The Association of Urban Greenness and Walking Behavior: Using Google Street View and Deep Learning Techniques to Estimate Residents’ Exposure to Urban Greenness
Abstract
:1. Background
2. Methods
2.1. Walking Data
2.2. Street Greenness
2.3. Covariates
3. Data Analysis
4. Results
5. Discussion
5.1. Major Findings
5.2. Strength and Limitation
6. Conclusions
Funding
Conflicts of Interest
References
- Ulrich, R.S. Biophilia, biophobia, and natural landscapes. In The Biophilia Hypothesis; Kellert, S.R., Wilson, E.O., Eds.; Island Press: Washington, DC, USA, 1993; pp. 73–137. [Google Scholar]
- Coon, J.T.; Boddy, K.; Stein, K.; Whear, R.; Barton, J.; Depledge, M.H. Does Participating in Physical Activity in Outdoor Natural Environments Have a Greater Effect on Physical and Mental Wellbeing than Physical Activity Indoors? A Systematic Review. Environ. Sci. Technol. 2011, 45, 1761–1772. [Google Scholar] [CrossRef] [PubMed]
- Ulrich, R.S. View through a window may influence recovery from surgery. Science 1984, 224, 420–421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pretty, J.; Peacock, J.; Hine, R.; Sellens, M.; South, N.; Griffin, M. Green exercise in the UK countryside: Effects on health and psychological well-being, and implications for policy and planning. J. Environ. Plan. Manag. 2007, 50, 211–231. [Google Scholar] [CrossRef]
- Sarkar, C. Residential greenness and adiposity: Findings from the UK Biobank. Environ. Int. 2017, 106, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, R.; Popham, F. Effect of exposure to natural environment on health inequalities: An observational population study. Lancet 2008, 372, 1655–1660. [Google Scholar] [CrossRef]
- Stigsdotter, U.K.; Ekholm, O.; Schipperijn, J.; Toftager, M.; Kamper-Jorgensen, F.; Randrup, T.B. Health promoting outdoor environments—Associations between green space, and health, health-related quality of life and stress based on a Danish national representative survey. Scand. J. Public Health 2010, 38, 411–417. [Google Scholar] [CrossRef] [PubMed]
- Markevych, I.; Schoierer, J.; Hartig, T.; Chudnovsky, A.; Hystad, P.; Dzhambov, A.M.; de Vries, S.; Triguero-Mas, M.; Brauer, M.; Nieuwenhuijsen, M.J.; et al. Exploring pathways linking greenspace to health: Theoretical and methodological guidance. Environ. Res. 2017, 158, 301–317. [Google Scholar] [CrossRef] [PubMed]
- Hartig, T.; Mitchell, R.; de Vries, S.; Frumkin, H. Nature and Health. Annu. Rev. Public Health 2014, 35, 207–228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pretty, J.; Hine, R.; Peacock, J. Green exercise: The benefits of activities in green places. Biologist 2006, 53, 143–148. [Google Scholar]
- Pretty, J.; Peacock, J.; Sellens, M.; Griffin, M. The mental and physical health outcomes of green exercise. Int. J. Environ. Health Res. 2005, 15, 319–337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van den Berg, A.E.; Hartig, T.; Staats, H. Preference for nature in urbanized societies: Stress, restoration, and the pursuit of sustainability. J. Soc. Issues 2007, 63, 79–96. [Google Scholar] [CrossRef]
- Barton, J.; Pretty, J. What is the best dose of nature and green exercise for improving mental health—A multi-study analysis. Environ. Sci. Technol. 2010, 44, 3947–3955. [Google Scholar] [CrossRef] [PubMed]
- Kaczynski, A.T.; Henderson, K.A. Environmental correlates of physical activity: A review of evidence about parks and recreation. Leis. Sci. 2007, 29, 315–354. [Google Scholar] [CrossRef]
- Coombes, E.; Jones, A.P.; Hillsdon, M. The relationship of physical activity and overweight to objectively measured green space accessibility and use. Soc. Sci. Med. 2010, 70, 816–822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Floyd, M.F.; Spengler, J.O.; Maddock, J.E.; Gobster, P.H.; Suau, L. Environmental and social correlates of physical activity in neighborhood parks: An observational study in Tampa and Chicago. Leis. Sci. 2008, 30, 360–375. [Google Scholar] [CrossRef]
- Giles-Corti, B.; Broomhall, M.H.; Knuiman, M.; Collins, C.; Douglas, K.; Ng, K.; Lange, A.; Donovan, R.J. Increasing walking—How important is distance to, attractiveness, and size of public open space? Am. J. Prev. Med. 2005, 28, 169–176. [Google Scholar] [CrossRef] [PubMed]
