Solar Cell Capacitance Determination Based on an RLC Resonant Circuit
Abstract
:1. Introduction
2. Materials and Methods
2.1. Photovoltaic Cell Modeling
- I1 = photogenerated current
- Rs = series resistance
- Rsh = shunt resistance
- Rd(V) = dynamic resistance of the diode
- CD(V, ω) = diffusion capacitance
- CT(V) = transition capacitance
- ω = signal frequency
2.2. Proposed Method for Determining the Solar Cell Capacitance
2.3. Simulation and Experimental Setup
3. Results and Discussion
3.1. Simulation Results
3.2. Experimental Results
4. Conclusions
Author Contributions
Conflicts of Interest
References
- MacGill, I.; Watt, M. Economics of Solar PV Systems with Storage, in Main Grid and Mini-Grid Settings. In Solar Energy Storage; Sørensen, B., Ed.; Academic Press: London, UK, 2015; Chapter 10; pp. 225–244. ISBN 978-0-12-409540-3. [Google Scholar]
- Gude, V.G.; Nirmalakhandan, N.; Deng, S. Desalination using solar energy: Towards sustainability. Energy 2011, 36, 78–85. [Google Scholar] [CrossRef]
- Das, N.; Wongsodihardjo, H.; Islam, S. Photovoltaic cell modeling for maximum power point tracking using MATLAB/Simulink to improve the conversion efficiency. In Proceedings of the IEEE Power and Energy Society General Meeting (PES 2013), Vancouver, BC, Canada, 21–25 July 2013. [Google Scholar]
- Das, N.; Wongsodihardjo, H.; Islam, S. Modeling of multi-junction photovoltaic cell using MATLAB/Simulink to improve the conversion efficiency. Renew. Energy 2015, 74, 917–924. [Google Scholar] [CrossRef]
- Al-Nimr, M.; Al-Ammari, W. A novel hybrid PV-distillation system. Sol. Energy 2016, 135, 874–883. [Google Scholar] [CrossRef]
- Cotfas, D.T.; Cotfas, P.A.; Kaplanis, S. Methods to determine the dc parameters of solar cells: A critical review. Renew. Sustain. Energy Rev. 2013, 28, 588–596. [Google Scholar] [CrossRef]
- Cotfas, D.T.; Cotfas, P.A.; Kaplanis, S. Methods and techniques to determine the dynamic parameters of solar cells: Review. Renew. Sustain. Energy Rev. 2016, 61, 213–221. [Google Scholar] [CrossRef]
- Yadav, P.; Pandey, K.; Bhatt, V.; Kumar, M.; Kim, J. Critical aspects of impedance spectroscopy in silicon solar cell characterization: A review. Renew. Sustain. Energy Rev. 2017, 76, 1562–1578. [Google Scholar] [CrossRef]
- Chan, D.S.H.; Phillips, J.R.; Phang, J.C.H. A comparative study of extraction methods for solar cell model parameters. Solid-State Electron. 1986, 29, 329–337. [Google Scholar] [CrossRef]
- Raj, S.; Kumar, S.A.; Panchal, A.K. Solar cell parameters estimation from illuminated I-V characteristic using linear slope equations and Newton-Raphson technique. J. Renew. Sustain. Energy 2013, 5, 255–265. [Google Scholar] [CrossRef]
- Cubas, J.; Pindado, S.; Manuel, C. Explicit Expressions for Solar Panel Equivalent Circuit Parameters Based on Analytical Formulation and the Lambert W-Function. Energies 2014, 7, 4098–4115. [Google Scholar] [CrossRef]
- Mughal, M.A.; Ma, Q.; Xiao, C. Photovoltaic Cell Parameter Estimation Using Hybrid Particle Swarm Optimization and Simulated Annealing. Energies 2017, 10, 1213. [Google Scholar] [CrossRef]
- Ye, M.; Wang, X.; Xu, Y. Parameter extraction of solar cells using particle swarm optimization. J. Appl. Phys. 2009, 105, 094502. [Google Scholar] [CrossRef]
