Analysis of Combustion Process in Industrial Gas Engine with Prechamber-Based Ignition System
Abstract
:1. Introduction
2. Experimental Setup
2.1. Test Object
2.2. Experimental Procedure
3. Results and Discussion
3.1. Preliminary Test with Two Spark Plugs Ignition
3.2. Study of One Cylinder Work
3.3. Analysis of Engine Operation with PCC Ignition System
4. Conclusions
- ▪
- decrease of nitric oxide emission up to 60%;
- ▪
- reduction of carbon monoxide in the range from 22–26%, for 290 and 330 rpm respectively;
- ▪
- improvement of combustion stability by eight percent compared to 2-SP system;
- ▪
- increase of maximum peak pressure value.
- ▪
- ignition time delay improves the combustion stability and reduces the NO and THC emission in case of PCC-A, while for PCC-B this trend is the opposite;
- ▪
- nitric oxide emission and combustion instability increase with the decrease of equivalence ratio.
Author Contributions
Conflicts of Interest
Nomenclature
IMEP | indicative mean effective pressure |
COV | coefficient of variation |
TDC | top dead center |
PCC | precombustion chamber |
2-PCC | two precombustion chamber |
PCC-A | precombustion chamber located in port A |
PCC-B | precombustion chamber located in port B |
SP | spark plug |
2-SP | two spark plugs |
THC | total hydrocarbons |
EGR | external gas recirculation |
SCR | selective catalytic reduction |
SNCR | selective non catalytic reduction |
C | cylinder |
E,I | engine with spark plugs ignition system |
E,II | engine with prechamber ignition system |
gi | specific fuel consumption |
ϕ | equivalence ratio |
rpm | revolutions per minute |
References
- Rojewski, J.; Ślefarski, R.; Wawrzyniak, J. Analysis of combustion process in industrial gas engines powered with high methane and nitrified low-calorific gases. Siln. Spalinowe 2013, 52, 42–50. [Google Scholar]
- Bhandari, K.; Bansal, A.; Shukla, A.; Khare, M. Performance and emissions of natural gas fueled internal combustion engine: A review. J. Sci. Ind. Res. 2005, 64, 333–338. [Google Scholar]
- Hill, S.C.; Smoot, L.D. Modeling of nitrogen oxides formation and destruction in combustion systems. Prog. Energy Combust. Sci. 2000, 26, 417–458. [Google Scholar] [CrossRef]
- Knop, V.; Benkenida, A.; Jay, S.; Colin, O. Modelling of combustion and nitrogen oxide formation in hydrogen-fuelled internal combustion engines within a 3D CFD code. Int. J. Hydrogen Energy 2008, 33, 5083–5097. [Google Scholar] [CrossRef]
- Raine, R.R.; Stone, C.R.; Gould, J. Modeling of nitric oxide formation in spark ignition engines with a multizone burned gas. Combust. Flame 1995, 102, 241–255. [Google Scholar] [CrossRef]
- Krishnan, S.R.; Srinivasan, K.K.; Singh, S.; Bell, S.R.; Midkiff, K.C.; Gong, W.; Fiveland, S.B.; Willi, M. Strategies for Reduced NOx Emissions in Pilot-Ignited Natural Gas Engines. J. Eng. Gas Turbines Power 2004, 126, 665–671. [Google Scholar] [CrossRef]
- European Union. Directive (EU) 2015/2193 of the European Parliament and of the Council—Of 25 November 2015—On the Limitation of Emissions of Certain Pollutants into the Air from Medium Combustion Plants; Official Journal of the European Union: Luxembourg, 2015; Volume 58. [Google Scholar]
- Königsson, F.; Dembinski, H.; Angstrom, H.-E. The Influence of In-Cylinder Flows on Emissions and Heat Transfer from Methane-Diesel Dual Fuel Combustion. SAE Int. J. Engines 2013, 6, 1877–1887. [Google Scholar] [CrossRef]
- Sorathia, H.S.; Rahhod, P.P.; Sorathiya, A.S.; Engineering, M.; College, G.E.; Kutch, B. Effect of Exhaust Gas Recirculation (EGR) on NOx Emission from c.i. Engine”—A Review Study. Int. J. Adv. Eng. Res. Stud. 2012, 1, 223–227. [Google Scholar]
- Rudkowski, M.; Dudek, S.; Wołoszyn, R. Test results of an external exhaust gas recirculation system of a Cooper Bessemer GMVH-8 engine-compressor. Siln. Spalinowe 2010, 49, 74–81. [Google Scholar]
- Ma, F.; Wang, Y.; Liu, H.; Li, Y.; Wang, J.; Ding, S. Effects of hydrogen addition on cycle-by-cycle variations in a lean burn natural gas spark-ignition engine. Int. J. Hydrogen Energy 2008, 33, 823–831. [Google Scholar] [CrossRef]
- Arcoumanis, C.; Hull, D.R.; Whitelaw, J.H. An Approach to Charge Stratification in Lean-Burn, Spark- Ignition Engines; SAE Paper 941878; SAE International: Warrendale, PA, USA, 1994. [Google Scholar]
- Ma, F.; Wang, Y. Study on the extension of lean operation limit through hydrogen enrichment in a natural gas spark-ignition engine. Int. J. Hydrogen Energy 2008, 33, 1416–1424. [Google Scholar] [CrossRef]
- Tozzi, L.P.; Salter, D.W. Pre-Chamber Spark Plug. U.S. Patent 7,922,551 B2, 7 June 2005. [Google Scholar]