- Kaczynski, A.T.; Potwarka, L.R.; Smale, B.J.A.; Havitz, M.E. Association of Parkland Proximity with Neighborhood and Park-based Physical Activity: Variations by Gender and Age. Leis. Sci. 2009, 31, 174–191. [Google Scholar] [CrossRef]
- Koohsari, M.J.; Karakiewicz, J.A.; Kaczynski, A.T. Public Open Space and Walking: The Role of Proximity, Perceptual Qualities of the Surrounding Built Environment, and Street Configuration. Environ. Behav. 2013, 45, 706–736. [Google Scholar] [CrossRef]
- Sarkar, C.; Webster, C.; Pryor, M.; Tang, D.; Melbourne, S.; Zhang, X.H.; Liu, J.Z. Exploring associations between urban green, street design and walking: Results from the Greater London boroughs. Landsc. Urban Plan. 2015, 143, 112–125. [Google Scholar] [CrossRef]
- Van Dillen, S.M.E.; de Vries, S.; Groenewegen, P.P.; Spreeuwenberg, P. Greenspace in urban neighbourhoods and residents’ health: Adding quality to quantity. J. Epidemiol. Community Health 2012, 66, e8. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Lu, Y.; Guo, Y.; Yuan, Y. Estimating the willingness to pay for green space services in Shanghai: Implications for social equity in urban China. Urban For. Urban Green. 2017, 26, 95–103. [Google Scholar] [CrossRef]
- Lu, Y.; Sarkar, C.; Ye, Y.; Xiao, Y. Using the Online Walking Journal to explore the relationship between campus environment and walking behaviour. J. Transp. Health 2017, 5, 123–132. [Google Scholar] [CrossRef]
- Duncan, M.; Mummery, K. Psychosocial and environmental factors associated with physical activity among city dwellers in regional Queensland. Prev. Med. 2005, 40, 363–372. [Google Scholar] [CrossRef] [PubMed]
- Jenna, H.T.; Thomas, M.U.; Belen, R. Using Objective and Subjective Measures of Neighborhood Greenness and Accessible Destinations for Understanding Walking Trips and BMI in Seattle, Washington. Am. J. Health Promot. 2007, 21, 371–379. [Google Scholar]
- Jiang, B.; Deal, B.; Pan, H.Z.; Larsen, L.; Hsieh, C.H.; Chang, C.Y.; Sullivan, W.C. Remotely-sensed imagery vs. eye-level photography: Evaluating associations among measurements of tree cover density. Landsc. Urban Plan. 2017, 157, 270–281. [Google Scholar] [CrossRef]
- Li, X.J.; Zhang, C.R.; Li, W.D.; Ricard, R.; Meng, Q.Y.; Zhang, W.X. Assessing street-level urban greenery using Google Street View and a modified green view index. Urban For. Urban Green. 2015, 14, 675–685. [Google Scholar] [CrossRef]
- Boone-Heinonen, J.; Gordon-Larsen, P.; Guilkey, D.K.; Jacobs, D.R.; Popkin, B.M. Environment and physical activity dynamics: The role of residential self-selection. Psychol. Sport Exerc. 2011, 12, 54–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frank, L.D.; Saelens, B.E.; Powell, K.E.; Chapman, J.E. Stepping towards causation: Do built environments or neighborhood and travel preferences explain physical activity, driving, and obesity? Soc. Sci. Med. 2007, 65, 1898–1914. [Google Scholar] [CrossRef] [PubMed]
- Diez Roux, A.V. Estimating neighborhood health effects: The challenges of causal inference in a complex world. Soc. Sci. Med. 2004, 58, 1953–1960. [Google Scholar] [CrossRef]
- Bagley, M.N.; Mokhtarian, P.L. The impact of residential neighborhood type on travel behavior: A structural equations modeling approach. Ann. Reg. Sci. 2002, 36, 279–297. [Google Scholar] [CrossRef] [Green Version]
- Handy, S.L.; Cao, X.; Mokhtarian, P.L. Self-selection in the relationship between the built environment and walking: Empirical evidence from Northern California. J. Am. Plan. Assoc. 2006, 72, 55–74. [Google Scholar] [CrossRef]
- Cao, X.; Mokhtarian, P.L.; Handy, S.L. Examining the impacts of residential self-selection on travel behaviour: A focus on empirical findings. Transp. Rev. 2009, 29, 359–395. [Google Scholar] [CrossRef]
- Mokhtarian, P.L.; Cao, X. Examining the impacts of residential self-selection on travel behavior: A focus on methodologies. Transp. Res. Part B Methodol. 2008, 42, 204–228. [Google Scholar] [CrossRef] [Green Version]
- Google Inc. Understand Google Street View 2016. Available online: https://www.google.com/streetview/understand/ (accessed on 1 February 2017).
