A Comprehensive Energy Analysis and Related Carbon Footprint of Dairy Farms, Part 1: Direct Energy Requirements
Abstract
:1. Introduction
2. Material and Methods
2.1. Data Sources
2.2. Goal and Scope Definition
2.3. System Boundaries
2.4. Functional Unit and Allocation
2.5. Inventory Analysis (LCI)
- Section 1—General information includes the global data of the dairy farms such as hectares of cultivated land, herd size, milk quality and quantity, type of herd management, workforce, employees and position (city, province).
- Section 2—Slurry storage facility is where the type and power of the appliances found in the slurry storage facilities have been considered.
- Section 3—On-farm feed preparation and distribution considers the whole activities related to feeding operations, together with the power of the equipment used and associated usage times.
- Section 4—Energy consumptions comprises the energy usages receipt of electricity supply, Liquefied Petroleum Gas (LPG) and fuel.
- Section 5—Fleet equipment embodies a list of the total machinery (tractors, self-propelled and tools) utilized for on-farm activities.
- Section 6—Agronomic data considers the data associated to field cultivations as type of crops and the related yields, type of harvesting and cultivated hectares.
- Section 7—Water usage is related to pumping activities for water supply at farm level and for irrigation purposes. These two activities were retained divided during the final assessments with the final aim to identify the requirements of fossil fuels of each task.
- Section 8—Milking and milk cooling comprises the overall data associated to the type of milking parlor, power of the appliances, milk tank dimensions, number of milking groups, use of energy saving devices such as Heat Recovering System (HRS), Milk Pre-cooler (MP) and Variable Drive Speed (VDS).
- Section 9—Field operations considers the power of tractors and the self-propelled machinery, type of activities carried out, operational times and the tools used.
2.6. Electricity Audit
2.7. Diesel Audit
2.8. Energy Carbon Footprint
2.9. Energy Efficiency and Carbon Indicators
3. Results and Discussion
3.1. Direct Energy Intensity
3.2. Carbon Dioxide Emissions
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Intergovernmental Panel on Climate Change. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014; p. 151. [Google Scholar]
- Food and Agriculture Organization. Livestock’s Long Shadow; Environmental Issues and Options; Animal Production and Health Division: Rome, Italy, 2006. [Google Scholar]
- Gill, M.; Smith, P.; Wilkinson, J.M. Mitigating climate change: The role of domestic livestock. Animal 2010, 4, 323–333. [Google Scholar] [CrossRef] [PubMed]
- Capper, J.L.; Cady, R.A.; Bauman, D.E. The environmental impact of dairy production: 1944 compared with 2007. J. Anim. Sci. 2009, 87, 2160–2167. [Google Scholar] [CrossRef] [PubMed]
- Flachowsky, G.; Hachenberg, S. CO2-Footprints for Food of Animal Origin—Present Stage and Open Questions. J. Verbrauch. Lebensm. 2009, 4, 190–198. [Google Scholar] [CrossRef]
- Pulina, G.; Atzori, A.S.; Battacone, G.; Francesconi, A.H.D.; Mele, M.; Ronchi, B.; Stefanon, B.; Sturaro, E.; Trevisi, E. Italian animal footprint: L’impatto ecologico delle attività zootecniche italiane. Manag. Delle Util. 2012. Available online: http://hdl.handle.net/10807/21191 (accessed on 16 September 2017).
