Mediterranean Coastal Lagoons: The Importance of Monitoring in Sediments the Biochemical Composition of Organic Matter
Abstract
:1. Introduction
2. Material and Methods
2.1. Sampling Area: The Orbetello Lagoon
2.2. Logic Model and Experimental Conditions
2.2.1. Logic Model
2.2.2. Sample Collection and Experimental Conditions
2.2.3. Sample Pre-Treatments
2.3. Laboratory Analyses
2.4. Statistical Analysis
3. Results
3.1. Macroelements
3.2. Organic Matter Composition
3.3. Multivariate Analyses
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tagliapietra, D.; Volpi Ghirardini, A. Notes on coastal lagoon typology in the light of the EU Water Framework Directive: Italy as a case study. Aquat. Conserv. Mar. Freshw. Ecosyst. 2006, 16, 457–467. [Google Scholar] [CrossRef]
- Zaldívar, J.M.; Cardoso, A.C.; Viaroli, P.; Newton, A.; de Wit, R.; Ibañez, C.; Reizopoulou, S.; Somma, F.; Razinkovas, A.; Basset, A.; et al. Eutrophication in transitional waters: An overview. Transit. Waters Monogr. 2008, 1, 1–78. [Google Scholar]
- Bamber, R.N. Coastal Saline Lagoons and the Water Framework Directive; Natural England Commissioned Report Number 039; Natural England: York, UK, 2010; p. 48. [Google Scholar]
- Specchiulli, A.; Focardi, S.; Renzi, M.; Scirocco, T.; Cilenti, L.; Breber, P.; Bastianoni, S. Environmental heterogeneity patterns and assessment of trophic levels in two Mediterranean lagoons: Orbetello and Varano, Italy. Sci Tot. Environ. 2008, 402, 285–298. [Google Scholar] [CrossRef] [PubMed]
- Kjerfve, B. Coastal lagoons. In Coastal Lagoon Processes; Kjerfve, B., Ed.; Oceanography Series no.60; Elsevier Science Publishers: Amsterdam, The Netherlands, 1994; pp. 1–8. [Google Scholar]
- Renzi, M.; Specchiulli, A.; D’Adamo, R.; Focardi, S.E. State of Knowledge of the Trophic State of Worldwide Lagoon Ecosystems: Leading Fields and Perspectives. Chapter 8. In Lagoons: Biology, Management and Environmental Impact; Friedman, A.G., Ed.; Nova Science Publisher, Inc.: Hauppauge, NY, USA, 2011; pp. 249–277. ISBN 978-1-61761-738-6. [Google Scholar]
- Chapelle, A.; Menesguen, A.; Deslous-Paoli, J.M.; Souchu, P.; Mazouni, N.; Vaquer, A.; Millet, B. Modelling nitrogen, primary production and oxygen in a Mediterranean lagoon. Impact of oysters farming and inputs from the watershed. Ecol. Model. 2000, 127, 161–181. [Google Scholar] [CrossRef] [Green Version]
- Lucena, J.R.; Hurtado, J.; Comìn, F.A. Nutrients related to the hydrologic regime in the coastal lagoons of Viladecans (NE Spain). Hydrobiologia 2002, 475, 413–422. [Google Scholar] [CrossRef]
- Perez-Ruzafa, A.; Fernandez, A.I.; Marcos, C.; Gilabert, J.; Quispe, J.I.; Garcia-Charton, J.A. Spatial and temporal variations of hydrological conditions, nutrients and chlorophylla in a Mediterranean coastal lagoon (Mar Menor, Spain). Hydrobiologia 2005, 550, 11–27. [Google Scholar] [CrossRef]
- Viaroli, P.; Bartoli, M.; Giordani, G.; Naldi, M.; Orfanidis, S.; Zaldivar, J.M. Community shifts, alternative stable states, biogeochemical controls and feedbacks in eutrophic coastal lagoons: A brief overview. Aquat. Conserv. Mar. Freshw. Ecosyst. 2008, 18, S105–S117. [Google Scholar] [CrossRef]
- Acquavita, A.; Aleffi, I.F.; Benci, C.; Bettoso, N.; Crevatin, E.; Milani, L.; Tamberlich, F.; Toniatti, L.; Barbieri, P.; Licen, S.; et al. Annual characterization of the nutrients and trophic state in a Mediterranean coastal lagoon: The Marano and Grado Lagoon (northern Adriatic Sea). Reg. Stud. Mar. Sci. 2015, 2, 132–144. [Google Scholar] [CrossRef] [Green Version]
- Gouze, E.; Raimbault, P.; Garcia, N.; Picon, P. Nutrient dynamics and primary production in the eutrophic Berre Lagoon (Mediterranean, France). Transit. Waters Bull. 2008, 2, 17–40. [Google Scholar]
- Caruso, G.; Leonardi, M.; Monticelli, L.S.; Decembrini, F.; Azzaro, F.; Crisafi, E.; Zappal, G.; Bergamasco, A.; Vizzini, S. Assessment of the ecological status of transitional waters in Sicily (Italy): First characterisation and classification according to a multiparametric approach. Mar. Pollut. Bull. 2010, 60, 1682–1690. [Google Scholar] [CrossRef]
- Salas, F.; Teixeira, H.; Marcos, C.; Marques, J.C.; Perez-Ruzafa, A. Applicability of the trophic index TRIX in two transitional ecosystems: The Mar Menor lagoon (Spain) and the Mondego estuary (Portugal). ICES J. Mar. Sci. 2008, 65, 1442–1448. [Google Scholar] [CrossRef]