- Charreire, H.; Mackenbach, J.D.; Ouasti, M.; Lakerveld, J.; Compernolle, S.; Ben-Rebah, M.; Mckee, M.; Brug, J.; Rutter, H.; Oppert, J.M. Using remote sensing to define environmental characteristics related to physical activity and dietary behaviours: A systematic review (the SPOTLIGHT project). Health Place 2014, 25, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Rundle, A.G.; Bader, M.D.M.; Richards, C.A.; Neckerman, K.M.; Teitler, J.O. Using Google Street View to Audit Neighborhood Environments. Am. J. Prev. Med. 2011, 40, 94–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edwards, N.; Hooper, P.; Trapp, G.S.A.; Bull, F.; Boruff, B.; Giles-Corti, B. Development of a Public Open Space Desktop Auditing Tool (POSDAT): A remote sensing approach. Appl. Geogr. 2013, 38, 22–30. [Google Scholar] [CrossRef]
- Liang, J.; Gong, J.; Sun, J.; Zhou, J.; Li, W.; Li, Y.; Liu, J.; Shen, S. Automatic sky view factor estimation from street view photographs—A big data approach. Remote Sens. 2017, 9, 411. [Google Scholar] [CrossRef]
- Lu, Y.; Sarkar, C.; Xiao, Y. The effect of street-level greenery on walking behavior: Evidence from Hong Kong. Soc. Sci. Med. 2018, 208, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Poursaeed, O.; Matera, T.; Belongie, S. Vision-based real estate price estimation. Mach. Vis. Appl. 2018, 29, 667–676. [Google Scholar] [CrossRef] [Green Version]
- Wegner, J.D.; Branson, S.; Hall, D.; Schindler, K.; Perona, P. Cataloging Public Objects Using Aerial and Street-Level Images—Urban Trees. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 6014–6023. [Google Scholar] [CrossRef]
- Garcia-Garcia, A.; Orts, S.; Oprea, S.; Villena-Martinez, V.; Rodriguez, J.G. A Review on Deep Learning Techniques Applied to Semantic Segmentation. Available online: https://arxiv.org/pdf/1704.06857.pdf (accessed on 24 July 2018).
- Seiferling, I.; Naik, N.; Ratti, C.; Proulx, R. Green streets—Quantifying and mapping urban trees with street-level imagery and computer vision. Landsc. Urban Plan. 2017, 165, 93–101. [Google Scholar] [CrossRef]
- Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid scene parsing network. In Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Washington, DC, USA, 30 May–3 June 2017; pp. 6230–6239. [Google Scholar]
- Hong Kong Housing Authority. Report on Population and Households in Housing Authority Public Rental Housing. 2017. Available online: https://www.housingauthority.gov.hk/en/common/pdf/about-us/publications-and-statistics/PopulationReport.pdf (accessed on 10 February 2017).
- Housing Authority of Hong Kong. Report on Population and Households in Housing Authority Public Rental Housing; Housing Authority of Hong Kong: Hong Kong, China, 2013. [Google Scholar]
- Danaei, G.; Ding, E.L.; Mozaffarian, D.; Taylor, B.; Rehm, J.; Murray, C.J.L.; Ezzati, M. The preventable causes of death in the United States: Comparative risk assessment of dietary, lifestyle, and metabolic risk factors. PLoS Med. 2009, 6, e1000058. [Google Scholar] [CrossRef] [PubMed]
- Census & Statistics Department of Hong Kong. Population Estimates. 2016. Available online: http://www.censtatd.gov.hk/hkstat/sub/so150.jsp (accessed on 10 October 2016).
