Performance and Regulated/Unregulated Emission Evaluation of a Spark Ignition Engine Fueled with Acetone–Butanol–Ethanol and Gasoline Blends
Abstract
:1. Introduction
2. Experimental Setup
2.1. Fuel Preparation
2.2. Engine Setup
2.3. Emissions Analysis
2.4. Test Conditions
3. Results and Discussion
3.1. Engine Performance
3.2. Regulated Emissions
3.3. Unregulated Emissions
3.3.1. Acetaldehyde
3.3.2. 1,3-Butadiene
3.3.3. Benzene, Toluene, Ethylbenzene, and Xylene (BTEX) Emissions
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
Nomenclature
ABE | acetone–butanol–ethanol |
AFR | air–fuel ratio |
BMEP | brake mean effective pressure |
BSFC | brake specific fuel consumption |
BTDC | before top dead center |
BTE | brake thermal efficiency |
BTEX | benzene toluene ethylbenzene xylene |
CO | carbon monoxide |
ECU | engine control unit |
FID | flame ionization detector |
GC | gas chromatograph |
LHV | lower heating value |
MBT | maximum brake torque |
MS | mass spectrometer |
NOx | nitrogen oxide |
PAH | polycyclic aromatic hydrocarbon |
PFI | port fuel injection |
RON | research octane number |
RPM | revolutions per minute |
SI | spark ignition |
UHC | unburned hydrocarbons |
φ | equivalence ratio |
References
- Karavalakis, G.; Short, D.; Vu, D.; Villela, M.; Asa-Awuku, A.; Durbin, T.D. Evaluating the regulated emissions, air toxics, ultrafine particles, and black carbon from SI-PFI and SI-DI vehicles operating on different ethanol and iso-butanol blends. Fuel 2014, 128, 410–421. [Google Scholar] [CrossRef]
- Gu, X.; Huang, Z.; Cai, J.; Gong, J.; Wu, X.; Lee, C.-F. Emission characteristics of a spark-ignition engine fuelled with gasoline-n-butanol blends in combination with EGR. Fuel 2012, 93, 611–617. [Google Scholar] [CrossRef]
- Manzetti, S.; Andersen, O. A review of emission products from bioethanol and its blends with gasoline. Background for new guidelines for emission control. Fuel 2015, 140, 293–301. [Google Scholar] [CrossRef]
- Xue, J.; Grift, T.E.; Hansen, A.C. Effect of biodiesel on engine performances and emissions. Renew. Sustain. Energy Rev. 2011, 15, 1098–1116. [Google Scholar] [CrossRef]
- Dwivedi, D.; Agarwal, A.K.; Sharma, M. Particulate emission characterization of a biodiesel vs diesel-fuelled compression ignition transport engine: A comparative study. Atmos. Environ. 2006, 40, 5586–5595. [Google Scholar] [CrossRef]
- Di, Y.; Cheung, C.S.; Huang, Z. Experimental investigation on regulated and unregulated emissions of a diesel engine fueled with ultra-low sulfur diesel fuel blended with biodiesel from waste cooking oil. Sci. Total Environ. 2009, 44, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Elfasakhany, A. Experimental investigation on SI engine using gasoline and a hybrid iso-butanol/gasoline fuel. Energy Convers. Manag. 2015, 95, 398–405. [Google Scholar] [CrossRef]
- Galloni, E.; Fontana, G.; Staccone, S.; Scala, F. Performance analyses of a spark-ignition engine firing with gasoline–butanol blends at partial load operation. Energy Convers. Manag. 2016, 110, 319–326. [Google Scholar] [CrossRef]
- Elfasakhany, A. Experimental study on emissions and performance of an internal combustion engine fueled with gasoline and gasoline/n-butanol blends. Energy Convers. Manag. 2014, 88, 277–283. [Google Scholar] [CrossRef]
- Szwaja, S.; Naber, J. Combustion of n-butanol in a spark-ignition IC engine. Fuel 2010, 89, 1573–1582. [Google Scholar] [CrossRef]
- Merola, S.S.; Valentino, G.; Tornatore, C.; Marchitto, L. In-cylinder spectroscopic measurements of knocking combustion in a SI engine fuelled with butanol–gasoline blend. Energy 2013, 62, 150–161. [Google Scholar] [CrossRef]