- Coelho, S.; Gamito, S.; Perez-Ruzafa, A. Trophic state of Foz Almargem coastal lagoon (Algarve, South Portugal) based on the water quality and the phytoplankton community. Estuar. Coast. Shelf Sci. 2007, 71, 218–231. [Google Scholar] [CrossRef]
- Roselli, L.; Fabbrocini, A.; Manzo, C.; D’Adamo, R. Hydrological heterogeneity, nutrient dynamics and water quality of a non-tidal lentic ecosystem (Lesina Lagoon, Italy). Estuar. Coast. Shelf Sci. 2009, 84, 539–552. [Google Scholar] [CrossRef]
- Johnson, R.K.; Hering, D.; Furse, M.T.; Verdonschot, P.F.M. Indicators of ecological change: Comparison of the early response of four organism groups to stress gradients. Hydrobiologia 2006, 566, 139–152. [Google Scholar] [CrossRef]
- Ponti, M.; Pinna, M.; Basset, A.; Moncheva, S.; Trayanova, A.; Georgescu, L.; Beqiraj, S.; Orfanidis, S.; Abbiati, M. Quality assessment of Mediterranean and Black Sea transitional waters: Comparing responses of benthic biotic indices. Aquat. Conserv. Mar. Freshw. Ecosyst. 2008, 18, 62–75. [Google Scholar] [CrossRef]
- Basset, A.; Barbone, E.; Rosati, I.; Vignes, F.; Breber, P.; Specchiulli, A.; D’Adamo, R.; Renzi, M.; Focardi, S.; Ungaro, N.; et al. Resistance and resilience of ecosystem descriptors and properties to dystrophic events: A study case in a Mediterranean lagoon. TWB Transit. Waters Bull. 2013, 7, 1–22. [Google Scholar]
- Costanza, R. Toward an operational definition of health. In Ecosystem Health: New Goals for Environmental Management; Costanza, R., Norton, B., Haskell, B., Eds.; Island Press: Washington, DC, USA, 1992; pp. 3–19. [Google Scholar]
- Basset, A.; Barbone, E.; Borja, A.; Elliott, M.; Jona Lasinio, G.; Marques, J.C.; Mazik, K.; Neto, J.M.; Reizopoulou, S.; Rosati, I.; et al. Methodological approaches to the definition of type-specific reference conditions for benthic macroinvertebrates in Mediterranean and Black Sea lagoons. Hydrobiologia 2013, 714, 325–345. [Google Scholar] [CrossRef]
- Dromph, K.M.; Agusti, S.; Basset, A.; Franco, J.; Henriksen, P.; Icely, J.; Lehtinen, S.; Moncheva, S.; Revilla, M.; Roselli, L.; et al. Sources of uncertainty in assessment of marine phytoplankton communities. Hydrobiologia 2013, 714, 253–264. [Google Scholar] [CrossRef]
- Danovaro, R.; Gambi, C.; Manini, E.; Fabiano, M. Maiofauna response to a dynamic river plume front. Mar. Biol. 2000, 137, 359–370. [Google Scholar] [CrossRef]
- Dell’Anno, A.; Mei, M.L.; Pusceddu, A.; Danovaro, R. Assessing the trophic state and eutrophication of coastal marine systems: A new approach based on the biochemical composition of sediment organic matter. Mar. Pollut. Bull. 2002, 44, 611–622. [Google Scholar] [CrossRef]
- Pusceddu, A.; Grémare, A.; Amouroux, J.M.; Fiordelmondo, C.; Danovaro, R. Impact of natural (storm) and anthropogenic (trawling) sediment resuspension on particulate organic matter in coastal environments. Cont. Shelf Res. 2005, 25, 2506–2520. [Google Scholar] [CrossRef]
- Lenzi, M.; Renzi, M. Effects of artificial disturbance on quantity and biochemical composition of organic matter in sediments of a coastal lagoon. Knowl. Manag. Aquat. Ecosyst. 2011, 402, 08. [Google Scholar] [CrossRef]
- Renzi, M.; Perra, G.; Guerranti, C.; Franchi, E.; Focardi, S. Abatement efficiency of municipal wastewater treatment plants using different technologies (Orbetello Lagoon, Italy). Int. J. Environ. Health 2009, 3, 58–70. [Google Scholar] [CrossRef]
- Renzi, M.; Guerranti, C.; Giovani, A.; Perra, G.; Focardi, S.E. Perfluorinated compounds: Levels, trophic web enrichments and human dietary intakes in transitional water ecosystems. Mar. Pollut. Bull. 2013, 76, 146–157. [Google Scholar] [CrossRef] [PubMed]
- Renzi, M.; Mariottini, M.; Specchiulli, A.; Perra, G.; Guerranti, C.; Giovani, A.; Focardi, S.E. Occurrence of POPs in sediments and tissues of European eels (Anguilla anguilla L) from two Italian lagoons: Varano and Orbetello. Transit. Waters Bull. 2013, 6, 1–18. [Google Scholar]
- Giusti, E.; Marsili-Libelli, S.; Renzi, M.; Focardi, S. Assessment of spatial distribution of submerged vegetation in the Orbetello lagoon by means of a mathematical model. Ecol. Model. 2010, 221, 1484–1493. [Google Scholar] [CrossRef]