- Zagrouba, M.; Sellami, A.; Bouaïcha, M.; Ksouri, M. Identification of PV solar cells and modules parameters using the genetic algorithms: Application to maximum power extraction. Sol. Energy 2010, 84, 860–866. [Google Scholar] [CrossRef]
- Hasanien, H.M. Shuffled frog leaping algorithm for photovoltaic model identification. IEEE Trans. Sustain. Energy 2015, 6, 509–515. [Google Scholar] [CrossRef]
- Yu, K.; Chen, X.; Wang, X.; Wang, Z. Parameters identification of photovoltaic models using self-adaptive teaching-learning-based optimization. Energy Convers. Manag. 2017, 145, 233–246. [Google Scholar] [CrossRef]
- Kumar, R.A.; Suresh, M.S.; Nagaraju, J. Measurement and comparison of AC parameters of silicon (BSR and BSFR) and gallium arsenide (GaAs/Ge) solar cells used in space applications. Sol. Energy Mater. Sol. Cells 2000, 60, 155–165. [Google Scholar] [CrossRef]
- Kumar, R.A.; Suresh, M.S.; Nagaraju, J. Silicon (BSFR) solar cell AC parameters at different temperatures. Sol. Energy Mater. Sol. Cells 2005, 85, 397–406. [Google Scholar] [CrossRef]
- Kumar, R.A.; Suresh, M.S.; Nagaraju, J. Time domain technique to measure solar cell capacitance. Rev. Sci. Instrum. 2003, 74, 3516–3519. [Google Scholar] [CrossRef]
- Deshmukh, M.P.; Kumar, R.A.; Nagarajua, J. Measurement of solar cell ac parameters using the time domain technique. Rev. Sci. Instrum. 2004, 75, 2732–2735. [Google Scholar] [CrossRef]
- Chenvidhya, D.; Limsakul, C.; Thongpron, J.; Kirtikara, K.; Jivacate, C. Determination of solar cell dynamic parameters from time domain responses. In Proceedings of the Technical Digest of the 14th International Photovoltaic Science and Engineering Conference (PVSEC14), Bangkok, Thailand, 26–30 January 2004. [Google Scholar]
- Oprea, M.I.; Spataru, S.V.; Sera, D.; Poulsen, P.B.; Thorsteinsson, S.; Basu, R.; Andersen, A.R.; Frederiksen, K.H.B. Detection of potential induced degradation in c-Si PV panels using electrical impedance spectroscopy. In Proceedings of the IEEE 43rd Photovoltaic Specialists Conference (PVSC), Portland, OR, USA, 5–10 June 2016; pp. 1575–1579. [Google Scholar]
- Bhat, P.S.; Rao, A.; Sanjeev, G.; Usha, G.; Priya, G.K.; Sankaran, M.; Puthanveettil, S.E. Capacitance and conductance studies on silicon solar cells subjected to 8 MeV electron irradiations. Radiat. Phys. Chem. 2015, 111, 28–35. [Google Scholar] [CrossRef]
- Kim, K.A.; Seo, G.S.; Cho, B.H.; Krein, P.T. Photovoltaic Hot-Spot Detection for Solar Panel Substrings Using AC Parameter Characterization. IEEE Trans. Power Electron. 2016, 31, 1121–1130. [Google Scholar] [CrossRef]
- Osawa, S.; Nakano, T.; Matsumoto, S.; Katayama, N.; Saka, Y.; Sato, H. Fault diagnosis of photovoltaic modules using AC impedance spectroscopy. In Proceedings of the IEEE International Conference on Renewable Energy Research and Applications (ICRERA), Birmingham, UK, 20–23 November 2016; pp. 210–215. [Google Scholar]
- Kumar, S.; Sareen, V.; Batra, N.; Singh, P.K. Study of C–V characteristics in thin n+-p-p+ silicon solar cell sand induced junction n-p-p+ cell structures. Sol. Energy Mater. Sol. Cells 2010, 94, 1469–1472. [Google Scholar] [CrossRef]
- Kumar, S.; Singh, P.K.; Chilana, G.S. Study of silicon solar cell at different intensities of illumination and wavelengths using impedance spectroscopy. Sol. Energy Mater. Sol. Cells 2009, 93, 1881–1884. [Google Scholar] [CrossRef]