- Niven, R.K. Ethanol in gasoline: Environmental impacts and sustainability review article. Renew. Sustain. Energy Rev. 2005, 9, 535–555. [Google Scholar] [CrossRef]
- Al-Hasan, M. Effect of ethanol–unleaded gasoline blends on engine performance and exhaust emission. Energy Convers. Manag. 2003, 44, 1547–1561. [Google Scholar] [CrossRef]
- Jin, C.; Yao, M.; Liu, H.; Chia-fon, F.L.; Ji, J. Progress in the production and application of n-butanol as a biofuel. Renew. Sustain. Energy Rev. 2011, 15, 4080–4106. [Google Scholar] [CrossRef]
- Nithyanandan, K.; Zhang, J.; Li, Y.; Wu, H.; Lee, T.H.; Lin, Y. Improved SI engine efficiency using acetone–butanol–ethanol (ABE). Fuel 2016, 174, 333–343. [Google Scholar] [CrossRef]
- Tao, L.; Tan, E.C.; McCormick, R.; Zhang, M.; Aden, A.; He, X. Techno-economic analysis and life-cycle assessment of cellulosic isobutanol and comparison with cellulosic ethanol and n-butanol. Biofuels Bioprod. Biorefin. 2014, 8, 30–48. [Google Scholar] [CrossRef]
- He, B.-Q.; Liu, M.-B.; Yuan, J.; Zhao, H. Combustion and emission characteristics of a HCCI engine fuelled with n-butanol–gasoline blends. Fuel 2013, 108, 668–674. [Google Scholar] [CrossRef]
- Chang, Y.-C.; Lee, W.-J.; Lin, S.-L.; Wang, L.-C. Green energy: Water-containing acetone–butanol–ethanol diesel blends fueled in diesel engines. Appl. Energy 2013, 109, 182–191. [Google Scholar] [CrossRef]
- Jang, Y.-S.; Malaviya, A.; Cho, C.; Lee, J.; Lee, S.Y. Butanol production from renewable biomass by clostridia. Bioresour. Technol. 2012, 123, 653–663. [Google Scholar] [CrossRef] [PubMed]
- Qureshi, N.; Hughes, S.; Maddox, I.; Cotta, M. Energy-efficient recovery of butanol from model solutions and fermentation broth by adsorption. Bioprocess Biosyst. Eng. 2005, 27, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Afschar, A.; Biebl, H.; Schaller, K.; Schügerl, K. Production of acetone and butanol by Clostridium acetobutylicum in continuous culture with cell recycle. Appl. Microbiol. Biotechnol. 1985, 22, 394–398. [Google Scholar] [CrossRef]
- Nithyanandan, K.; Chia-fon, F.L.; Wu, H.; Zhang, J. Performance and emissions of acetone-butanol-ethanol (ABE) and gasoline blends in a port fuel injected spark ignition engine. In ASME 2014 Internal Combustion Engine Division Fall Technical Conference; American Society of Mechanical Engineers: New York, NY, USA, 2014. [Google Scholar]
- Nithyanandan, K.; Wu, H.; Huo, M.; Lee, C.-F. A Preliminary Investigation of the Performance and Emissions of a Port-Fuel Injected SI Engine Fueled with Acetone-Butanol-Ethanol (ABE) and Gasoline. SAE Tech. Pap. 2014. [Google Scholar] [CrossRef]
- Nithyanandan, K.; Zhang, J.; Yuqiang, L.; Wu, H.; Lee, C.-F. Investigating the Impact of Acetone on the Performance and Emissions of Acetone-Butanol-Ethanol (ABE) and Gasoline Blends in an SI Engine. SAE Tech. Pap. 2015. [Google Scholar] [CrossRef]
- Zhou, N.; Huo, M.; Wu, H.; Nithyanandan, K.; Chia-fon, F.L.; Wang, Q. Low temperature spray combustion of acetone–butanol–ethanol (ABE) and diesel blends. Appl. Energy 2014, 117, 104–115. [Google Scholar] [CrossRef]
- Zhou, N.; Wu, H.; Lee, C.-F.; Wang, Q.; Huo, M.; Wang, P. Different Percentage of Acetone-Butanol-Ethanol (ABE) and Diesel Blends at Low Temperature Condition in a Constant Volume Chamber. SAE Tech. Pap. 2014. [Google Scholar] [CrossRef]
- Wu, H.; Huo, M.; Zhou, N.; Nithyanandan, K.; Lee, C.-F.; Zhang, C. An Experimental Investigation of the Combustion Characteristics of Acetone-Butanol-Ethanol-Diesel Blends with Different ABE Component Ratios in a Constant Volume Chamber. SAE Tech. Pap. 2014. [CrossRef]
- Wu, H.; Nithyanandan, K.; Li, B.; Lee, T.H.; Chia-fon, F.L.; Zhang, C. Investigation on Spray and Soot Lift-Off Length of an ABE-Diesel Blend in a Constant Volume Chamber With Diesel Engine Conditions. In ASME 2014 Internal Combustion Engine Division Fall Technical Conference; American Society of Mechanical Engineers: New York, NY, USA, 2014. [Google Scholar]