- Renzi, M.; Lenzi, M.; Franchi, E.; Tozzi, A.; Porrello, S.; Focardi, S.; Focardi, S.E. Mathematical modelling of sediment chemico-physical parameters in a coastal lagoon to estimate high density seagrass meadow (Ruppiacirrhosa) distribution. Int. J. Environ. Health 2007, 1, 360–374. [Google Scholar] [CrossRef]
- Giovani, A.; Lenzi, M.; Mari, E.; Specchiulli, A.; Cilenti, L.; Scirocco, T.; Breber, P.; Renzi, M.; Focardi, S.E. Factors affecting changes in phanerogam distriburion patterns of Orbetello lagoon, Italy. Transit. Waters Bull. 2010, 1, 35–52. [Google Scholar]
- Underwood, A.J. Beyond BACI: The detection of environmental impacts on populations in the real, but variable, world. J. Exp. Mar. Biol. Ecol. 1992, 161, 145–178. [Google Scholar] [CrossRef]
- Underwood, A.J. The mechanisms of spatially replicated sampling programmes to detect environmental impacts in a variable world. Aust. J. Ecol. 1993, 18, 99–116. [Google Scholar] [CrossRef]
- Benedetti-Cecchi, L. Experimental design and hypothesis testing in ecology. Biol. Mar. Medit. 2004, 11, 407–455. [Google Scholar]
- Lorentzen, C.J.; Jeffrey, S.W. Determination of chlorophyll and phaeopigments spectrophotometric equation. Limnol. Oceangr. 1980, 12, 343–346. [Google Scholar] [CrossRef]
- Hartree, E.F. Determination of proteins: Modification of the Lowry methods that give a linear photometric response. Anal. Biochem. 1972, 48, 422–427. [Google Scholar] [CrossRef]
- Dubois, M.; Gilles, K.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric method for determination of sugar and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Gerchakov, S.M.; Hatcher, P.G. Improved technique for analyses of carbohydrates in sediments. Limnol. Oceanogr. 1972, 17, 938–943. [Google Scholar] [CrossRef]
- Marsh, J.B.; Weinstein, D.B. A simple charring method for determination of lipids. J. Lipid Res. 1966, 7, 574–576. [Google Scholar] [PubMed]
- Bligh, E.G.; Dyer, W. Rapid method for total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef]
- Pusceddu, A.; Dell’Anno, A.; Danovaro, R.; Marini, E.; Sarà, G.; Fabiano, M. Enzymatically hydrolysable protein and carbohydrate sedimentary pools as indicators of the trophic state of “detritus sink” systems: A case study in a Mediterranean coastal lagoon. Estuaries 2003, 26, 641–650. [Google Scholar] [CrossRef]
- Fabiano, M.; Danovaro, R.; Fraschetti, S. A three-year time series of elemental and biochemical composition of organic matter in subtidal sandy sediments of the Ligurian Sea (north-western Mediterranean). Cont. Shelf. Res. 1995, 15, 1453–1469. [Google Scholar] [CrossRef]
- Di Nigel, T.F. Methods in Agricultural Chemical Analysis: A Practica lHandbook; CABI: Oxford, UK, 2002; p. 266. [Google Scholar]
- Loh, P.S. An Assessment of the Contribution of Terrestrial Organic Matter to Total Organic Matter in Sediments in Scottish Sea Lochs. Ph.D. Thesis, UHI Millenium Institute, Inverness, UK, 2005; p. 350. [Google Scholar]
- Murphy, J.; Riley, J.P. A Modified Single Solution Method for the Determination of Phosphate in Natural Waters. Anal. Chim. Acta. 1962, 27, 31–36. [Google Scholar] [CrossRef]
- Stookey, L.L. Ferrozine—A new spectrophotometric reagent for iron. Anal. Chem. 1970, 42, 779–781. [Google Scholar] [CrossRef]
- Clarke, K.R.; Warwick, R.M. Change in Marine Communities: An Approach to Statistical Analysis and Interpretation, 2nd ed.; Primer-E: Plymouth, UK, 2001. [Google Scholar]
- Porrello, S.; Lenzi, M.; Ferrari, G.; Persia, E.; Savelli, F.; Tomassetti, P. Loading of nutrient from a land-based fish farm (Orbetello, Italy) at different times. Aquac. Int. 2005, 13, 97–108. [Google Scholar] [CrossRef]
- Morand, P.; Briand, X. Excessive Growth of Macroalgae: A Sympton of Environmental Disturbance. Bot. Mar. 1996, 39, 491–516. [Google Scholar] [CrossRef]
- Valiela, I.; MacLelland, J.; Hauxwell, J.; Beher, P.J.; Hersh, D.; Foreman, K. Macroalgal blooms in shallow estuaries: Controls and ecophysiological and ecosystem consequences. Limnol. Oceanogr. 1997, 42, 1105–1118. [Google Scholar] [CrossRef] [Green Version]
- Focardi, S.; Mariottini, M.; Renzi, M.; Perra, G.; Focardi, S.E. Anthropogenic impacts on the Orbetello lagoon ecosystem. Toxicol. Ind. Health 2009, 25, 365–371. [Google Scholar] [CrossRef] [PubMed]
- Perra, G.; Renzi, M.; Guerranti, C.; Focardi, S.E. Polycyclic aromatic hydrocarbons pollution in sediments: Distribution and sources in a lagoon system (Orbetello, Central Italy). Transit. Waters Bull. 2009, 3, 45–58. [Google Scholar]
