.; He, X.X.; et al. Integrating hierarchical bioaccessibility and population distribution into potential eco-risk assessment of heavy metals in road dust: A case study in Xiandao District, Changsha city, China. Sci. Total Environ. 2016, 541, 969–976. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Zhang, J.D.; Jiang, W.; Liu, C.Y.; Zhang, Z.M.; Zhang, C.D.; Zeng, G.M. Spatial health risk assessment and hierarchical risk management for mercury in soils from a typical contaminated site, China. Environ. Geochem. Health 2017, 39, 923–934. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Cai, Y.; Zhang, J.D. Spatial Characteristics, Health Risk Assessment and Sustainable Management of Heavy Metals and Metalloids in Soils from Central China. Sustainability 2018, 10, 91. [Google Scholar] [CrossRef]
- Gastro-Gonzalez, M.I.; Mendez-Armenta, M. Heavy metals: Implications associated to fish consumption. Environ. Toxicol. Chem. 2008, 26, 263–271. [Google Scholar] [CrossRef] [PubMed]
- Guardiola, F.A.; Cuesta, A.; Meseguer, J.; Martinez, S.; Martinez-Sanchez, M.J.; Perez-Sirvent, C.; Esteban, M.A. Accumulation, histopathology, and immunotoxicological effects of waterborne cadmium on gilthead seabream (Sparus aurata). Fish Shellfish Immunol. 2013, 35, 792–800. [Google Scholar] [CrossRef] [PubMed]
- Su, S.L.S.; Ramos, G.B.; Su, M.L.L.S. Bioaccumulation and histopathological alteration of total lead in selected fish from Manila Bay, Philippines. Saudi J. Biol. Sci. 2013, 20, 353–355. [Google Scholar] [CrossRef] [PubMed]
- Bervotes, L.; Blust, R.; Verheyen, R. Accumulation of metals in the tissue of three spined sticklebacks (Gasterosteus aculeatus) from natural fresh waters. Ecotoxicol. Environ. Saf. 2001, 48, 117–127. [Google Scholar] [CrossRef] [PubMed]
- Burger, J.; Gaines, K.F.; Boring, S.; Syephans, L.; Snodgrass, J.; Dixon, C. Metals levels in fish from the Savannah River: Potential hazards to fish and other receptors. Environ. Res. 2002, 89, 95–97. [Google Scholar] [CrossRef] [PubMed]
- Honghu City Government China. Statistical Communique on National Economic and Social Development of Honghu Municipality in 2016. 2017. Available online: http://www.honghu.gov.cn/z/xxgk/tjgb/2017-04-10/38966.html (accessed on 10 April 2017).
- Hu, Y.; Qi, S.H.; Wu, C.X.; Ke, Y.P.; Chen, J.; Chen, W.; Gong, X.Y. Preliminary assessment of heavy metal contamination in surface water and sediments from Honghu Lake, East Central China. Front. Earth Sci. 2012, 6, 39–47. [Google Scholar] [CrossRef]
- Li, F.; Qiu, Z.Z.; Zhang, J.D.; Liu, C.Y.; Cai, Y.; Xiao, M.S. Spatial distribution and fuzzy health risk assessment of trace elements in surface water from Honghu Lake. Int. J. Environ. Res. Public Health 2017, 14, 1011. [Google Scholar] [CrossRef] [PubMed]
- Ban, X.; Yu, C.; Wei, K.; Du, Y. Analysis of influence of enclosure aquaculture on water quality of Honghu Lake. Environ. Sci. Technol. 2010, 9, 125–129. [Google Scholar]
- Hu, Y.; Zhou, C.S.; Hu, L.H.; Pan, Q.C.; Jiang, Q.Q.; Wu, Y.; Wang, Y.H.; Zheng, Y.N.; Dai, Y. Comparative analysis of the nutritional composition in the muscles and skins of Anguilla Japonica cultured in the seawater and freshwater. Acta Hydrobiol. Sin. 2015, 1, 730–739. (In Chinese) [Google Scholar]
- Su, S. Fish is also a kind of delicacies. Food Nutr. China 2001, 5, 49–50. (In Chinese) [Google Scholar]
- Phoenix News. The Rank List of the Most Popular Food in Hubei. 2017. Available online: http://share.iclient.ifeng.com/news/shareNews?forward=1&aid=118727110#backhead (accessed on 9 February 2017). (In Chinese).