- Wu, H.; Nithyanandan, K.; Zhou, N.; Lee, T.H.; Chia-fon, F.L.; Zhang, C. Impacts of acetone on the spray combustion of Acetone–Butanol–Ethanol (ABE)-Diesel blends under low ambient temperature. Fuel 2015, 142, 109–116. [Google Scholar] [CrossRef]
- Chang, Y.-C.; Lee, W.-J.; Wu, T.S.; Wu, C.-Y.; Chen, S.-J. Use of water containing acetone–butanol–ethanol for NO x-PM (nitrogen oxide-particulate matter) trade-off in the diesel engine fueled with biodiesel. Energy 2014, 64, 678–687. [Google Scholar] [CrossRef]
- Morello-Frosch, R.; Jesdale, B.M. Separate and unequal: Residential segregation and estimated cancer risks associated with ambient air toxics in US metropolitan areas. Environ. Health Perspect. 2006, 144, 386–393. [Google Scholar] [CrossRef]
- Windham, G.C.; Zhang, L.; Gunier, R.; Croen, L.A.; Grether, J.K. Autism spectrum disorders in relation to distribution of hazardous air pollutants in the San Francisco Bay area. Environ. Health Perspect. 2006, 114, 1438–1444. [Google Scholar] [CrossRef] [PubMed]
- Man, X.; Cheung, C.; Ning, Z.; Wei, L.; Huang, Z. Influence of engine load and speed on regulated and unregulated emissions of a diesel engine fueled with diesel fuel blended with waste cooking oil biodiesel. Fuel 2016, 180, 41–49. [Google Scholar] [CrossRef]
- Liu, F.; Liu, L.; Feng, X. Separation of acetone–butanol–ethanol (ABE) from dilute aqueous solutions by pervaporation. Sep. Purif. Technol. 2005, 42, 273–282. [Google Scholar] [CrossRef]
- García, V.; Päkkilä, J.; Ojamo, H.; Muurinen, E.; Keiski, R.L. Challenges in biobutanol production: How to improve the efficiency? Renew. Sustain. Energy Rev. 2011, 15, 964–980. [Google Scholar] [CrossRef]
- Li, Y.; Nithyanandan, K.; Lee, T.H.; Donahue, R.M.; Lin, Y.; Lee, C.-F. Effect of water-containing acetone–butanol–ethanol gasoline blends on combustion, performance, and emissions characteristics of a spark-ignition engine. Energy Convers. Manag. 2016, 117, 21–30. [Google Scholar] [CrossRef]
- Zouaoui, N.; Brilhac, J.; Mechati, F.; Jeguirim, M.; Djellouli, B.; Gilot, P. Study of experimental and theoretical procedures when using thermogravimetric analysis to determine kinetic parameters of carbon black oxidation. J. Therm. Anal. Calorim. 2010, 102, 837–849. [Google Scholar] [CrossRef]
- Heywood, J.B. Pollutant formation and control in spark-ignition engines. Prog. Energy Combust. 1976, 1, 135–164. [Google Scholar] [CrossRef]
- Nakata, K.; Utsumi, S.; Ota, A.; Kawatake, K.; Kawai, T.; Tsunooka, T. The effect of ethanol fuel on a spark ignition engine. SAE Tech. Pap. 2006. [Google Scholar] [CrossRef]
- Can, Ö.; Celikten, I.; Usta, N. Effects of ethanol addition on performance and emissions of a turbocharged indirect injection Diesel engine running at different injection pressures. Energy Convers. Manag. 2004, 45, 2429–2440. [Google Scholar] [CrossRef]
- Zhang, J.; Nithyanandan, K.; Li, Y.; Lee, C.-F.; Huang, Z. Comparative study of high-alcohol-content gasoline blends in an SI engine. SAE Tech. Pap. 2015. [Google Scholar] [CrossRef]
- Najafi, G.; Ghobadian, B.; Tavakoli, T.; Buttsworth, D.; Yusaf, T.; Faizollahnejad, M. Performance and exhaust emissions of a gasoline engine with ethanol blended gasoline fuels using artificial neural network. Appl. Energy 2009, 86, 630–639. [Google Scholar] [CrossRef]
- Zhuang, Y.; Hong, G. Primary investigation to leveraging effect of using ethanol fuel on reducing gasoline fuel consumption. Fuel 2013, 105, 425–431. [Google Scholar] [CrossRef]
- EPA Emission Standards Reference Guide; USEPA: Washington, DC, USA, 2017.