- Jørgensen, B.B. The microbial sulphur cycles. In Microbial Geochemistry; Krumbein, W., Ed.; Blackwell Scientific Pubblications: Oxford, UK, 1983; pp. 91–124. [Google Scholar]
- Heijs, S.K.; Azzoni, R.; Giordani, G.; Jonkers, H.M.; Zizzoli, D.; Viaroli, P.; Gemerden, H. Sulphide-induced release of phosphate from sediments of coastal lagoons and the possible relation to the disappearance of Ruppia sp. Aquat. Microb. Ecol. 2000, 23, 85–95. [Google Scholar] [CrossRef]
- Marty, D.; Esnault, G.; Caumette, P.; Ranaivoson-Rambeloarisoa, E.; Bertrand, J.C. Denitrification, sulfato-reduction et methanogenese dans les sediments superficiels d’un étangsaumatre méditerranéen. Oceanol.Acta 1990, 13, 199–210. [Google Scholar]
- Torres-Beristain, B.; Verdegem, M.; Kerepeczky, E.; Verreth, J. Decomposition of high protein aquaculture feed under variable oxic condition. Water Res. 2006, 40, 1341–1350. [Google Scholar] [CrossRef]
- Berner, R.A. Sedimentary pyrite formation: An uptdate. Geochim. Cosmochim. Acta 1984, 48, 605–615. [Google Scholar] [CrossRef]
- Luther, G.W. Pyritesyn thesis via polysulfide compounds. Geochim. Cosmochim. Acta 1991, 55, 2839–2849. [Google Scholar] [CrossRef]
- Richard, D.; Luther, G.W. Kinetics of pyrite formations by H2 Soxidationofiron (II) monosulfide in aqueous solution between 25 and 125° C: Themechanism. Geochim. Cosmochim. Acta. 1997, 61, 115–134. [Google Scholar] [CrossRef]
- Theberge, S.; Luther, G.W. Determination of electrochemical properties of a soluble aqueous FeS species present in sulfidic solutions. Aquat. Geochem. 1997, 3, 191–211. [Google Scholar] [CrossRef]
- Rozan, T.F.; Taillefert, M.; Trouwborst, R.E.; Glazer, B.T.; Ma, S.; Herszage, J.; Valdes, L.M.; Price, K.S.; Luther, G.W., III. Iron-sulphur-phosphorus cycling in the sediments of a shallow coastal bay: Implications for sediment nutrients release and benthic macroalgal blooms. Limnol. Oceanogr. 2002, 47, 1346–1354. [Google Scholar] [CrossRef]
- Giordani, G.; Batoli, M.; Cattadori, M.; Viaroli, P. Sulphide release from anoxic sediments in relation to iron availability and organic matter recalcitrance and its effects on inorganic phosphorus recycling. Hydrobiologia 1996, 329, 211–222. [Google Scholar] [CrossRef]
- Gunnars, A.; Blomqvist, S. Phosphate exchange across the sediment-water interface when shifting from anoxic to oxic conditions: An experimental comparison of freshwater and brackish-marine systems. Biogeochemistry 1997, 37, 203–226. [Google Scholar] [CrossRef]
- Golterman, H.L. Phosphate release from anoxic sediments or “what did Mortimer really write”? Hydrobiologia 2001, 450, 99–106. [Google Scholar] [CrossRef]
- Golterman, H.L. The role of the iron hydroxide-phosphate-sulphide system in the phosphate exchange between sediments and water. Hydrobiologia 1995, 297, 43–54. [Google Scholar] [CrossRef]
- Dodge, R.E.; Jickells, T.D.; Knap, A.H.; Boyd, S.; Bak, R.P.M. Reef-building coral skeletons as chemical pollution (phosphorus) indicators. Mar. Pollut. Bull. 1984, 15, 178–187. [Google Scholar] [CrossRef]
- De Jonge, V.N.; Villerius, L.A. Possible role of carbonate dissolution in estuarine phosphate dynamics. Limnol. Oceanogr. 1989, 34, 332–340. [Google Scholar] [CrossRef]
- Revsbech, N.P.; Sorensen, J.; Blackburn, T.H.; Lomholt, J.P. Distribution of oxygen in marine sediments measured with microelectrodes. Limnol. Oceanogr. 1980, 25, 403–411. [Google Scholar] [CrossRef]
- Herbert, R.A.; Nedwell, D.B. Role of environmental factors in regulating nitrate respiration in intertidal sediments. In Denitrification in Soil and Sediment; Revsbech, N.P., Sorensen, J., Eds.; Plenum Press: New York, NY, USA, 1990; pp. 77–90. [Google Scholar]
- Wood, J.M.; Wang, H.K. Microbial resistance to heavy metals. Environ. Sci. Technol. 1983, 17, 82–90. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.H.; Mason, R.; Porter, E.T.; Soulen, H.L. The impact of resuspension on sediment mercury dynamics, and methylmercury production and fate: A mesocosm study. Mar. Chem. 2006, 102, 300–315. [Google Scholar] [CrossRef]
- Pepi, M.; Leonzio, C.; Focardi, S.E.; Renzi, M. Production of toxic methylmercury by sulphate-reducing bacteria in sediments from the Orbetello Lagoon in presence of high macroalgal loads. Estuar. Coast. Shelf Sci. submitted for publication.