- Cheng, Z.; Lam, C.L.; Mo, W.Y.; Nie, X.P.; Choi, W.M.; Man, Y.B.; Wong, M.H. Food wastes as fish feeds for polyculture of low-trophic-level fish: Bioaccumulation and health risk assessments of heavy metals in the cultured fish. Environ. Sci. Pollut. Res. 2016, 23, 7195–7203. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.F.; Qin, D.L.; Chen, Z.X.; Tang, S.Z.; Bai, S.Y.; Mou, Z.B. Heavy metal levels in fish from Heilongjiang River and potential health risk assessment. Bull. Environ. Contam. Toxicol. 2016, 97, 536–542. [Google Scholar] [CrossRef] [PubMed]
- Yipel, M.; Türk, E.; Tekeli, I.O.; Oğuz, H. Heavy metal levels in farmed and wild fish of aegean sea and assessment of potential risks to human health. Kafkas Univ. Vet. Fak. Derg. 2016, 22, 889–894. [Google Scholar]
- Chi, Q.Q.; Zhu, G.W.; Alan, L. Bioaccumulation of heavy metals in fish from Taihu Lake, China. J. Environ. Sci. 2007, 19, 1500–1504. [Google Scholar] [CrossRef]
- Wei, Y.H.; Zhang, J.Y.; Zhang, D.W.; Tu, T.H.; Luo, L.G. Metal concentrations in various fish organs of different fish species from Poyang Lake, China. Ecotoxicol. Environ. Saf. 2014, 104, 182–188. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Xiao, M.S.; Zhang, J.D.; Liu, C.Y.; Qiu, Z.Z.; Cai, Y. Spatial distribution, chemical fraction and fuzzy comprehensive risk assessment of heavy metals in surface sediments from the Honghu Lake, China. Int. J. Environ. Res. Public Health 2018, 15, 207. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Health of the People’s Republic of China. China GB 5009.12-2000; National Food Safety Standard: Determination of Lead in Foods; Ministry of Health: Beijing, China, 2010. (In Chinese)
- Ministry of Health and Family Planning Commission of the People’s Republic of China. GB 5009.15-2014; National Food Safety Standard: Determination of Cadmiumin Foods; Ministry of Health and Family Planning Commission: Beijing, China, 2014. (In Chinese)
- Ministry of Health and Family Planning Commission of the People’s Republic of China. GB 5009.123-2014; National Food Safety Standard: Determination of Chromium in Foods; Ministry of Health and Family Planning Commission: Beijing, China, 2014. (In Chinese)
- Ministry of Health and Family Planning Commission of the People’s Republic of China. GB 5009.11-2014; National Food Safety Standard: Determination of Total Arsenic and Inorganic Arsenic in Foods; Ministry of Health and Family Planning Commission: Beijing, China, 2014. (In Chinese)
- Ministry of National Standardization Management Committee of the People’s Republic of China. GB/T 5009.13-2003; National Food Safety Standard: Determination of Copper in Foods; Ministry of National Standardization Management Committee: Beijing, China, 2003. (In Chinese)
- Ministry of National Standardization Management Committee of the People’s Republic of China. GB/T 5009.14-2003; National Food Safety Standard: Determination of Zinc in Foods; Ministry of National Standardization Management Committee: Beijing, China, 2003. (In Chinese)
- Liang, P.; Wu, S.C.; Zhang, J.; Cao, Y.C.; Yu, S.; Wong, M.H. The effects of mariculture on heavy metal distribution in sediments and cultured fish around the Pearl River Delta region, south China. Chemosphere 2016, 148, 171–177. [Google Scholar] [CrossRef] [PubMed]
- Ullah, A.K.M.A.; Maksud, M.A.; Khan, S.R.; Lutfa, L.N.; Quraishi, S.B. Dietary intake of heavy metals from eight highly consumed species of cultured fish and possible human health risk implications in Bangladesh. Toxicol. Rep. 2017, 4, 574–579. [Google Scholar] [CrossRef] [PubMed]
- Alamdar, A.; Equani, S.A.M.A.S.; Hanif, N.; Ali, S.M.; Fasola, M.; Bokhari, H.; Katsoyiannis, I.A.; Shen, H.Q. Huaman exposure to trace metals and arsenic via consumption of fish from river Chenab, Pakistan and associated health risks. Chemosphere 2017, 168, 1004–1012. [Google Scholar] [CrossRef] [PubMed]
- Cai, S.W.; Ni, Z.H.; Liu, B.; Yan, X.; Fan, L.L.; Liu, Y. Concentration an risk assessment of heavy metals in the main economic fish from Chishui River. Freshw. Fish. 2017, 47, 105–112. (In Chinese) [Google Scholar]
- Zhang, F.F.; Yang, S.Q.; Xu, Y.P.; Zhou, Z.; Huang, Q.H. Contamination of heavy metals in game fish in Shanghai and fish consumption safety assessment. China Environ. 2017, 37, 754–760. (In Chinese) [Google Scholar]
- United States Environmental Protection Agency (USEPA). Risk Assessment Guidance for Superfund Volume 1: Human Health Evaluation Manual (Part A); United States Environmental Protection Agency: Washington, DC, USA, 1989.