- Jia, L.-W.; Shen, M.-Q.; Wang, J.; Lin, M.-Q. Influence of ethanol–gasoline blended fuel on emission characteristics from a four-stroke motorcycle engine. J. Hazard. Mater. 2005, 123, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Tsai, J.-H.; Chiang, H.-L.; Hsu, Y.-C.; Weng, H.-C.; Yang, C.-Y. The speciation of volatile organic compounds (VOCs) from motorcycle engine exhaust at different driving modes. Atmos. Environ. 2003, 37, 2485–2496. [Google Scholar] [CrossRef]
- Yao, Y.-C.; Tsai, J.-H.; Wang, I.-T. Emissions of gaseous pollutant from motorcycle powered by ethanol–gasoline blend. Appl. Energy 2013, 102, 93–100. [Google Scholar] [CrossRef]
- Karavalakis, G.; Durbin, T.D.; Shrivastava, M.; Zheng, Z.; Villela, M.; Jung, H. Impacts of ethanol fuel level on emissions of regulated and unregulated pollutants from a fleet of gasoline light-duty vehicles. Fuel 2012, 93, 549–558. [Google Scholar] [CrossRef]
- Liu, Y.-Y.; Lin, T.-C.; Wang, Y.-J.; Ho, W.-L. Carbonyl compounds and toxicity assessments of emissions from a diesel engine running on biodiesels. J. Air Waste Manag. 2009, 59, 163–171. [Google Scholar] [CrossRef] [PubMed]
- Zarante, P.; Costa, T.; Sodré, J. Aldehyde emissions from an ethanol-fuelled spark ignition engine: Simulation and FTIR measurements. Blucher Chem. Eng. Proc. 2015, 1, 7738–7745. [Google Scholar]
- Liu, F.; Liu, P.; Zhu, Z.; Wei, Y.; Liu, S. Regulated and unregulated emissions from a spark-ignition engine fuelled with low-blend ethanol–gasoline mixtures. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2012, 226, 517–528. [Google Scholar] [CrossRef]
- Broustail, G.; Halter, F.; Seers, P.; Moréac, G.; Mounaim-Rousselle, C. Comparison of regulated and non-regulated pollutants with iso-octane/butanol and iso-octane/ethanol blends in a port-fuel injection spark-ignition engine. Fuel 2012, 94, 251–261. [Google Scholar] [CrossRef]
- Schifter, I.; Diaz, L.; Rodriguez, R.; Salazar, L. Oxygenated transportation fuels. Evaluation of properties and emission performance in light-duty vehicles in Mexico. Fuel 2011, 90, 779–788. [Google Scholar] [CrossRef]
- Yanowitz, J.; Knoll, K.; Kemper, J.; Luecke, J.; McCormick, R.L. Impact of adaptation on flex-fuel vehicle emissions when fueled with E40. Environ. Sci. Technol. 2013, 47, 2990–2997. [Google Scholar] [CrossRef] [PubMed]
- Krahl, J.; Munack, A.; Schröder, O.; Stein, H.; Bünger, J. Influence of biodiesel and different designed diesel fuels on the exhaust gas emissions and health effects. SAE Tech. Pap. 2003. [CrossRef]
- Wallner, T.; Frazee, R. Study of Regulated and Non-Regulated Emissions from Combustion of Gasoline, Alcohol Fuels and their Blends in a DI-SI Engine. SAE Tech. Pap. 2010. [Google Scholar] [CrossRef]
- Correa, S.M.; Arbilla, G. Aromatic hydrocarbons emissions in diesel and biodiesel exhaust. Atmos. Environ. 2006, 40, 6821–6826. [Google Scholar] [CrossRef]
