Energy Efficiency of the Baltic Sea Countries: An Application of Stochastic Frontier Analysis
Abstract
:1. Introduction
2. Methodology
3. Empirical Analysis
3.1. Data and Variables’ Descriptions
3.2. An Investigation on Energy Consumption
3.3. Total-Factor Energy Efficiency Scores
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Persson, C. Deliberation or doctrine? Land use and spatial planning for sustainable development in Sweden. Land Use Policy 2013, 34, 301–313. [Google Scholar] [CrossRef]
- Steen-Olsen, K.; Weinzettel, J.; Cranston, G.; Ercin, A.E.; Hertwich, E.G. Carbon, land, and water footprint accounts for the European Union: Consumption, production, and displacements through international trade. Environ. Sci. Technol. 2012, 46, 10883–10891. [Google Scholar] [CrossRef] [PubMed]
- Allen, C.; Clouth, S. A Guidebook to the Green Economy; UN Division for Sustainable Development: Geneva, Switzerland, 2012. [Google Scholar]
- Chang, M.C.; Hu, J.L.; Jan, F.G. Performance estimation of energy consumption and carbon dioxide emissions for sustainable development in Baltic Sea countries. J. Clean. Prod. 2016, 139, 1370–1382. [Google Scholar] [CrossRef]
- Baležentis, T.; Li, T.; Streimikiene, D.; Baležentis, A. Is the Lithuanian economy approaching the goals of sustainable energy and climate change mitigation? Evidence from DEA-based environmental performance index. J. Clean. Prod. 2016, 116, 23–31. [Google Scholar] [CrossRef]
- Geller, H.; Harrington, P.; Rosenfeld, A.H.; Tanishima, S.; Unander, F. Polices for increasing energy efficiency: Thirty years of experience in OECD countries. Energy Policy 2006, 34, 556–573. [Google Scholar] [CrossRef]
- Hu, J.L.; Wang, S.C. Total-factor energy efficiency of regions in China. Energy Policy 2006, 34, 3206–3217. [Google Scholar] [CrossRef]
- Hu, J.L.; Chang, T.P. Total-factor energy efficiency and its extensions: Introduction, computation and application. In Data Envelopment Analysis; Springer: Boston, MA, USA, 2016; pp. 45–69. [Google Scholar]
- Zhang, X.P.; Cheng, X.M.; Yuan, J.H.; Gao, X.J. Total-factor energy efficiency in developing countries. Energy Policy 2011, 39, 644–650. [Google Scholar] [CrossRef]
- Song, M.L.; Zhang, L.L.; Liu, W.; Fisher, R. Bootstrap-DEA analysis of BRICS’ energy efficiency based on small sample data. Appl. Energy 2013, 112, 1049–1055. [Google Scholar] [CrossRef]
- Honma, S.; Hu, J.L. A panel data parametric frontier technique for measuring total-factor energy efficiency: An application to Japanese regions. Energy 2014, 78, 732–739. [Google Scholar] [CrossRef] [Green Version]
- Farrell, M.J. The measurement of productive efficiency. J. R. Stat. Soc. 1957, 120, 253–290. [Google Scholar] [CrossRef]
- Afriat, S.N. Efficiency estimation of production functions. Int. Econ. Rev. 1972, 13, 568–598. [Google Scholar] [CrossRef]
- Richmond, J. Estimating the efficiency of production. Int. Econ. Rev. 1974, 15, 515–521. [Google Scholar] [CrossRef]
- Schmidt, R.A.; McCabe, J.F. Motor program utilization over extended practice. J. Hum. Mov. Stud. 1976, 2, 239–247. [Google Scholar]