- Cooper, C.B.; Doyle, M.E.; Kipp, K. Risk of consumption of contaminated seafood, the Quincy Bay Case Study. Environ. Health Perspect. 1991, 90, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Environmental Protection Department. The fish and shrimps intake rate in different provinces of China. In Exposure Factors Handbook of Chinese Pollution; Duan, X.L., Ed.; China Environmental Publishing, Inc.: Beijing, China, 2013; Volume 1, pp. 246–247. (In Chinese) [Google Scholar]
- Environmental Protection Department. The weight of Chinese population divided by provinces (municipalities, autonomous regions), urban/rural, and sex. In Exposure Factors Handbook of Chinese Pollution; Duan, X.L., Ed.; China Environmental Publishing, Inc.: Beijing, China, 2013; Volume 1, p. 761. (In Chinese) [Google Scholar]
- Islam, M.S.; Ahmed, M.K.; Al-Mamun, M.H.; Masunaga, S. Assessment of trace metals in fish species of urban rivers in Bangladesh and health implications. Environ. Toxicol. Pharmacol. 2015, 39, 347–357. [Google Scholar] [CrossRef] [PubMed]
- United States Environmental Protection Agency (USEPA). Risk-Based Concentration Table; United States Environmental Protection Agency: Philadelphia, PA, USA, 2010.
- World Health Organization (WHO). Guidelines for Drinking Water Quality, 3rd ed.; World Health Organization: Geneva, Switzerland, 2004. [Google Scholar]
- Food and Agriculture Organization (FAO). Arsenic Contamination of Irrigation Water, Soil and Crops in Bangladesh: Risk Implications for Sustainable Agriculture and Food Safety in Asia; Food and Agriculture Organization of the United Nations Regional Office for Asia and the Pacific: Bangkok, Tailand, 2006. [Google Scholar]
- Ministry of Health of the People’s Republic of China. GB 2762-2012; National Food Safety Standard: Contaminants Limitation in Foods; Ministry of Health: Beijing, China, 2012. (In Chinese)
- Ministry of Agriculture of the People’s Republic of China. NY 5073-2006; Harmless Food—The Limit of Toxic and Harmful Substances in Aquatic Products; Ministry of Agriculture: Beijing, China, 2006. (In Chinese)
- Fu, J.; Hu, X.; Tao, X.C.; Yu, H.X.; Zhang, X.W. Risk and toxicity assessments of heavy metals in sediments and fish from the Yangtze River and Taihu Lake, China. Chemosphere 2013, 93, 1887–1895. [Google Scholar] [CrossRef] [PubMed]
- Yi, Y.J.; Yang, Z.F.; Zhang, S.H. Ecological risk assessment of heavy metals in sediment and human health risk assessment of heavy metals in fish in the middle and lower reaches of the Yangtze River basin. Environ. Pollut. 2011, 159, 2575–2585. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Chen, F.; Ma, Q.L.; Yao, L.A.; Xu, Z.C.; Zhao, X.M.; Liang, R.C. Heavy metal pollution and health risk assessment of fish in Hizhou Section of the Dongjiang River. J. Ecol. Rural Environ. 2017, 33, 70–76. (In Chinese) [Google Scholar]