- Bouamra-Mechemache, Z. Impact of a gradual increase in milk quotas on the EU dairy sector. Eur. Rev. Agric. Econ. 2008, 35, 461–491. [Google Scholar] [CrossRef]
- Lips, M.; Rieder, M. Abolition of Raw Milk Quota in the European Union: A CGE Analysis at the Member Country Level. J. Agric. Econ. 2005, 56, 1–17. [Google Scholar] [CrossRef]
- Food and Agriculture Organization. Greenhouse Gas Emissions from the Dairy Sector: A Life Cycle Assessment; Animal Production and Health Division: Rome, Italy, 2010. [Google Scholar]
- Israel Defense Forces. Environmental/Ecological Impact of the Dairy sector: Literature Review on a Dairy Products for an Inventory of Key Issues, List of Environmental Initiatives and Influence on the Dairy Sector; Bulletin of International Dairy Federation: Belgium, 2009; p. 436. [Google Scholar]
- Todde, G.; Murgia, L.; Caria, M.; Pazzona, A. Dairy Energy Prediction (DEP) model: A tool for predicting energy use and related emissions and costs in dairy farms. Comput. Electron. Agric. 2017, 135, 216–221. [Google Scholar] [CrossRef]
- Upton, J.; Murphy, M.; Shalloo, L.; Groot Koerkamp, P.W.G.; De Boer, I.J.M. A mechanistic model for electricity consumption on dairy farms: Definition, validation, and demonstration. J. Dairy Sci. 2014, 97, 4973–4984. [Google Scholar] [CrossRef] [PubMed]
- Pagani, M.; Vittuari, M.; Johnson, T.G.; De Menna, F. An assessment of the energy footprint of dairy farms in Missouri and Emilia-Romagna. Agric. Syst. 2016, 145, 116–126. [Google Scholar] [CrossRef]
- Vigne, A.; Martin, O.; Faverdin, P.; Peyraud, J.L. Comparative uncertainty analysis of energy coefficients in energy analysis of dairy farms from two French territories. J. Clean. Prod. 2012, 37, 185–191. [Google Scholar] [CrossRef]
- Van der Werf, H.M.G.; Kanyarushoki, C.; Corson, M.S. An operational method for the evaluation of resource use and environmental impacts of dairy farms by life cycle assessment. J. Environ Manag. 2009, 90, 3643–3652. [Google Scholar] [CrossRef] [PubMed]
- GrÖnroos, J.; Seppala, J.; Voutilainen, P.; Seuri, P.; Koikkalainen, K. Energy use in conventional and organic milk and rye bread production in Finland. Agric. Ecosyst. Environ. 2006, 117, 109–118. [Google Scholar] [CrossRef]
- Todde, G.; Caria, M.; Gambella, F.; Pazzona, A. Energy and Carbon Impact of Precision Livestock Farming Technologies Implementation in the Milk Chain: From Dairy Farm to Cheese Factory. Agriculture 2017, 7, 79. [Google Scholar] [CrossRef]
- Todde, G.; Murgia, L.; Caria, M.; Pazzona, A. A multivariate statistical analysis approach to characterize mechanization, structural and energy profile in Italian dairy farms. Energy Rep. 2016, 2, 129–134. [Google Scholar] [CrossRef]
- Gaudino, S.; Goia, I.; Grignani, C.; Monaco, S.; Sacco, D. Assessing agro-environmental performance of dairy farms in northwest Italy based on aggregated results from indicators. J. Environ Manag. 2014, 140, 120–134. [Google Scholar] [CrossRef] [PubMed]
- Atzori, A.S.; Tedeschi, L.O.; Cannas, A. A multivariate and stochastic approach to identify key variables to rank dairy farms on profitability. J. Dairy Sci. 2013, 96, 3378–3387. [Google Scholar] [CrossRef] [PubMed]
- Guerci, M.; Knudsen, M.T.; Bava, L.; Zucali, M.; SchÖnbach, P.; Kristensen, T. Parameters affecting the environmental impact of a range of dairy farming systems in Denmark, Germany and Italy. J. Clean. Prod. 2013, 54, 133–141. [Google Scholar] [CrossRef]
- Meul, M.; Nevens, F.; Reheul, D.; Hofman, G. Energy use efficiency of specialised dairy, arable and pig farms in Flanders. Agric. Ecosyst. Environ. 2007, 119, 135–144. [Google Scholar] [CrossRef]
- Ludington, D.; Johnson, E. Dairy Farm Energy Audit Summary Report; Energy Research and Development Authority: Albany, NY, USA, 2003.