- Barghigiani, C.; Pellegrini, D.; Gioffrè, D.; De Ranieri, S.; Bargagli, R. Preliminary results on the mercury content of Cytharus linguatula (L) in the northern Tyrrhenian Sea. Mar. Pollut. Bull. 1986, 17, 424–427. [Google Scholar] [CrossRef]
- Barghigiani, C.; Ristori, T. The distribution of mercury in a Mediterranean area. In Mercury Pollution: Integration and Synhtesis; Watras, C.J., Huckabee, J.W., Eds.; Lewis Publisher: Boca Raton, FL, USA, 1995; p. 41. [Google Scholar]
- UNEP/FAO/WHO. Assessment of the State of Pollution of the Mediterranean Sea by Mercury and Mercury Compounds; MAP Technical Report Series Number 18; UNEP: Athens, Greece, 1987. [Google Scholar]
- Miniero, R.; Beccaloni, E.; Carere, M.; Ubaldi, A.; Mancini, L.; Marchegiani, S.; Cicero, M.R.; Scenati, R.; Lucchetti, D.; Ziemacki Gand De Felip, E. Mercury (Hg) and methyl mercury (MeHg) concentrations in fish from the coastal lagoon of Orbetello, central Italy. Mar. Pollut. Bull. 2013, 76, 365–369. [Google Scholar] [CrossRef] [PubMed]
- Bravo, A.G.; Bouchet, S.; Tolu, J.; Björn, E.; Mateos-Rivera, A.; Bertilsson, S. Molecular composition of organic matter controls methylmercury formation in boreal lakes. Nat. Commun. 2016, 8, 14255. [Google Scholar] [CrossRef] [PubMed]
- Aldrige, K.T.; Ganf, G.G. Modification of sediment redox potential by three contrasting macrophytes: Implications for phosphorus adsorption/desorption. Mar. Freshw. Res. 2003, 54, 87–94. [Google Scholar] [CrossRef]
- Canario, J.; Vale, C. Mercury in wetlands: A contribution to the definition of a global mercury policy. In Proceedings of the SETAC North America 33rd Annual Meeting, Long Beach, CA, USA, 11–15 November 2012. [Google Scholar]
- Lenzi, M.; Finoia, M.G.; Persia, E.; Comandi, S.; Gargiulo, V.; Solari, D.; Gennaro, P.; Porrello, S. Biogeochemical effects of disturbance in shallow water sediment by macroalgae harvesting boats. Mar. Pollut. Bull. 2005, 50, 512–519. [Google Scholar] [CrossRef]
- Lenzi, M.; Birardi, F.; Calzolai, R.; Finoia, M.G.; Marcone, F.; Nocciolini, S.; Roffilli, R.; Sgroi, S.; Solari, D. Hypertrophic lagoon management by sediment disturbance. Mar. Pollut. Bull. 2010, 61, 189–197. [Google Scholar] [CrossRef]
- Fanning, K.A.; Carder, K.L.; Betzer, P.R. Sediment resuspension by coastal water: A potential mechanism for nutrient re-cycling on the ocean’s margins. Deep Sea Res. Part A 1982, 29, 953–965. [Google Scholar] [CrossRef]
- Kalnejais, L.H.; Martin, W.R.; Signell, R.P.; Bothner, M.H. Role of sediment resuspension in the remobilization of particulate-phase metals from coastal sediments. Environ. Sci. Technol. 2007, 41, 2282–2288. [Google Scholar] [CrossRef] [PubMed]
Content | Depth | T0 | T1 | T2 | T3 | |||||
---|---|---|---|---|---|---|---|---|---|---|
TOC (%) | cm | Oxy Condition | Oxy Condition | Oxy Condition | Oxy Condition | p-level | ||||
mean | (se) | mean | (se) | mean | (se) | mean | (se) | |||
0–2 | 0.580 | (0.030) | 1.290 | (0.020) | 0.665 | (0.015) | 0.665 | (0.015) | *** | |
2–4 | 0.710 | (0.010) | 1.295 | (0.025) | 0.840 | (0.030) | 0.840 | (0.030) | *** | |
4–6 | 1.000 | (0.010) | 0.425 | (0.065) | 0.745 | (0.005) | 0.745 | (0.005) | ** | |
6–8 | 0.615 | (0.065) | 0.300 | (0.010) | 0.535 | (0.025) | 0.535 | (0.025) | * | |
8–10 | 0.405 | (0.015) | 0.305 | (0.025) | 0.530 | (0.040) | 0.530 | (0.040) | * | |
TN (%) | ||||||||||
0–2 | 0.040 | (0.010) | 0.405 | (0.085) | 0.030 | (0.000) | 0.030 | (0.000) | * | |
2–4 | 0.215 | (0.065) | 0.435 | (0.065) | 0.030 | (0.000) | 0.030 | (0.000) | * | |