- Aigner, D.; Lovell, C.K.; Schmidt, P. Formulation and estimation of stochastic frontier production function models. J. Econ. 1977, 6, 21–37. [Google Scholar] [CrossRef]
- Cornwell, C.; Schmidt, P.; Sickles, R.C. Production frontiers with cross-sectional and time-series variation in efficiency levels. J. Econ. 1990, 46, 185–200. [Google Scholar] [CrossRef]
- Battese, G.E.; Coelli, T.J. Frontier production functions, technical efficiency and panel data: With application to paddy farmers in India. J. Prod. Anal. 1992, 3, 153–169. [Google Scholar] [CrossRef]
- Battese, G.E.; Coelli, T.J. A model for technical inefficiency effects in a stochastic frontier production function for panel data. Empir. Econ. 1995, 20, 325–332. [Google Scholar] [CrossRef] [Green Version]
- Zhou, P.; Ang, B.W.; Zhou, D.Q. Measuring economy-wide energy efficiency performance: A parametric frontier approach. Appl. Energy 2012, 90, 196–200. [Google Scholar] [CrossRef]
- Hu, J.L.; Chang, M.C.; Tsay, H.W. Disaggregate Energy Efficiency of Regions in Taiwan. Manag. Environ. Qual. 2018, 29, 34–48. [Google Scholar] [CrossRef]
- Battese, G.E.; Rao, D.P.; O’Donnell, C.J. A metafrontier production function for estimation of technical efficiencies and technology gaps for firms operating under different technologies. J. Prod. Anal. 2004, 21, 91–103. [Google Scholar] [CrossRef]
- Lin, B.; Du, K. Technology gap and China’s regional energy efficiency: A parametric metafrontier approach. Energy Econ. 2013, 40, 529–536. [Google Scholar] [CrossRef]
- Błażejczyk-Majka, L.; Kala, R. On a Combined Estimation of Technical Efficiency and Application to Agriculture. Agric. Econ. 2015, 10, 441–449. [Google Scholar] [CrossRef]
- Coelli, T.J. A Guide to FRONTIER Version 4.1: A Computer Program for Stochastic Frontier Production and Cost Function Estimation; CEPA Working Papers; University of New England: Armidale, Australia, 1996. [Google Scholar]
- Guo, X.D.; Zhu, L.; Fan, Y.; Xie, B.C. Evaluation of potential reductions in carbon emissions in Chinese provinces based on environmental DEA. Energy Policy 2011, 39, 2352–2360. [Google Scholar] [CrossRef]
- Choi, Y.; Zhang, N.; Zhou, P. Efficiency and abatement costs of energy-related CO2 emissions in China: A slacks-based efficiency measure. Appl. Energy 2012, 98, 198–208. [Google Scholar] [CrossRef]
- Wu, F.; Fan, L.W.; Zhou, P.; Zhou, D.Q. Industrial energy efficiency with CO2 emissions in China: A nonparametric analysis. Energy Policy 2012, 49, 164–172. [Google Scholar] [CrossRef]
- Baumol, W.J. Productivity growth, convergence, and welfare: What the long-run data show. Am. Econ. Rev. 1986, 76, 1072–1085. [Google Scholar]
- Soytas, U.; Sari, R. Energy consumption and GDP: Causality relationship in G-7 countries and emerging markets. Energy Econ. 2003, 25, 33–37. [Google Scholar] [CrossRef]
- Koop, G. Carbon dioxide emissions and economic growth: A structural approach. J. Appl. Stat. 1998, 25, 489–515. [Google Scholar] [CrossRef]
- Hu, J.L.; Yang, C.H.; Chen, C.P. R&D efficiency and the national innovation system: An international comparison using the distance function approach. Bull. Econ. Res. 2014, 66, 55–71. [Google Scholar] [CrossRef]