- Kim, K.H.; Kim, Y.J.; Heu, M.S.; Kim, J.S. Contamination and risk assessment of Lead and Cadmium in commonly consumed fish as affected by habitat. Korean J. Fish. Aquat. Sci. 2016, 49, 541–555. [Google Scholar]
- Raknuzzaman, M.; Ahamed, M.K.; Islam, M.; Habibullah-Al-Mamun, M.; Tokumura, M.; Sekine, M.; Masunaga, S. Trace metal contamination in commercial fish and crustaceans collected from coastal area of Bangladesh and health risk assessment. Environ. Sci. Pollut. Res. 2016, 23, 17298–17310. [Google Scholar] [CrossRef] [PubMed]
- Low, K.H.; Zain, S.M.; Abas, M.R.; Salleh, K.M.; Teo, Y.Y. Distribution and health risk assessment of trace metals in freshwater tilapia from three different aquaculture sites in Jelebu Region (Malaysia). Food Chem. 2015, 177, 390–396. [Google Scholar] [CrossRef] [PubMed]
- Mok, J.S.; Shim, K.B.; Lee, T.S.; Song, K.C.; Lee, K.J.; Kim, S.G.; Kim, J.H. Heavy metal contents in wild and cultured fish from the Korean Coasts. Korean J. Fish. Aquat. Sci. 2009, 42, 561–568. (In Korean) [Google Scholar]
- Jayaprakash, M.; Kumar, R.S.; Giridharan, L.; Sujitha, S.B.; Sarkar, S.K.; Jonathan, M.P. Bioaccumulation of metals in fish species from water and sediments in macrotidal Ennore creek, Chennai, SE coast of India: A metropolitan city effect. Ecotoxicol. Environ. Saf. 2015, 120, 243–255. [Google Scholar] [CrossRef] [PubMed]
- Dhanakumar, S.; Solaraj, G.; Mohanraj, R. Heavy metal partitioning in sediments and bioaccumulation in commercial fish species of three major reservoirs of river Cauvery delta region, India. Ecotoxicol. Environ. Saf. 2015, 113, 145–151. [Google Scholar] [CrossRef] [PubMed]
- Mazej, Z.; Sayegh-Petkovsek, S.A.; Pokorny, B. Heavy metal concentrations in food chain of Lake velenjsko jezero, Slovenia: An artificial lake from mining. Arch. Environ. Contam. Toxicol. 2010, 58, 998–1007. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.Y.; Li, J.; Xue, M.M.; Yang, M.X.; Liu, J.Y. Accumulation and migration regularity of heavy metals in plankton and aristichthys nobilis. Food Mach. 2016, 3, 96–100. (In Chinese) [Google Scholar]
- Joint Food and Agriculture Organization/World Health Organization Expert Committee on Food Additives (JECFA). Evaluation of Certain Food Additives and Contaminants; Fifty-Third Report of the Joint FAO/WHO Expert Committee on Food Additives; WHO Technical Report Series, No. 896; World Health Organization: Geneva, Switzerland, 1993. [Google Scholar]
Fish Species | Pi | MPI | |||||
---|---|---|---|---|---|---|---|
As | Cd | Cr | Cu | Pb | Zn | ||
Crucian carp | 0.0000 | 0.0000 | 0.0957 | 0.0136 | 0.2518 | 0.2788 | 0.0977 |
Grass carp | 0.0000 | 0.0000 | 0.1884 | 0.0204 | 0.5688 | 0.4786 | 0.1798 |
Carp | 0.0000 | 0.0260 | 0.0513 | 0.0114 | 0.1900 | 0.6478 | 0.0921 |