4–6 | 0.220 | (0.030) | 0.530 | (0.120) | 0.025 | (0.005) | 0.025 | (0.005) | * | |
6–8 | 0.100 | (0.050) | 0.280 | (0.000) | 0.075 | (0.005) | 0.075 | (0.005) | * | |
8–10 | 0.080 | (0.010) | 0.365 | (0.065) | 0.295 | (0.055) | 0.295 | (0.055) | ns | |
TS (%) | ||||||||||
0–2 | 0.130 | (0.010) | 0.210 | (0.010) | 0.190 | (0.010) | 0.190 | (0.010) | ns | |
2–4 | 0.055 | (0.005) | 0.270 | (0.020) | 0.490 | (0.030) | 0.490 | (0.030) | ** | |
4–6 | 0.235 | (0.025) | 0.180 | (0.010) | 0.100 | (0.010) | 0.100 | (0.010) | * | |
6–8 | 0.110 | (0.010) | 0.135 | (0.005) | 0.495 | (0.015) | 0.495 | (0.015) | *** | |
8–10 | 0.220 | (0.010) | 0.180 | (0.020) | 1.025 | (0.055) | 1.025 | (0.055) | ** | |
TC (%) | ||||||||||
0–2 | 0.960 | (0.020) | 1.260 | (0.060) | 1.180 | (0.030) | 1.180 | (0.030) | ns | |
2–4 | 0.975 | (0.015) | 1.080 | (0.040) | 1.300 | (0.040) | 1.300 | (0.040) | *** | |
4–6 | 1.305 | (0.015) | 0.720 | (0.390) | 0.875 | (0.065) | 0.875 | (0.065) | ns | |
6–8 | 1.130 | (0.020) | 1.290 | (0.080) | 0.800 | (0.070) | 0.800 | (0.070) | * | |
8–10 | 0.600 | (0.050) | 0.975 | (0.015) | 0.865 | (0.045) | 0.865 | (0.045) | * | |
TP (%) | ||||||||||
0–2 | 0.0120 | (0.0010) | 0.0155 | (0.0005) | 0.0205 | (0.0015) | 0.0205 | (0.0015) | * | |
2–4 | 0.0125 | (0.0015) | 0.0190 | (0.0010) | 0.0175 | (0.0005) | 0.0175 | (0.0005) | ns | |
4–6 | 0.0135 | (0.0015) | 0.0170 | (0.0001) | 0.0155 | (0.0010) | 0.0155 | (0.0005) | ns | |
6–8 | 0.0160 | (0.0010) | 0.0170 | (0.0010) | 0.0230 | (0.0040) | 0.0230 | (0.0040) | ns | |
8–10 | 0.0195 | (0.0015) | 0.0190 | (0.0001) | 0.0120 | (0.0010) | 0.0120 | (0.0010) | * | |
Fe (mg/kg) | ||||||||||
0–2 | 16.5 | (0.3) | 22.5 | (1.1) | 30.6 | (1.1) | 30.6 | (1.1) | ** | |
2–4 | 17.8 | (0.1) | 22.3 | (0.1) | 13.1 | (0.5) | 13.1 | (0.5) | *** | |
4–6 | 27.6 | (0.4) | 16.3 | (0.5) | 12.7 | (0.7) | 12.7 | (0.7) | ** | |
6–8 | 29.0 | (0.5) | 37.0 | (0.2) | 24.7 | (0.5) | 24.7 | (0.5) | *** | |
8–10 | 15.4 | (0.2) | 24.5 | (2.0) | 19.6 | (0.1) | 19.6 | (0.1) | * |
Content | Depth | T0 | T1 | T2 | T3 | |||||
---|---|---|---|---|---|---|---|---|---|---|
TOC (%) | cm | Anoxy Condition | Anoxy Condition | Anoxy Condition | Anoxy Condition | p-level | ||||
mean | (se) | mean | (se) | mean | (se) | mean | (se) | |||
0–2 | 0.580 | (0.030) | 0.970 | (0.010) | 1.080 | (0.010) | 1.080 | (0.010) | *** | |
2–4 | 0.710 | (0.010) | 1.185 | (0.045) | 0.530 | (0.020) | 0.530 | (0.020) | *** | |
4–6 | 1.000 | (0.010) | 0.595 | (0.055) | 1.065 | (0.035) | 1.065 | (0.035) | *** | |
6–8 | 0.615 | (0.065) | 0.055 | (0.005) | 1.145 | (0.025) | 1.145 | (0.025) | *** | |
8–10 | 0.405 | (0.015) | 0.355 | (0.245) | 0.255 | (0.045) | 0.255 | (0.045) | ns | |
TN (%) | ||||||||||
0–2 | 0.040 | (0.010) | 0.595 | (0.075) | 0.435 | (0.115) | 0.435 | (0.115) | ns | |
2–4 | 0.215 | (0.065) | 0.560 | (0.070) | 0.610 | (0.060) | 0.610 | (0.060) | *** | |
4–6 | 0.220 | (0.030) | 0.240 | (0.020) | 0.250 | (0.020) | 0.250 | (0.020) | ns | |
6–8 | 0.100 | (0.050) | 0.035 | (0.015) | 0.070 | (0.020) | 0.070 | (0.0200) | ns | |
8–10 | 0.080 | (0.010) | 0.025 | (0.015) | 0.045 | (0.015) | 0.045 | (0.015) | ns | |
TS (%) | ||||||||||
0–2 | 0.130 | (0.010) | 0.085 | (0.025) | 1.030 | (0.030) | 1.030 | (0.030) | *** | |
2–4 | 0.055 | (0.005) | 0.185 | (0.025) | 0.695 | (0.095) | 0.695 | (0.095) | ** | |
4–6 | 0.235 | (0.025) | 0.205 | (0.035) | 0.400 | (0.020) | 0.400 | (0.020) | * | |
6–8 | 0.110 | (0.010) | 0.370 | (0.060) | 0.175 | (0.035) | 0.175 | (0.035) | ** | |