- Cerin, E.; Nathan, A.; van Cauwenberg, J.; Barnett, D.W.; Barnett, A. The neighbourhood physical environment and active travel in older adults: A systematic review and meta-analysis. Int. J. Behav. Nutr. Phys. Act. 2017, 14. [Google Scholar] [CrossRef] [PubMed]
- Bohannon, R.W. Comfortable and maximum walking speed of adults aged 20–79 years: Reference values and determinants. Age Ageing 1997, 26, 15–19. [Google Scholar] [CrossRef] [PubMed]
- Langlois, M.; Wasfi, R.A.; Ross, N.A.; El-Geneidy, A.M. Can transit-oriented developments help achieve the recommended weekly level of physical activity? J. Transp. Health 2016, 3, 181–190. [Google Scholar] [CrossRef]
- Day, K. Built environmental correlates of physical activity in China: A review. Prev. Med. Rep. 2016, 3, 303–316. [Google Scholar] [CrossRef] [PubMed]
- Salvo, D.; Reis, R.S.; Stein, A.D.; Rivera, J.; Martorell, R.; Pratt, M. Characteristics of the Built Environment in Relation to Objectively Measured Physical Activity Among Mexican Adults, 2011. Prev. Chronic Dis. 2014, 11, E147. [Google Scholar] [CrossRef] [PubMed]
- McCormack, G.R.; Shiell, A. In search of causality: A systematic review of the relationship between the built environment and physical activity among adults. Int. J. Behav. Nutr. Phys. Act. 2011, 8, 125. [Google Scholar] [CrossRef] [PubMed]
- Mazumdar, S.; Rushton, G.; Smith, B.J.; Zimmerman, D.L.; Donham, K.J. Geocoding accuracy and the recovery of relationships between environmental exposures and health. Int. J. Health Geogr. 2008, 7, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swift, A.; Liu, L.; Uber, J. MAUP sensitivity analysis of ecological bias in health studies. GeoJournal 2014, 79, 137–153. [Google Scholar] [CrossRef]
- Cordts, M.; Omran, M.; Ramos, S.; Rehfeld, T.; Enzweiler, M.; Benenson, R.; Franke, U.; Roth, S.; Schiele, B. The Cityscapes Dataset for Semantic Urban Scene Understanding. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 3213–3223. [Google Scholar] [CrossRef]
- Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid Scene Parsing Network. 2017. Available online: https://hszhao.github.io/projects/pspnet/ (accessed on 11 December 2017).
- Li, F.Z.; Fisher, K.J.; Brownson, R.C.; Bosworth, M. Multilevel modelling of built environment characteristics related to neighbourhood walking activity in older adults. J. Epidemiol. Community Health 2005, 59, 558–564. [Google Scholar] [CrossRef] [PubMed]
- Adkins, A.; Dill, J.; Luhr, G.; Neal, M. Unpacking Walkability: Testing the Influence of Urban Design Features on Perceptions of Walking Environment Attractiveness. J. Urban Des. 2012, 17, 499–510. [Google Scholar] [CrossRef]
- Chin, G.K.W.; Van Niel, K.P.; Giles-Corti, B.; Knuiman, M. Accessibility and connectivity in physical activity studies: The impact of missing pedestrian data. Prev. Med. 2008, 46, 41–45. [Google Scholar] [CrossRef] [PubMed]
- Frank, L.D.; Schmid, T.L.; Sallis, J.F.; Chapman, J.; Saelens, B.E. Linking objectively measured physical activity with objectively measured urban form: Findings from SMARTRAQ. Am. J. Prev. Med. 2005, 28, 117–125. [Google Scholar] [CrossRef] [PubMed]
- Hajna, S.; Ross, N.A.; Brazeau, A.-S.; Bélisle, P.; Joseph, L.; Dasgupta, K. Associations between neighbourhood walkability and daily steps in adults: A systematic review and meta-analysis. BMC Public Health 2015, 15, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Lee, I.M.; Shiroma, E.J.; Lobelo, F.; Puska, P.; Blair, S.N.; Katzmarzyk, P.T. Impact of Physical Inactivity on the World’s Major Non-Communicable Diseases. Lancet 2012, 380, 219–229. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2014. [Google Scholar]