- Murgia, L.; Todde, G.; Caria, M.; Pazzona, A. A partial life cycle assessment approach to evaluate the energy intensity and related greenhouse gas emission in dairy farms. J Agric. Eng. 2013, 44, e37. [Google Scholar] [CrossRef]
- Institut de l’Elevage. Les Consommations D’energie en Bâtiment D’elelevage Laitier; Reperes de Consommations et Pistes D’economies; Collection: Synthese, Janvier, 2009. [Google Scholar]
- Jäkel, K. Analyse der Elektroenergieanwendungund Einsparpotentialeam Beispielsächsischer Milchviehanlagen; Forschungsbericht Agrartechnik; Mertin-Luther-Universitat: Halle, Germany, 2003; p. 414. [Google Scholar]
- ISO 14064-1. Greenhouse gases—Part 1: Specification with Guidance at the Organization Level for Quantification and Reporting of Greenhouse Gas Emissions and Removals; European Standard: Iceland, Norway, 2012. [Google Scholar]
- ISO/TS 14067. Technical Specification. Greenhouse Gases—Carbon Footprint of Products—Requirements and Guidelines for Quantification and Communication; European Standard: Iceland, Norway, 2013. [Google Scholar]
- ISO 14040. Environmental management—Life Cycle Assessment—Principles and Framework; European Standard: Iceland, Norway, 2006. [Google Scholar]
- ISO 14044. Environmental Management—Life Cycle Assessment—Requirements and Guidelines; European Standard: Iceland, Norway, 2006. [Google Scholar]
- Israel Defense Forces. A Common Carbon Footprint Approach for Dairy, The IDF Guide to Standard Lifecycle Assessment Methodology for the Dairy Sector; Bulletin of International Dairy Federation: Belgium, 2010; p. 445. [Google Scholar]
- Southern California Edison. Dairy Farm Energy Management Guide: California; WSU Energy Program: Olympia, WA, USA, 2004. [Google Scholar]
- DeVries, T.J.; Vankova, M.; Veira, D.M.; Keyserlingk, M.A.G. Usage of Mechanical Brushes by Lactating Dairy Cows. J. Dairy Sci. 2007, 90, 2241–2245. [Google Scholar] [CrossRef] [PubMed]
- Grisso, R.D.; Kocher, M.F.; Vaughan, D.H. Predicting tractor fuel consumption. Appl. Eng. Agric. 2004, 20, 553–561. [Google Scholar] [CrossRef]
- Istituto Superiore per la Protezione e la Ricerca Ambientale. Produzione Termoelettrica ed Emissioni di CO2. Fonti Rinnovabili e Impianti Soggetti a ETS; ISPRA: Rome, Italy, 2011.
- ENEA. Inventario Annuale Delle Emissioni di Gas Serra su Scala Regionale, Le Emissioni di Anidride Carbonica dal Sistema Energetico; Rapporto 2010; ENEA: Kista, Sweden, 2010. [Google Scholar]
- Edens, W.C.; Pordesimo, L.O.; Wilhelm, L.R.; Burns, R.T. Energy Use Analysis of Major Milking Center Components at a Dairy Experiment Station. Appl. Eng. Agric. 2003, 19, 711–716. [Google Scholar] [CrossRef]
- By, P.; Wells, D.C.; Physics, D.O. Total Energy Indicators of Agricultural Sustainability: Dairy Farming Case Study; Technical Paper 2001/3; Ministry of Agriculture and Forestry: Wellington, New Zealand, 2001; ISBN 0-478-07968-0. ISSN 1171-4662.
- Battini, F.; Agostini, A.; Tabaglio, V.; Amaducci, S. Environmental impacts of different dairy farming systems in the Po Valley. J. Clean. Prod. 2016, 112, 91–102. [Google Scholar] [CrossRef]
- Rossi, P.; Gastaldo, A. Consumi energetici in allevamenti bovini da latte. Inf. Agrar. 2012, 3, 45–47. [Google Scholar]
- Kraatz, S. Energy intensity in livestock—Modeling of dairy farming systems in Germany. Agric. Syst. 2012, 110, 90–106. [Google Scholar] [CrossRef]
- Todde, G.; Murgia, L.; Caria, M.; Pazzona, A. A Comprehensive Energy Analysis and Related Carbon Footprint of Dairy Farms, Part 2: Investigation and Modeling of Indirect Energy Requirements. Energies 2018, 11, 451. [Google Scholar] [CrossRef]
- Gospel of Luke. Basis of Feed Value Calculations. 2018. Available online: https://portal.mtt.fi/portal/page/portal/Rehutaulukot/feed_tables_english (accessed on 20 January 2018).