- Burgelman, M.; Nollet, P. Admittance spectroscopy of thin film solar cells. Solid State Ion. 2005, 176, 2171–2175. [Google Scholar] [CrossRef]
- Bayhan, H.; Kavasoǧlu, A.S. Admittance and Impedance Spectroscopy on Cu(In,Ga)Se2 Solar Cells. Turk. J. Phys. 2003, 27, 529–535. [Google Scholar]
- Kumar, R.A.; Suresh, M.S.; Nagaraju, J. GaAs/Ge solar cell AC parameters under illumination. Sol. Energy 2004, 76, 417–421. [Google Scholar] [CrossRef]
- Anantha Krishna, H.; Misra, N.K.; Suresh, M.S. Use of solar cells for measuring temperature of solar cell blanket in spacecrafts. Sol. Energy Mater. Sol. Cells 2012, 102, 184–188. [Google Scholar] [CrossRef]
- Mandal, H.; Nagaraju, J. GaAs/Ge and silicon solar cell capacitance measurement using triangular wave method. Sol. Energy Mater. Sol. Cells 2007, 91, 696–700. [Google Scholar] [CrossRef]
- Panigrahi, J.; Singh, R.; Batra, N.; Gope, J.; Sharma, M.; Pathi, P.; Srivastava, S.K.; Rauthan, C.M.S.; Singh, P.K. Impedance spectroscopy of crystalline silicon solar cell: Observation of negative capacitance. Sol. Energy 2016, 136, 412–420. [Google Scholar] [CrossRef]
I1 [mA] | Cp [nF] | Vpol [mV] |
---|---|---|
46 | 432.3 | 14.7 |
66 | 432.5 | 21.2 |
89 | 432.4 | 28.6 |
161 | 432.2 | 51.8 |
Inductance [μH] | Frequency [kHz] | Cp [nF] | Vpol [mV] |
---|---|---|---|
21 | 52.69 | 432.2 | 51.9 |
100 | 24.22 | 432.9 | 51.9 |
271 | 14.67 | 432.7 | 51.9 |
566 | 10.15 | 432.6 | 51.9 |
Level [W/m2] | Inductance [μH] | Frequency [kHz] | Cp [nF] | Vpol [mV] | Isc [mA] |
---|---|---|---|---|---|
1.0 | 21 | 55.71 | 379.3 | ~0 | ~0 |
100 | 25.93 | 381.6 | ~0 | ~0 | |
271 | 15.63 | 380.8 | ~0 | ~0 | |
566 | 10.99 | 388.7 | ~0 | ~0 | |
183 | 21 | 55.28 | 394.0 | 14.8 | 46.0 |
100 | 25.45 | 394.2 | 14.5 | 46.0 | |
271 | 15.31 | 400.3 | 15.9 | 46.0 | |
566 | 10.83 | 400.7 | 16.7 | 46.0 | |
263 | 21 | 54.78 | 401.0 | 21.4 | 66.0 |
100 | 25.28 | 403.0 | 21.3 | 66.0 | |
271 | 15.32 | 400.8 | 22.5 | 66.0 | |
566 | 10.70 | 410.2 | 23.6 | 66.0 | |
354 | 21 | 54.07 | 406.3 | 29.1 | 89.0 |
100 | 25.03 | 410.7 | 28.6 | 89.0 | |
271 | 15.13 | 407.2 | 30.5 | 89.0 | |
566 | 10.55 | 412.5 | 33.2 | 89.0 | |
642 | 21 | 52.82 | 428.3 | 54.0 | 161.0 |
100 | 24.45 | 429.9 | 51.9 | 161.0 | |
271 | 14.75 | 424.9 | 56.1 | 161.0 | |
566 | 10.27 | 429.5 | 60.3 | 161.0 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cotfas, P.A.; Cotfas, D.T.; Borza, P.N.; Sera, D.; Teodorescu, R. Solar Cell Capacitance Determination Based on an RLC Resonant Circuit. Energies 2018, 11, 672. https://doi.org/10.3390/en11030672
Cotfas PA, Cotfas DT, Borza PN, Sera D, Teodorescu R. Solar Cell Capacitance Determination Based on an RLC Resonant Circuit. Energies. 2018; 11(3):672. https://doi.org/10.3390/en11030672
Chicago/Turabian StyleCotfas, Petru Adrian, Daniel Tudor Cotfas, Paul Nicolae Borza, Dezso Sera, and Remus Teodorescu. 2018. "Solar Cell Capacitance Determination Based on an RLC Resonant Circuit" Energies 11, no. 3: 672. https://doi.org/10.3390/en11030672
APA StyleCotfas, P. A., Cotfas, D. T., Borza, P. N., Sera, D., & Teodorescu, R. (2018). Solar Cell Capacitance Determination Based on an RLC Resonant Circuit. Energies, 11(3), 672. https://doi.org/10.3390/en11030672