- Olsen, D.B.; Adair, J.L.; Willson, B.D. Precombustion Chamber Design and Performance. In Proceedings of the ASME 2005 Internal Combustion Engine Division Spring Technical Conference, Chicago, IL, USA, 5–7 April 2005; pp. 415–428. [Google Scholar]
- Olsen, D.B.; Lisowski, J.M. Prechamber NOx formation in low BMEP 2-stroke cycle natural gas engines. Appl. Therm. Eng. 2009, 29, 687–694. [Google Scholar] [CrossRef]
- Tozzi, L.; Sotiropoulou, E.; Zhu, S. Improving the Efficiency/Emissions Trade-off with a Novel Lean-Burn Precombustion Chamber. In Proceedings of the 10th Dessau Gas Engine Conference, Dessau-Rosslau, Germany, 6–7 April 2017; pp. 165–176. [Google Scholar]
- Le Conseil fédéral Suisse. Ordonnance sur la Protection de l’air (OPair), du 16 décembre 1985 (Etat au 12 octobre 1999); Le Conseil fédéral Suisse: Berne, Switzerland, 1999. [Google Scholar]
- Roethlisberger, R.P.; Favrat, D. Comparison between direct and indirect (prechamber) spark ignition in the case of a cogeneration natural gas engine, Part II: Engine operating parameters and turbocharger characteristics. Appl. Therm. Eng. 2002, 22, 1231–1243. [Google Scholar] [CrossRef]
- Heyne, S.; Meier, M.; Imbert, B.; Favrat, D. Experimental investigation of prechamber autoignition in a natural gas engine for cogeneration. Fuel 2009, 88, 547–552. [Google Scholar] [CrossRef]
- Rojewski, J. Optimazation of Combustion Process in Industrial Gas Engines. Ph.D. Thesis, Poznan University of Technology, Poznan, Poland, 2014; p. 7. [Google Scholar]
- Litak, G.; Syta, A.; Yao, B.F.; Li, C.X. Indicated mean effective pressure oscillations in a natural gas combustion engine by recurrence plots. J. Theor. Appl. Mech. 2009, 47, 55–67. [Google Scholar]
- Wang, J.; Chen, H.; Liu, B.; Huang, Z. Study of cycle-by-cycle variations of a spark ignition engine fueled with natural gas-hydrogen blends. Int. J. Hydrogen Energy 2008, 33, 4876–4883. [Google Scholar] [CrossRef]
- Roethlisberger, R.P.; Favrat, D. Comparison between direct and indirect (prechamber) spark ignition in the case of a cogeneration natural gas engine, Part I: Engine geometrical parameters. Appl. Therm. Eng. 2002, 22, 1217–1229. [Google Scholar] [CrossRef]
- Yousefi, A.; Birouk, M. Investigation of natural gas energy fraction and injection timing on the performance and emissions of a dual-fuel engine with pre-combustion chamber under low engine load. Appl. Energy 2017, 189, 492–505. [Google Scholar] [CrossRef]
Component | Fraction (%) |
---|---|
CH4 | 95.677 |
C2H6 | 1.183 |
C3H8 | 0.167 |
C4H10 | 0.018 |
N2 | 2.955 |
Engine Specification | Data |
---|---|
Engine type | Two-stroke |
Rated power | 1790 kW |
Intake | Turbocharger with intercooler |
Number of cylinders | 12 in V configuration |
Bore × stroke | 355.6 × 374.12 mm—left bank of cylinders/355.6 × 372.14 mm—right bank of cylinders |
Compression ratio | 9.62:1—left bank of cylinders/9.60:1—right bank of cylinders |
Fuel supply | Direct injection—poppet valve |
Rated crankshaft speed | 330 rpm |
Fuel system pressure | 0.21–0.35 MPa |
Charge air temperature | 633 K |
Charge air pressure | 0.038 MPa |
Exhaust gases temperature | 700 K |
Compression pressure in cylinder | 2.8 MPa |
Maximum combustion pressure | 6.1 MPa |
Construction year | 1973 |
Analyzer | Range | Accuracy |
---|---|---|
O2 | 0–25% | ±1 of full scale |
CO2 | 0–30% | ±1 of full scale |
CO | 0–5000 ppm | ±1 of full scale |
NO | 0–1000 ppm | ±1 of full scale |
THC | 0–5000 ppm | ±1 of full scale |
Power (kW) | Fuel Consumption (Nm3/h) | Manifold Air Pressure (kPa) | Manifold Air Temperature (°C) | Ignition Timing (°BTDC) | Fuel Injection (°BTDC) |
---|---|---|---|---|---|
1382–1554 | 389–422 | 18.6–23.6 | 36–38 | 3.75–5.1 | 76 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ślefarski, R.; Gołębiewski, M.; Czyżewski, P.; Grzymisławski, P.; Wawrzyniak, J. Analysis of Combustion Process in Industrial Gas Engine with Prechamber-Based Ignition System. Energies 2018, 11, 336. https://doi.org/10.3390/en11020336
Ślefarski R, Gołębiewski M, Czyżewski P, Grzymisławski P, Wawrzyniak J. Analysis of Combustion Process in Industrial Gas Engine with Prechamber-Based Ignition System. Energies. 2018; 11(2):336. https://doi.org/10.3390/en11020336
Chicago/Turabian StyleŚlefarski, Rafał, Michał Gołębiewski, Paweł Czyżewski, Przemysław Grzymisławski, and Jacek Wawrzyniak. 2018. "Analysis of Combustion Process in Industrial Gas Engine with Prechamber-Based Ignition System" Energies 11, no. 2: 336. https://doi.org/10.3390/en11020336
APA StyleŚlefarski, R., Gołębiewski, M., Czyżewski, P., Grzymisławski, P., & Wawrzyniak, J. (2018). Analysis of Combustion Process in Industrial Gas Engine with Prechamber-Based Ignition System. Energies, 11(2), 336. https://doi.org/10.3390/en11020336