- Mertens, L.; Compernolle, S.; Deforche, B.; Mackenbach, J.D.; Lakerveld, J.; Brug, J.; Roda, C.; Feuillet, T.; Oppert, J.M.; Glonti, K.; et al. Built environmental correlates of cycling for transport across Europe. Health Place 2017, 44, 35–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naimi, B.; Hamm, N.A.S.; Groen, T.A.; Skidmore, A.K.; Toxopeus, A.G. Where is positional uncertainty a problem for species distribution modelling? Ecography 2014, 37, 191–203. [Google Scholar] [CrossRef]
- Lee, A.C.K.; Maheswaran, R. The health benefits of urban green spaces: A review of the evidence. J. Public Health 2011, 33, 212–222. [Google Scholar] [CrossRef] [PubMed]
- Sallis, J.F.; Floyd, M.F.; Rodríguez, D.A.; Saelens, B.E. Role of Built Environments in Physical Activity, Obesity, and Cardiovascular Disease. Circulation 2012, 125, 729–737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lovasi, G.S.; Quinn, J.W.; Neckerman, K.M.; Perzanowski, M.S.; Rundle, A. Children living in areas with more street trees have lower prevalence of asthma. J. Epidemiol. Community Health 2008, 62, 647–649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lovasi, G.S.; Schwartz-Soicher, O.; Quinn, J.W.; Berger, D.K.; Neckerman, K.M.; Jaslow, R.; Lee, K.K.; Rundle, A. Neighborhood safety and green space as predictors of obesity among preschool children from low-income families in New York City. Prev. Med. 2013, 57, 189–193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saelens, B.E.; Handy, S.L. Built environment correlates of walking: A review. Med. Sci. Sports Exerc. 2008, 40, S550–S566. [Google Scholar] [CrossRef] [PubMed]
- Takano, T.; Nakamura, K.; Watanabe, M. Urban residential environments and senior citizens’ longevity in megacity areas: The importance of walkable green spaces. J. Epidemiol. Community Health 2002, 56, 913–918. [Google Scholar] [CrossRef] [PubMed]
- King, W.C.; Belle, S.H.; Brach, J.S.; Simkin-Silverman, L.R.; Soska, T.; Kriska, A.M. Objective measures of neighborhood environment and physical activity in older women. Am. J. Prevent. Med. 2005, 28, 461–469. [Google Scholar] [CrossRef] [PubMed]
- De Vries, S.; van Dillen, S.M.E.; Groenewegen, P.P.; Spreeuwenberg, P. Streetscape greenery and health: Stress, social cohesion and physical activity as mediators. Soc. Sci. Med. 2013, 94, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Lovasi, G.S.; Jacobson, J.S.; Quinn, J.W.; Neckerman, K.M.; Ashby-Thompson, M.N.; Rundle, A. Is the environment near home and school associated with physical activity and adiposity of urban preschool children? J. Urban Health 2011, 88, 1143–1157. [Google Scholar] [CrossRef] [PubMed]
- Grasser, G.; Van Dyck, D.; Titze, S.; Stronegger, W. Objectively measured walkability and active transport and weight-related outcomes in adults: A systematic review. Int. J. Public Health 2013, 58, 615–625. [Google Scholar] [CrossRef] [PubMed]
- Van Holle, V.; Deforche, B.; Van Cauwenberg, J.; Goubert, L.; Maes, L.; Van de Weghe, N.; De Bourdeaudhuij, I. Relationship between the physical environment and different domains of physical activity in European adults: A systematic review. BMC Public Health 2012, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ewing, R.; Cervero, R. Travel and the built environment: A meta-analysis. J. Am. Plan. Assoc. 2010, 76, 265–294. [Google Scholar] [CrossRef]