Catfish | 0.0000 | 0.0720 | 0.0705 | 0.0133 | 0.9316 | 0.2976 | 0.1269 |
Fish Species | As | Cd | Cr | Cu | Pb | Zn | |
---|---|---|---|---|---|---|---|
Cultured | Crucian carp | 0.0000 | 0.0000 | 0.1913 | 0.6797 | 0.1259 | 13.94 |
Grass carp | 0.0000 | 0.0000 | 0.3767 | 1.018 | 0.2844 | 23.93 | |
Mean | 0.0000 | 0.0000 | 0.2840 | 0.8489 | 0.2052 | 18.94 | |
Wild | Crucian carp | 0.0000 | 0.0087 | 3.357 | 0.3829 | 0.0938 | 15.31 |
Grass carp | 0.0000 | 0.0032 | 0.5369 | 0.4502 | 0.0111 | 17.29 | |
Mean | 0.0000 | 0.0060 | 1.947 | 0.4166 | 0.0525 | 16.30 | |
LOD * | 0.001 | 0.001 | 0.001 | 0.02 | 0.01 | 0.1 | |
Chinese standard [51,52] | 0.1 | 0.1 | 2.0 | 50 | 0.5 | 50 |
Species | Nation | Lake/River | As | Cd | Cr | Cu | Pb | Zn | Reference |
---|---|---|---|---|---|---|---|---|---|
Wild | China | Honghu Lake | 0.0000 | 0.0060 | 1.947 | 0.4166 | 0.0525 | 16.30 | This study |
Cultured | 0.0000 | 0.0000 | 0.2840 | 0.8489 | 0.2052 | 18.94 | |||
Wild | China | Poyang Lake | 0.0275 | 0.0045 | 0.2510 | 0.4165 | 0.0505 | 7.785 | [30] |
Taihu Lake | 0.6300 | 0.4740 | 1.1820 | 1.1160 | 5.8140 | 81.3 | [53] | ||
Yangtze River | 0.0145 | 0.1120 | 0.1750 | 0.9800 | 0.5700 | 6.800 | [54] | ||
0.5640 | 0.1605 | 0.6255 | 1.3875 | 1.4865 | 35.57 | [53] | |||
Cultured | China | Huizhou | - | - | 0.1592 | 0.1520 | 0.0606 | 5.140 | [55] |
Korea | - | - | 0.033 | - | - | 0.069 | - | [56] | |
Bangladesh | - | 0.332 | 0.017 | 0.193 | - | 0.593 | - | [57] | |
Malaysia | - | 0.7967 | 0.0297 | - | 0.21 | 0.0137 | 3.7 | [58] | |
Wild | Korea | - | - | 0.0000 | 0.10 | 1.15 | 0.0000 | 6.18 | [59] |
Cultured | - | - | 0.0000 | 0.51 | 0.96 | 0.0000 | 6.92 | ||
Wild | Aegean Sea | - | - | 0.11 | 0.37 | 1.31 | 0.48 | 14.38 | [28] |
Cultured | - | - | 0.05 | 0.33 | 0.56 | 0.45 | 7.53 |
Trace Elements | As | Cd | Cr | Cu | Pb | Zn | ||
---|---|---|---|---|---|---|---|---|
Cultured | Muscle | Mean concentration (mg/kg) | 0 | 0 | 0.284 | 0.8489 | 0.2051 | 18.94 |
Mixed tissues | 0 | 0.0124 | 0.1831 | 2.430 | 0.1154 | 42.63 | ||
Wild | Muscle | 0 | 0.0060 | 1.947 | 0.4166 | 0.0525 | 16.30 | |
Mixed tissues | 0.0126 | 0.0475 | 0.711 | 1.706 | 0.1809 | 48.68 | ||
RFD 1 (mg/kg/day) | 0.0003 | 0.001 | 1.5 | 0.04 | 0.004 | 0.3 | ||
Cultured | Muscle | THQ | 0 | 0 | 0.0002 | 0.0179 | 0.0434 | 0.0534 |
Mixed tissues | 0 | 0.0105 | 0.0001 | 0.0514 | 0.0244 | 0.1202 | ||
Wild | Muscle | 0 | 0.0050 | 0.0011 | 0.0088 | 0.0111 | 0.0459 | |
Mixed tissues | 0.0355 | 0.0402 | 0.0004 | 0.0361 | 0.0382 | 0.1372 | ||
Cultured | Muscle | CR | 0 | - | - | - | 1.47 × 10−6 | - |
Mixed tissues | 0 | - | - | - | 8.30 × 10−7 | - | ||
Wild | Muscle | 0 | - | - | - | 3.77 × 10−7 | - | |
Mixed tissues | 1.60 × 10−5 | - | - | - | 1.30 × 10−6 | - | ||
PTWI 2 (µg/kg) | 15 | 7 | 15 | 3500 | 25 | 7000 | ||