8–10 | 0.220 | (0.010) | 0.530 | (0.110) | 0.095 | (0.015) | 0.095 | (0.015) | ** | |
TC (%) | ||||||||||
0–2 | 0.960 | (0.020) | 1.185 | (0.165) | 1.415 | (0.255) | 1.415 | (0.255) | ns | |
2–4 | 0.975 | (0.015) | 1.160 | (0.070) | 1.070 | (0.040) | 1.070 | (0.040) | ns | |
4–6 | 1.305 | (0.015) | 0.720 | (0.070) | 1.370 | (0.050) | 1.370 | (0.050) | * | |
6–8 | 1.130 | (0.020) | 0.720 | (0.080) | 1.600 | (0.045) | 1.600 | (0.045) | ** | |
8–10 | 0.600 | (0.050) | 0.515 | (0.015) | 2.200 | (0.055) | 2.200 | (0.055) | *** | |
TP (%) | ||||||||||
0–2 | 0.0120 | (0.0010) | 0.0235 | (0.0015) | 0.0225 | (0.0015) | 0.0225 | (0.0015) | * | |
2–4 | 0.0125 | (0.0015) | 0.0205 | (0.0015) | 0.0230 | (0.0010) | 0.0230 | (0.0010) | * | |
4–6 | 0.0135 | (0.0015) | 0.0135 | (0.0015) | 0.0215 | (0.0005) | 0.0215 | (0.0005) | ** | |
6–8 | 0.0160 | (0.0010) | 0.0125 | (0.0015) | 0.0195 | (0.0005) | 0.0195 | (0.0005) | ns | |
8–10 | 0.0195 | (0.0015) | 0.0125 | (0.0015) | 0.0135 | (0.0025) | 0.0135 | (0.0025) | ns | |
Fe (mg/kg) | ||||||||||
0–2 | 16.5 | (0.3) | 35.0 | (2.6) | 34.3 | (1.1) | 34.3 | (1.1) | * | |
2–4 | 17.8 | (0.1) | 28.8 | (1.9) | 32.0 | (0.5) | 32.0 | (0.5) | ** | |
4–6 | 27.6 | (0.4) | 31.6 | (2.2) | 27.9 | (1.4) | 27.9 | (1.4) | ns | |
6–8 | 29.0 | (0.5) | 16.3 | (0.6) | 25.8 | (1.5) | 25.8 | (1.5) | ** | |
8–10 | 15.4 | (0.2) | 13.1 | (0.4) | 28.1 | (1.9) | 28.1 | (1.9) | ** |
Content | Depth | T0 | T1 | T2 | T3 | |||||
---|---|---|---|---|---|---|---|---|---|---|
CHO mg/g | cm | Oxy Condition | Oxy Condition | Oxy Condition | Oxy Condition | p-level | ||||
mean | (se) | mean | (se) | mean | (se) | mean | (se) | |||
0–2 | 0.0071 | (0.0006) | 0.0068 | (0.0002) | 0.0070 | (0.0020) | 0.0070 | (0.0020) | ns | |
2–4 | 0.0166 | (0.0004) | 0.0314 | (0.0007) | 0.0126 | (0.0050) | 0.0126 | (0.0050) | * | |
4–6 | 0.0051 | (0.0003) | 0.0123 | (0.0020) | 0.0010 | (0.0000) | 0.0010 | (0.0000) | * | |
6–8 | 0.0010 | (0.0000) | 0.0010 | (0.0000) | 0.0010 | (0.0000) | 0.0010 | (0.0000) | *** | |
8–10 | 0.0010 | (0.0000) | 0.0010 | (0.0000) | 0.0010 | (0.0000) | 0.0010 | (0.0000) | *** | |
PRT mg/g | ||||||||||
0–2 | 0.0183 | (0.004) | 0.0278 | (0.0140) | 0.0497 | (0.011) | 0.0814 | (0.017) | ns | |
2–4 | 0.0080 | (0.003) | 0.0322 | (0.0160) | 0.0420 | (0.010) | 0.0688 | (0.016) | ns | |
4–6 | 0.0267 | (0.009) | 0.0156 | (0.0002) | 0.0380 | (0.009) | 0.0621 | (0.015) | ns | |
6–8 | 0.0229 | (0.007) | 0.0355 | (0.0003) | 0.0599 | (0.020) | 0.0347 | (0.021) | ns | |
8–10 | 0.0126 | (0.005) | 0.0234 | (0.0015) | 0.0301 | (0.010) | 0.0492 | (0.017) | ns | |
LIP mg/g | ||||||||||
0–2 | 0.0023 | (0.0009) | 0.0016 | (0.0001) | 0.0077 | (0.0010) | 0.0103 | (0.0030) | ns | |
2–4 | 0.0056 | (0.0027) | 0.0014 | (0.0001) | 0.0033 | (0.0002) | 0.0044 | (0.0010) | ns | |
4–6 | 0.0018 | (0.0008) | 0.0010 | (0.0004) | 0.0032 | (0.0001) | 0.0042 | (0.0010) | * | |
6–8 | 0.0020 | (0.0009) | 0.0009 | (0.0004) | 0.0062 | (0.0004) | 0.0082 | (0.0020) | * | |
8–10 | 0.0040 | (0.0021) | 0.0011 | (0.0005) | 0.0049 | (0.0004) | 0.0065 | (0.0020) | ns |
Content | Depth | T0 | T1 | T2 | T3 | |||||
---|---|---|---|---|---|---|---|---|---|---|
CHO mg/g | cm | Anoxy Condition | Anoxy Condition | Anoxy Condition | Anoxy Condition | p-level | ||||
mean | (se) | mean | (se) | mean | (se) | mean | (se) | |||
0–2 | 0.0071 | (0.0006) | 0.0316 | (0.0010) | 0.0429 | (0.0003) | 0.0429 | (0.0003) | *** | |
2–4 | 0.0166 | (0.0004) | 0.0258 | (0.0030) | 0.0292 | (0.0003) | 0.0292 | (0.0003) | * | |
4–6 | 0.0051 | (0.0003) | 0.0062 | (0.0006) | 0.0052 | (0.0040) | 0.0052 | (0.0040) | ns | |