- Hu, J.L.; Kao, C.H. Efficient energy-saving targets for APEC economies. Energy Policy 2007, 35, 373–382. [Google Scholar] [CrossRef]
- Wu, Y. Openness, productivity and growth in the APEC economies. Empir. Econ. 2004, 29, 593–604. [Google Scholar] [CrossRef]
- Chien, T.; Hu, J.L. Renewable energy: An efficient mechanism to improve GDP. Energy Policy 2008, 36, 3045–3052. [Google Scholar] [CrossRef]
- Wang, Q. Effects of urbanisation on energy consumption in China. Energy Policy 2014, 65, 332–339. [Google Scholar] [CrossRef]
- Wang, Q.; Zeng, Y.E.; Wu, B.W. Exploring the relationship between urbanization, energy consumption, and CO2 emissions in different provinces of China. Renew. Sustain. Energy Rev. 2016, 54, 1563–1579. [Google Scholar] [CrossRef]
- Renn, O.; Marshall, J.P. Coal, Nuclear and renewable energy policies in Germany: From the 1950s to the “Energiewende”. Energy Policy 2016, 99, 224–232. [Google Scholar] [CrossRef]
- Dreyer, M.; Renn, O. EFSA’s involvement policy: Moving towards an analytic-deliberative process in EU food safety governance? Expert Democr. 2013, 323–352. [Google Scholar]
- Filis, G.; Degiannakis, S.; Floros, C. Dynamic correlation between stock market and oil prices: The case of oil-importing and oil-exporting countries. Int. Rev. Financ. Anal. 2011, 20, 152–164. [Google Scholar] [CrossRef] [Green Version]
- Streimikiene, D.; Ciegis, R.; Grundey, D. Energy indicators for sustainable development in Baltic States. Renew. Sustain. Energy Rev. 2007, 11, 877–893. [Google Scholar] [CrossRef]
- Graus, W.H.J.; Voogt, M.; Worrell, E. International comparison of energy efficiency of fossil power generation. Energy Policy 2007, 35, 3936–3951. [Google Scholar] [CrossRef]
- Roos, I.; Soosaar, S.; Volkova, A.; Streimikene, D. Greenhouse gas emission reduction perspectives in the Baltic States in frames of EU energy and climate policy. Renew. Sustain. Energy Rev. 2012, 16, 2133–2146. [Google Scholar] [CrossRef]
- Bengtsson, R. An EU strategy for the Baltic Sea region: Good intentions meet complex challenges. Eur. Policy Anal. 2009, 9, 1–12. [Google Scholar]
- Klevas, V.; Streimikiene, D.; Grikstaite, R. Sustainable energy in Baltic States. Energy Policy 2007, 35, 76–90. [Google Scholar] [CrossRef]
- Nair, G.; Gustavsson, L.; Mahapatra, K. Factors influencing energy efficiency investments in existing Swedish residential buildings. Energy Policy 2010, 38, 2956–2963. [Google Scholar] [CrossRef]
- Shapiro, R.J.; Hassett, K.A.; Arnold, F.S. Conserving Energy and Preserving the Environment: The Role of Public Transportation; American Public Transportation Association: Washington, DC, USA; ARENA Press: Blindern, Norway, 2002; ISBN 9788293137450. [Google Scholar]
Variable | Unit | Mean | SD | Min | Max | Obs |
---|---|---|---|---|---|---|
Regional GDP (y) | US$ million | 615,712 | 905,399 | 12,059 | 3,369,503 | 110 |
Real capital (x1) | US$ million | 483,771 | 831,338 | 5263 | 4,349,117 | 110 |
Labor (x2) | Persons | 15,205,801 | 23,764,131 | 673,834 | 76,961,789 | 110 |