- Zervas, E.; Montagne, X.; Lahaye, J. Influence of fuel and air/fuel equivalence ratio on the emission of hydrocarbons from a SI engine. 1. Experimental findings. Fuel 2004, 83, 2301–2311. [Google Scholar] [CrossRef]
- Kar, K.; Cheng, W.K. Speciated engine-out organic gas emissions from a PFI-SI engine operating on ethanol/gasoline mixtures. SAE Int. J. Fuels Lubr. 2009, 2, 91–101. [Google Scholar] [CrossRef]
Parameters | Gasoline | Acetone | Butanol | Ethanol |
---|---|---|---|---|
Chemical Formula | C4–C12 | C3H6O | C4H9OH | C2H5OH |
Oxygen Content (wt %) | 0 | 27.6 | 21.6 | 34.8 |
Lower Heating Value (MJ/kg) | 43.4 | 29.6 | 33.1 | 26.8 |
Density (kg/m3) | 730 | 791 | 813 | 795 |
Energy Density (MJ/l) | 31.68 | 23.38 | 26.91 | 21.31 |
Research Octane Number | 92 | 117 | 87 | 100 |
Boiling Temperature (°C) | 38–204 | 56.2 | 118 | 78 |
Latent Heat at 298 K (kJ/kg) | 380–500 | 518 | 582 | 904 |
Auto-Ignition Temperature (°C) | 228–470 | 465 | 343 | 420 |
Stoichiometric Air/Fuel Ratio | 14.7 | 9.5 | 11.2 | 9.0 |
Laminar Flame Speed (cm/s) | 33–44 | 34 | 48 | 48 |
Displaced volume (cm3) | 575 |
Stroke (mm) | 90.1 |
Bore (mm) | 90.3 |
Connecting rod length (mm) | 150.7 |
Compression ratio | 9.6:1 |
Number of valves | 4 |
Number of cylinders | 1 |
Fuel injection | Port Fuel Injection |
Apparatus | Measuring Range | Accuracy (±) | Resolution | Repeatability Uncertainty (±) |
---|---|---|---|---|
Dynamometer torque | 0–55 Nm | 0.5% | 0.1 Nm | 0.8% |
Dynamometer speed | 0–4500 rpm | 0.2% | 1 rpm | 0.4% |
Pressure transducer | 0–25,000 kPa | 0.4% | 1 kPa | 0.5% |
Shaft encoder | 0–30000 rpm | 0.5 bit | 12 bit | 0.3% |
Lambda | 0.65–13.7 | 0.3% | 0.01 | 1.0% |
CO emission | 0–10% Vol | 0.06% | 0.01% Vol | 1.2% |
Hydrocarbon emission | 0–10,000 ppm Vol | 12 ppm Vol | 1 ppm Vol | 2.4% |
NOx emission | 0–5000 ppm | 3% | 1 ppm | 1.5% |
GC-MS | GC-FID | |
---|---|---|
Apparatus | Agilent | Hewlett Packard |
GC 6890N-MSD 5973N | GC 5890 series II-FID | |
Column | DB-1 | DB-1 |
Length | 60 m | 60 m |
Internal diameter | 0.32 mm | 0.32 mm |
Carrier gas | Helium | Helium |
Injector temperature | 300 °C | 300 °C |
Detector temperature | MS Quad: 150 °C MS Source: 230 °C | 300 °C |
Separation conditions | Initial: 160 °C for 2 min 160 °C–210 °C with 5 min/°C Final: 210 °C for 5 min | Initial: 160 °C for 2 min 160 °C–210 °C with 5 min/°C Final: 210 °C for 5 min |
BMEP (bar) | 3 | 4 | 5 | 6 |
Gasoline (°CA BTDC) | 19 | 23 | 24 | 25 |
ABE10 (°CA BTDC) | 18.8 | 22.9 | 24.1 | 24.8 |
ABE20 (°CA BTDC) | 18.5 | 22.7 | 23.6 | 24.9 |
ABE30 (°CA BTDC) | 18.2 | 22.6 | 23.5 | 24.4 |
ABE60 (°CA BTDC) | 18.3 | 22.7 | 23.2 | 24.5 |
ABE80 (°CA BTDC) | 18.1 | 22.5 | 23.1 | 24.6 |
Engine speed (rpm) | 1200 |
Load (bar BMEP) | 3, 4, 5, and 6 |
Equivalence ratio | 0.83~1.25 |
Spark timing | Each fuel’s MBT |