- Gomez, L.F.; Sarmiento, O.L.; Parra, D.C.; Schmid, T.L.; Pratt, M.; Jacoby, E.; Neiman, A.; Cervero, R.; Mosquera, J.; Rutt, C.; et al. Characteristics of the Built Environment Associated With Leisure-Time Physical Activity Among Adults in Bogota, Colombia: A Multilevel Study. J. Phys. Act. Health 2010, 7, S196–S203. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Li, J.; Liang, Y.; Wang, Z.; Hong, X.; Ware, R.S.; Leslie, E.; Sugiyama, T.; Owen, N. Associations of residential density with adolescents’ physical activity in a rapidly urbanizing area of mainland China. J. Urban Health Bull. N. Y. Acad. Med. 2010, 87, 44–53. [Google Scholar] [CrossRef] [PubMed]
- Su, M.; Tan, Y.-Y.; Liu, Q.-M.; Ren, Y.-J.; Kawachi, I.; Li, L.-M.; Lv, J. Association between perceived urban built environment attributes and leisure-time physical activity among adults in Hangzhou, China. Prev. Med. 2014, 66, 60–64. [Google Scholar] [CrossRef] [PubMed]
- Siqueira Reis, R.; Hino, A.A.F.; Ricardo Rech, C.; Kerr, J.; Curi Hallal, P. Walkability and Physical Activity: Findings from Curitiba, Brazil. Am. J. Prev. Med. 2013, 45, 269–275. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Xiao, Y.; Ye, Y. Urban density, diversity and design: Is more always better for walking? A study from Hong Kong. Prev. Med. 2017, 103, S99–S103. [Google Scholar] [CrossRef] [PubMed]
- Ding, D.; Gebel, K. Built environment, physical activity, and obesity: What have we learned from reviewing the literature? Health Place 2012, 18, 100–105. [Google Scholar] [CrossRef] [PubMed]
Sociodemographic Variables | Analysis 1 (n = 24,773) | Analysis 2 (n = 1994) | ||
---|---|---|---|---|
Count | Percentage (%) | Count | Percentage (%) | |
Age | ||||
5–17 | 3770 | 15.2 | 337 | 17.2 |
18–44 | 9456 | 38.2 | 583 | 29.8 |
45–64 | 7905 | 31.9 | 646 | 33 |
≥65 | 3642 | 14.7 | 392 | 20 |
Gender | ||||
Male | 11,924 | 48.1 | 852 | 43.5 |
Female | 12,849 | 51.9 | 1106 | 56.5 |
Household income | ||||
Low (<10 k HKD) | 6231 | 25.2 | 583 | 29.8 |
Medium-low (10–20 k) | 10,471 | 42.3 | 798 | 40.8 |
Medium-high (20–30 k) | 5655 | 22.8 | 445 | 22.7 |
High (>30 k) | 2416 | 9.8 | 132 | 6.7 |
Model Predictors | 400 m Buffer | p-Value | 800 m Buffer | p-Value |
---|---|---|---|---|
OR, (95% CI) | OR, (95% CI) | |||
Greenness | ||||
Green view index | 1.149, (1.035, 1.276) | 0.009 * | 1.193, (1.070, 1.330) | 0.001 * |
Built environment | ||||
Population density | 1.050, (0.957, 1.152) | 0.304 | 1.047, (0.955, 1.148) | 0.329 |
Land-use mix | 1.039, (0.959, 1.126) | 0.354 | 1.020, (0.935, 1.111) | 0.659 |
Intersection density | 1.031, (0.932, 1.140) | 0.556 | 1.003, (0.859, 1.172) | 0.967 |
Number of retail shops | 1.056, (0.962, 1.160) | 0.252 | 1.191, (1.049, 1.353) | 0.007 * |
Number of recreational facilities | 1.008, (0.924, 1.099) | 0.859 | 1.000, (0.884, 1.132) | 0.996 |
Number of bus stops | 0.997, (0.903, 1.101) | 0.950 | 0.948, (0.804, 1.119) | 0.529 |
Distance to MTR | 1.090, (1.027, 1.156) | 0.005 * | 1.095, (1.025, 1.169) | 0.007 * |
Individual factors | ||||
Age | ||||
5–17—Reference | ||||
18–44 | 0.354, (0.327, 0.383) | <0.001 ** | 0.354, (0.326, 0.383) | <0.001 ** |
45–64 | 0.551, (0.507, 0.594) | <0.001 ** | 0.551, (0.506, 0.598) | <0.001 ** |
≥65 | 1.763, (1.590, 1.950) | <0.001 ** | 1.760, (1.593, 1.950) | <0.001 ** |
Gender | ||||
Male—Reference | ||||
Female | 1.585, (1.501, 1.672) | <0.001 ** | 1.585, (1.501, 1.672) | <0.001 ** |
Household income | ||||
Low (<10 k)—Reference | ||||
Medium-low (10–20 k) | 0.806, (0.751, 0.865) | <0.001 ** | 0.806, (0.751, 0.865) | <0.001 ** |