Energy Sources | Average | Head | LC | Hectare | t FPCM |
---|---|---|---|---|---|
Diesel (kg) | 13,675 ± 15,085 | 123 ± 156 | 260 ± 235 | 369 ± 351 | 40 ± 56 |
Electricity (kWh) | 26,245 ± 42,479 | 227 ± 107 | 491 ± 242 | 816 ± 1087 | 73 ± 48 |
LPG (kg) | 115 ± 508 | 1 ± 5 | 2 ± 10 | 4 ± 15 | 0.4 ± 1.3 |
Primary Energy | |||||
Diesel (MJ) | 629,050 ± 693,910 | 5568 ± 7176 | 11,960 ± 10,810 | 16,974 ± 16,146 | 1840 ± 2576 |
Electricity (MJ) | 238,042 ± 385,285 | 2059 ± 970 | 4453 ± 2195 | 7401 ± 9859 | 662 ± 435 |
LPG (MJ) | 5819 ± 25,705 | 51 ± 253 | 101 ± 506 | 202 ± 759 | 20 ± 66 |
Total Energy (MJ) | 872,911 ± 1,104,900 | 7678 ± 8399 | 16,514 ± 13,511 | 24,577 ± 26,764 | 2522 ± 3077 |
Energy Source | Average | Head | LC | Hectare | t FPCM |
---|---|---|---|---|---|
Diesel (kg CO2-eq) | 43,076 ± 47,519 | 387 ± 492 | 819 ± 739 | 1162 ± 1104 | 125 ± 177 |
Electricity (kg CO2-eq) | 10,768 ± 17,429 | 93 ± 44 | 201 ± 99 | 335 ± 446 | 30 ± 20 |
LPG (kg CO2-eq) | 314 ± 1425 | 3 ± 13 | 7 ± 29 | 10 ± 42 | 1 ± 4 |
Total emissions (kg CO2-eq) | 54,158 ± 61,380 | 483 ± 496 | 1027 ± 761 | 1507 ± 1393 | 156 ± 182 |
Herd Size Class (N Heads) | <50 | 50–100 | 101–200 | >200 |
---|---|---|---|---|
Farms (n) | 66 | 100 | 75 | 44 |
Heads (n) | 33 ± 11 | 71 ± 15 | 142 ± 28 | 371 ± 219 |
Lactating cows (n) | 16 ± 7 | 34 ± 9 | 65 ± 16 | 164 ± 95 |
Farm milk production (t FPCM) | 93 ± 48 | 241 ± 99 | 578 ± 199 | 1543 ± 902 |
Milk yield (kg LC−1) | 6139 ± 2642 | 7039 ± 2015 | 8896 ± 1995 | 9494 ± 1699 |
Cultivated land (ha) | 20 ± 13 | 29 ± 16 | 45 ± 29 | 90 ± 56 |
LPG (kg) | 32 ± 108 | 99 ± 376 | 112 ± 318 | 243 ± 1041 |
LPG (MJ) | 1619 ± 5465 | 5009 ± 19,026 | 5667 ± 16,091 | 12,296 ± 52,675 |
LPG (kg CO2-eq) | 93 ± 311 | 285 ± 1079 | 323 ± 912 | 698 ± 2989 |
Diesel (kg) | 4296 ± 3724 | 8244 ± 6544 | 15,339 ± 8950 | 37,251 ± 21,642 |
Diesel (kg head−1) | 130 ± 94 | 118 ± 94 | 106 ± 48 | 102 ± 30 |
Diesel (MJ) | 197,616 ± 171,304 | 379,224 ± 301,024 | 705,594 ± 411,700 | 1,713,546 ± 995,532 |
Diesel (kg CO2-eq) | 13,533 ± 11,732 | 25,968 ± 20,615 | 48,316 ± 28,194 | 117,339 ± 68,174 |
Electricity (kWh) | 9709 ± 5325 | 15,894 ± 7290 | 26,799 ± 8849 | 73,627 ± 93,013 |
Electricity (kWh head−1) | 300 ± 139 | 225 ± 93 | 191 ± 63 | 180 ± 85 |
Electricity (MJ) | 88,061 ± 48,298 | 144,159 ± 66,120 | 243,067 ± 80,260 | 667,798 ± 843,628 |
Electricity (kg CO2-eq) | 3984 ± 2185 | 6521 ± 2991 | 10,996 ± 3631 | 30,209 ± 38,163 |
Total MJ·100 kg FPCM−1 | 381 ± 434 | 256 ± 240 | 180 ± 112 | 159 ± 62 |