6–8 | 0.0010 | (0.0000) | 0.0010 | (0.0000) | 0.0010 | (0.0000) | 0.0010 | (0.0000) | *** | |
8–10 | 0.0010 | (0.0000) | 0.0010 | (0.0000) | 0.0010 | (0.0000) | 0.0010 | (0.0000) | *** | |
PRT mg/g | ||||||||||
0–2 | 0.0183 | (0.0040) | 0.0558 | (0.0170) | 0.1201 | (0.0180) | 0.1844 | (0.0180) | ** | |
2–4 | 0.0080 | (0.0030) | 0.0490 | (0.0140) | 0.1133 | (0.0140) | 0.1776 | (0.0140) | ** | |
4–6 | 0.0267 | (0.0090) | 0.0320 | (0.0080) | 0.0963 | (0.0080) | 0.1606 | (0.0080) | ** | |
6–8 | 0.0229 | (0.0070) | 0.0289 | (0.0080) | 0.0932 | (0.0080) | 0.1575 | (0.0080) | ** | |
8–10 | 0.0126 | (0.0050) | 0.0294 | (0.0070) | 0.0937 | (0.0070) | 0.1580 | (0.0070) | ** | |
LIP mg/g | ||||||||||
0–2 | 0.0023 | (0.0009) | 0.0104 | (0.0040) | 0.0091 | (0.0030) | 0.0078 | (0.0030) | ns | |
2–4 | 0.0056 | (0.0027) | 0.0049 | (0.0020) | 0.0036 | (0.0020) | 0.0029 | (0.0020) | ns | |
4–6 | 0.0018 | (0.0008) | 0.0058 | (0.0030) | 0.0045 | (0.0030) | 0.0039 | (0.0020) | ns | |
6–8 | 0.0020 | (0.0009) | 0.0028 | (0.0010) | 0.0020 | (0.0010) | 0.0014 | (0.0003) | ns | |
8–10 | 0.0040 | (0.0021) | 0.0023 | (0.0010) | 0.0016 | (0.0006) | 0.0010 | (0.0001) | ns |
Variable | PC1 | PC2 | PC3 |
---|---|---|---|
(a) | |||
TOC | −0.201 | −0.200 | −0.476 |
TN | −0.041 | 0.392 | −0.024 |
TS | 0.193 | −0.191 | 0.133 |
TC | 0.084 | 0.036 | −0.539 |
TP | 0.332 | 0.021 | 0.054 |
Fe | 0.175 | 0.307 | −0.047 |
CHO | −0.137 | −0.062 | −0.524 |
Chl-a | 0.282 | −0.324 | −0.214 |
PHAE | 0.250 | −0.237 | −0.163 |
PRT | 0.547 | 0.166 | 0.005 |
LIP | 0.091 | −0.490 | 0.146 |
OM | −0.059 | 0.335 | 0.031 |
LOM | −0.076 | −0.352 | 0.287 |
BPC | 0.544 | 0.071 | −0.092 |
(b) | |||
TOC | −0.253 | −0.080 | 0.383 |
TN | −0.357 | −0.237 | 0.029 |
TS | −0.220 | −0.009 | −0.493 |
TC | −0.142 | 0.422 | 0.412 |
TP | −0.352 | 0.028 | −0.027 |
Fe | −0.317 | 0.114 | 0.270 |
CHO | −0.318 | −0.307 | 0.016 |
Chl-a | −0.251 | −0.115 | −0.092 |
PHAE | −0.293 | −0.070 | −0.128 |
PRT | −0.277 | 0.420 | −0.106 |
LIP | −0.126 | −0.462 | −0.155 |
OM | −0.234 | −0.221 | 0.402 |
LOM | −0.213 | 0.383 | −0.119 |
BPC | −0.271 | 0.219 | −0.359 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Renzi, M.; Provenza, F.; Pignattelli, S.; Cilenti, L.; Specchiulli, A.; Pepi, M. Mediterranean Coastal Lagoons: The Importance of Monitoring in Sediments the Biochemical Composition of Organic Matter. Int. J. Environ. Res. Public Health 2019, 16, 3466. https://doi.org/10.3390/ijerph16183466
Renzi M, Provenza F, Pignattelli S, Cilenti L, Specchiulli A, Pepi M. Mediterranean Coastal Lagoons: The Importance of Monitoring in Sediments the Biochemical Composition of Organic Matter. International Journal of Environmental Research and Public Health. 2019; 16(18):3466. https://doi.org/10.3390/ijerph16183466
Chicago/Turabian StyleRenzi, Monia, Francesca Provenza, Sara Pignattelli, Lucrezia Cilenti, Antonietta Specchiulli, and Milva Pepi. 2019. "Mediterranean Coastal Lagoons: The Importance of Monitoring in Sediments the Biochemical Composition of Organic Matter" International Journal of Environmental Research and Public Health 16, no. 18: 3466. https://doi.org/10.3390/ijerph16183466
APA StyleRenzi, M., Provenza, F., Pignattelli, S., Cilenti, L., Specchiulli, A., & Pepi, M. (2019). Mediterranean Coastal Lagoons: The Importance of Monitoring in Sediments the Biochemical Composition of Organic Matter. International Journal of Environmental Research and Public Health, 16(18), 3466. https://doi.org/10.3390/ijerph16183466