Fuel injection pressure | 300 kPa |
Load | 3 Bar BMEP | 4 Bar BMEP | 5 Bar BMEP | 6 Bar BMEP | ||||
---|---|---|---|---|---|---|---|---|
BTE (%) | BSFC (g/kWh) | BTE (%) | BSFC (g/kWh) | BTE (%) | BSFC (g/kWh) | BTE (%) | BSFC (g/kWh) | |
G100 | 20.45 | 399.73 | 22.71 | 365.32 | 23.01 | 360.52 | 23.42 | 346.82 |
ABE10 | 20.83 | 410.54 | 22.99 | 372.01 | 23.59 | 362.48 | 23.66 | 361.44 |
ABE20 | 21.02 | 419.79 | 23.57 | 383.76 | 23.86 | 380.32 | 23.99 | 367.86 |
ABE30 | 20.74 | 438.40 | 23.12 | 385.70 | 23.66 | 386.25 | 23.74 | 384.23 |
ABE60 | 20.61 | 485.81 | 23.03 | 444.63 | 23.48 | 419.11 | 23.71 | 431.12 |
ABE80 | 20.56 | 556.65 | 22.95 | 498.69 | 23.29 | 491.39 | 23.67 | 483.67 |
Load | 3 Bar BMEP | 4 Bar BMEP | 5 Bar BMEP | 6 Bar BMEP | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Regulated Emissions (g/kWh) | UHC | CO | NOx | UHC | CO | NOx | UHC | CO | NOx | UHC | CO | NOx |
G100 | 4.32 | 32.95 | 13.74 | 4.73 | 32.85 | 12.97 | 4.74 | 37.12 | 12.75 | 4.35 | 43.56 | 12.78 |
ABE10 | 5.23 | 23.85 | 15.57 | 5.09 | 24.41 | 15.53 | 4.94 | 28.45 | 16.23 | 4.84 | 31.20 | 16.11 |
ABE20 | 4.16 | 23.37 | 13.74 | 3.78 | 22.84 | 12.61 | 4.03 | 27.28 | 12.68 | 3.67 | 29.51 | 13.77 |
ABE30 | 3.99 | 19.24 | 14.49 | 3.66 | 21.33 | 12.50 | 3.54 | 27.11 | 12.55 | 3.61 | 27.15 | 13.27 |
ABE60 | 2.97 | 29.58 | 12.80 | 2.30 | 29.28 | 12.45 | 1.92 | 30.18 | 12.06 | 1.76 | 32.50 | 13.10 |
ABE80 | 1.79 | 36.26 | 13.51 | 1.59 | 32.49 | 12.55 | 1.52 | 32.94 | 14.61 | 1.37 | 34.08 | 13.89 |
Compound | Retention Time (min) |
---|---|
1,3-Butadiene | 2.804 ± 0.001 |
Benzene | 3.150 ± 0.001 |
Toluene | 3.426 ± 0.001 |
Acetaldehyde | 3.648 ± 0.001 |
Ethylbenzene | 3.829 ± 0.001 |
m-xylene and p-xylene | 3.869 ± 0.001 |
o-xylene | 4.024 ± 0.001 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Ning, Z.; Lee, C.-f.F.; Lee, T.H.; Yan, J. Performance and Regulated/Unregulated Emission Evaluation of a Spark Ignition Engine Fueled with Acetone–Butanol–Ethanol and Gasoline Blends. Energies 2018, 11, 1121. https://doi.org/10.3390/en11051121
Li Y, Ning Z, Lee C-fF, Lee TH, Yan J. Performance and Regulated/Unregulated Emission Evaluation of a Spark Ignition Engine Fueled with Acetone–Butanol–Ethanol and Gasoline Blends. Energies. 2018; 11(5):1121. https://doi.org/10.3390/en11051121
Chicago/Turabian StyleLi, Yuanxu, Zhi Ning, Chia-fon F. Lee, Timothy H. Lee, and Junhao Yan. 2018. "Performance and Regulated/Unregulated Emission Evaluation of a Spark Ignition Engine Fueled with Acetone–Butanol–Ethanol and Gasoline Blends" Energies 11, no. 5: 1121. https://doi.org/10.3390/en11051121
APA StyleLi, Y., Ning, Z., Lee, C.-f. F., Lee, T. H., & Yan, J. (2018). Performance and Regulated/Unregulated Emission Evaluation of a Spark Ignition Engine Fueled with Acetone–Butanol–Ethanol and Gasoline Blends. Energies, 11(5), 1121. https://doi.org/10.3390/en11051121