Total MJ·head−1 | 8.760 ± 4.703 | 7.541 ± 4.483 | 6.642 ± 2.354 | 6.382 ± 1.506 |
Total kg CO2-eq·head−1 | 536 ± 311 | 468 ± 303 | 414 ± 157 | 399 ± 97 |
Total kg CO2-eq 100 kg FPCM−1 | 24 ± 30 | 16 ± 16 | 11 ± 7 | 10 ± 4 |
Milk Yield Class (kg·LC−1) | <5000 | 5000–7000 | 7000–9000 | >9000 |
---|---|---|---|---|
Farms (n) | 40 | 72 | 88 | 85 |
Heads (n) | 55 ± 35 | 87 ± 95 | 131 ± 176 | 191 ± 140 |
Lactating cows (n) | 26 ± 17 | 41 ± 46 | 59 ± 74 | 86 ± 63 |
Milk production (t) | 94 ± 50 | 255 ± 298 | 488 ± 646 | 899 ± 670 |
Milk yield (kg LC−1) | 3762 ± 835 | 6091 ± 579 | 8094 ± 604 | 10,501 ± 1371 |
Land (ha) | 29 ± 26 | 30 ± 29 | 40 ± 39 | 55 ± 40 |
LPG (kg) | 49 ± 142 | 77 ± 306 | 189 ± 808 | 83 ± 242 |
LPG (MJ) | 2479 ± 7185 | 3896 ± 15,484 | 9563 ± 40,885 | 4200 ± 12,245 |
LPG (kg CO2-eq) | 140 ± 407 | 222 ± 879 | 543 ± 2320 | 238 ± 696 |
Diesel (kg) | 7902 ± 9203 | 8910 ± 9862 | 13,666 ± 17,731 | 20,437 ± 15,512 |
Diesel (MJ) | 363,492 ± 423,338 | 409,860 ± 453,652 | 628,636 ± 815,626 | 940,102 ± 713,552 |
Diesel (kg CO2-eq) | 24,891 ± 28,988 | 28,067 ± 31,066 | 43,048 ± 55,854 | 64,376 ± 48,864 |
Electricity (kWh) | 10,640 ± 5,431 | 20,384 ± 23,317 | 29,782 ± 67,718 | 34,891 ± 25,376 |
Electricity (MJ) | 96,505 ± 49,259 | 184,883 ± 211,485 | 270,123 ± 614,202 | 316,461 ± 230,160 |
Electricity (kg CO2-eq) | 4366 ± 2228 | 8364 ± 9567 | 12,220 ± 27,785 | 14,316 ± 10,412 |
Total MJ 100 kg FPCM−1 | 559 ± 570 | 266 ± 179 | 189 ± 84 | 155 ± 67 |
Total kg CO2-eq 100 kg FPCM−1 | 36 ± 39 | 16 ± 12 | 12 ± 6 | 10 ± 4 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Todde, G.; Murgia, L.; Caria, M.; Pazzona, A. A Comprehensive Energy Analysis and Related Carbon Footprint of Dairy Farms, Part 1: Direct Energy Requirements. Energies 2018, 11, 451. https://doi.org/10.3390/en11020451
Todde G, Murgia L, Caria M, Pazzona A. A Comprehensive Energy Analysis and Related Carbon Footprint of Dairy Farms, Part 1: Direct Energy Requirements. Energies. 2018; 11(2):451. https://doi.org/10.3390/en11020451
Chicago/Turabian StyleTodde, Giuseppe, Lelia Murgia, Maria Caria, and Antonio Pazzona. 2018. "A Comprehensive Energy Analysis and Related Carbon Footprint of Dairy Farms, Part 1: Direct Energy Requirements" Energies 11, no. 2: 451. https://doi.org/10.3390/en11020451
APA StyleTodde, G., Murgia, L., Caria, M., & Pazzona, A. (2018). A Comprehensive Energy Analysis and Related Carbon Footprint of Dairy Farms, Part 1: Direct Energy Requirements. Energies, 11(2), 451. https://doi.org/10.3390/en11020451