Cultured | Muscle | EWI (µg/kg) | 0 | 0 | 1.754 | 5.241 | 1.267 | 117 |
Mixed tissues | 0 | 0.0768 | 1.131 | 15.01 | 0.7124 | 263 | ||
Wild | Muscle | 0 | 0.0368 | 12.02 | 2.572 | 0.3238 | 101 | |
Mixed tissues | 0.0778 | 0.2933 | 4.390 | 10.53 | 1.117 | 301 | ||
Cultured | Muscle | EWI/PTWI | 0 | 0 | 11.69% | 0.15% | 5.07% | 1.67% |
Mixed tissues | 0 | 1.10% | 7.54% | 0.43% | 2.85% | 3.76% | ||
Wild | Muscle | 0 | 0.53% | 80.13% | 0.07% | 1.30% | 1.44% | |
Mixed tissues | 0.52% | 4.19% | 29.26% | 0.30% | 4.47% | 4.29% |
Food Ingestion Rate (FIR) Limitation (g/day) | As | Cd | Cr | Cu | Pb | Zn | |
---|---|---|---|---|---|---|---|
Based on target hazard quotients (THQ) | |||||||
Cultured fish | Muscle | / | / | 339,296 | 3027 | 1253 | 1018 |
Mixed tissues | / | 5162 | 526,225 | 1057 | 2227 | 452 | |
Wild fish | Muscle | / | 10,707 | 49,497 | 6168 | 4894 | 1183 |
Mixed tissues | 1529 | 1352 | 135,527 | 1506 | 1420 | 396 | |
Based on carcinogenic risk (CR) | |||||||
Cultured fish | Muscle | / | / | / | / | 3684 | / |
Mixed tissues | / | / | / | / | 6550 | / | |
Wild fish | Muscle | / | / | / | / | 14,396 | / |
Mixed tissues | 340 | / | / | / | 4178 | / | |
Based on estimated weekly intake (EWI) | |||||||
Cultured fish | Muscle | / | / | 465 | 36,284 | 1072 | 3253 |
Mixed tissues | / | 4950 | 721 | 12,673 | 1907 | 1445 | |
Wild fish | Muscle | / | 10,267 | 68 | 73,932 | 4190 | 3780 |
Mixed tissues | 10,475 | 1297 | 186 | 18,052 | 1216 | 1265 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Zhu, L.; Li, F.; Liu, C.; Qiu, Z.; Xiao, M.; Cai, Y. Comparison of Toxic Metal Distribution Characteristics and Health Risk between Cultured and Wild Fish Captured from Honghu City, China. Int. J. Environ. Res. Public Health 2018, 15, 334. https://doi.org/10.3390/ijerph15020334
Zhang J, Zhu L, Li F, Liu C, Qiu Z, Xiao M, Cai Y. Comparison of Toxic Metal Distribution Characteristics and Health Risk between Cultured and Wild Fish Captured from Honghu City, China. International Journal of Environmental Research and Public Health. 2018; 15(2):334. https://doi.org/10.3390/ijerph15020334
Chicago/Turabian StyleZhang, Jingdong, Liyun Zhu, Fei Li, Chaoyang Liu, Zhenzhen Qiu, Minsi Xiao, and Ying Cai. 2018. "Comparison of Toxic Metal Distribution Characteristics and Health Risk between Cultured and Wild Fish Captured from Honghu City, China" International Journal of Environmental Research and Public Health 15, no. 2: 334. https://doi.org/10.3390/ijerph15020334
APA StyleZhang, J., Zhu, L., Li, F., Liu, C., Qiu, Z., Xiao, M., & Cai, Y. (2018). Comparison of Toxic Metal Distribution Characteristics and Health Risk between Cultured and Wild Fish Captured from Honghu City, China. International Journal of Environmental Research and Public Health, 15(2), 334. https://doi.org/10.3390/ijerph15020334