Medium-high (20–30 k) | 0.675, (0.621, 0.733) | <0.001 ** | 0.675, (0.622, 0.734) | <0.001 ** |
High (>30 k) | 0.555, (0.498, 0.620) | <0.001 ** | 0.554, (0.497, 0.618) | <0.001 ** |
Interaction term | ||||
Green view index × Gender | 1.070, (1.014, 1.129) | 0.014 * | 1.091, (1.034, 1.152) | 0.001 * |
Model fitting | AIC = 31025 BIC = 31204 −2 Log Likelihood = −15,490 | AIC = 31015 BIC = 31193 −2 Log Likelihood = −15,485 |
Model Predictors | 400 m Buffer | p-Value | 800 m Buffer | p-Value |
---|---|---|---|---|
β, (95% CI) | β, (95% CI) | |||
Greenness | ||||
Green view index | 0.149, (0.045, 0.253) | 0.005 * | 0.233, (0.133, 0.333) | <0.001 ** |
Built environment | ||||
Population density | 0.007, (−0.083, 0.097) | 0.875 | −0.042, (−0.129, 0.044) | 0.337 |
Land-use mix | 0.048, (−0.036, 0.133) | 0.261 | 0.006, (−0.083, 0.094) | 0.900 |
Intersection density | 0.055, (−0.047, 0.157) | 0.287 | 0.133, (−0.021, 0.287) | 0.090 |
Number of retail shops | −0.017, (−0.116, 0.081) | 0.730 | 0.022, (−0.103, 0.146) | 0.734 |
Number of recreational facilities | 0.017, (−0.072, 0.106) | 0.704 | −0.100, (−0.210, 0.011) | 0.076 |
Number of bus stops | 0.061, (−0.041, 0.164) | 0.241 | 0.068, (−0.086, 0.221) | 0.384 |
Distance to MTR | −0.004, (−0.074, 0.066) | 0.910 | 0.012, (−0.065, 0.089) | 0.753 |
Individual factors | ||||
Age | ||||
5–17—Reference | ||||
18–45 | −0.021, (−0.144, 0.102) | 0.742 | −0.022, (−0.143, 0.105) | 0.758 |
45–64 | 0.097, (−0.023, 0.221) | 0.114 | 0.101, (−0.020, 0.223) | 0.101 |
≥65 | 0.043, (−0.101, 0.189) | 0.548 | 0.057, (−0.086, 0.201) | 0.430 |
Gender | ||||
Male—Reference | ||||
Female | 0.057, (−0.026, 0.140) | 0.180 | 0.056, (−0.027, 0.139) | 0.189 |
Household income | ||||
Low (<10 k)—Reference | ||||
Medium-low (10–20 k) | −0.110, (−0.220, 0.000) | 0.050 * | −0.120, (−0.229, −0.010) | 0.032 * |
Medium-high (20–30 k) | −0.245, (−0.372, −0.119) | <0.001 ** | −0.242, (−0.368, −0.116) | <0.001 ** |
High (>30 k) | −0.365, (−0.554, −0.177) | <0.001 ** | −0.376, (−0.564, −0.188) | <0.001 ** |
Interaction term | ||||
Green view index × Gender | 0.072, (−0.012, 0.156) | 0.093 | 0.075, (−0.010, 0.160) | 0.085 |
Model fitting | AIC = 5502 BIC = 5636 −2 Log Likelihood = −2727 | AIC = 5481 BIC = 5614 −2 Log Likelihood = −2716 |
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Y. The Association of Urban Greenness and Walking Behavior: Using Google Street View and Deep Learning Techniques to Estimate Residents’ Exposure to Urban Greenness. Int. J. Environ. Res. Public Health 2018, 15, 1576. https://doi.org/10.3390/ijerph15081576
Lu Y. The Association of Urban Greenness and Walking Behavior: Using Google Street View and Deep Learning Techniques to Estimate Residents’ Exposure to Urban Greenness. International Journal of Environmental Research and Public Health. 2018; 15(8):1576. https://doi.org/10.3390/ijerph15081576
Chicago/Turabian StyleLu, Yi. 2018. "The Association of Urban Greenness and Walking Behavior: Using Google Street View and Deep Learning Techniques to Estimate Residents’ Exposure to Urban Greenness" International Journal of Environmental Research and Public Health 15, no. 8: 1576. https://doi.org/10.3390/ijerph15081576
APA StyleLu, Y. (2018). The Association of Urban Greenness and Walking Behavior: Using Google Street View and Deep Learning Techniques to Estimate Residents’ Exposure to Urban Greenness. International Journal of Environmental Research and Public Health, 15(8), 1576. https://doi.org/10.3390/ijerph15081576