Energy use (x3) | Mt of oil equivalent | 4157 | 1497 | 1961 | 7135 | 110 |
CO2 emissions (x4) | Kt | 300,100 | 517,503 | 6975 | 1,830,830 | 110 |
Renewable energy consumption (δ2) | Percentage | 26 | 17 | 3 | 59 | 110 |
Urban population (% of total) (δ3) | Percentage | 75 | 8 | 61 | 88 | 110 |
Variable | Inefficiency of TFEE | Standard-Error | t-Ratio |
---|---|---|---|
Constant (β0) | 10.732 *** | 1.062 | 10.101 |
Log real capital (x1) | −0.219 | 0.116 | −1.891 |
Log labor (x2) | −0.723 *** | 0.071 | −10.206 |
Log CO2 emissions (x4) | −0.968 *** | 0.100 | −9.640 |
Log real GDP (y) | −0.125 | 0.059 | −2.132 |
Renewable energy consumption (δ1) | −0.038 *** | 0.008 | −4.914 |
Urban population (% of total) (δ2) | −0.009 * | 0.005 | −1.724 |
σ2 = σv2 + σu2 | 0.037 | 0.014 | 2.665 |
γ = σu2/σ2 | 0.304 | 0.269 | 1.130 |
Log likelihood | 23.801 | - | - |
Number of observations | 110 | - | - |
Number of countries | 10 | - | - |
Country | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | Average |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Germany | 0.301 | 0.311 | 0.322 | 0.339 | 0.334 | 0.341 | 0.350 | 0.364 | 0.366 | 0.368 | 0.383 | 0.343 |
Denmark | 0.473 | 0.503 | 0.483 | 0.529 | 0.549 | 0.551 | 0.579 | 0.634 | 0.707 | 0.700 | 0.773 | 0.591 |
Estonia | 0.465 | 0.454 | 0.446 | 0.462 | 0.482 | 0.525 | 0.527 | 0.530 | 0.539 | 0.527 | 0.541 | 0.501 |
Finland | 0.786 | 0.829 | 0.800 | 0.824 | 0.896 | 0.849 | 0.852 | 0.895 | 0.943 | 0.942 | 0.958 | 0.873 |
Lithuania | 0.514 | 0.494 | 0.494 | 0.503 | 0.523 | 0.533 | 0.521 | 0.553 | 0.568 | 0.614 | 0.636 | 0.541 |
Latvia | 0.832 | 0.846 | 0.811 | 0.805 | 0.819 | 0.883 | 0.749 | 0.827 | 0.920 | 0.906 | 0.914 | 0.850 |
Norway | 0.985 | 0.986 | 0.985 | 0.986 | 0.986 | 0.985 | 0.984 | 0.985 | 0.986 | 0.986 | 0.986 | 0.986 |
Poland | 0.253 | 0.256 | 0.257 | 0.263 | 0.271 | 0.274 | 0.281 | 0.290 | 0.294 | 0.296 | 0.301 | 0.276 |
Russian Federation | 0.257 | 0.260 | 0.262 | 0.269 | 0.270 | 0.266 | 0.269 | 0.272 | 0.273 | 0.276 | 0.273 | 0.268 |
Sweden | 0.945 | 0.967 | 0.971 | 0.976 | 0.979 | 0.981 | 0.979 | 0.980 | 0.985 | 0.984 | 0.985 | 0.975 |
Average | 0.581 | 0.591 | 5.831 | 0.596 | 0.611 | 0.619 | 0.609 | 0.633 | 0.658 | 0.660 | 0.675 | 0.620 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsiao, W.-L.; Hu, J.-L.; Hsiao, C.; Chang, M.-C. Energy Efficiency of the Baltic Sea Countries: An Application of Stochastic Frontier Analysis. Energies 2019, 12, 104. https://doi.org/10.3390/en12010104
Hsiao W-L, Hu J-L, Hsiao C, Chang M-C. Energy Efficiency of the Baltic Sea Countries: An Application of Stochastic Frontier Analysis. Energies. 2019; 12(1):104. https://doi.org/10.3390/en12010104
Chicago/Turabian StyleHsiao, Wen-Ling, Jin-Li Hu, Chan Hsiao, and Ming-Chung Chang. 2019. "Energy Efficiency of the Baltic Sea Countries: An Application of Stochastic Frontier Analysis" Energies 12, no. 1: 104. https://doi.org/10.3390/en12010104
APA StyleHsiao, W. -L., Hu, J. -L., Hsiao, C., & Chang, M. -C. (2019). Energy Efficiency of the Baltic Sea Countries: An Application of Stochastic Frontier Analysis. Energies, 12(1), 104. https://doi.org/10.3390/en12010104