Carbon Lock-Out: Advancing Renewable Energy Policy in Europe
Abstract
:1. Introduction
2. Path Dependence and Carbon Lock-In in the Electricity Sector
3. Generation
3.1. Learning and Knowledge Spillovers
3.1.1. Definition of Barriers
3.1.2. Policy Review
3.2. Capital Market Restrictions
3.2.1. Definition of Barriers
3.2.2. Policy Review
3.3. Uneven Political Playing Field
3.3.1. Definition of Barriers
3.3.2. Policy Review
3.4. Community Acceptance
3.4.1. Definition of Barriers
3.4.2. Policy Review
3.5. Planning Consent and Policy Commitment
3.5.1. Definition of Barriers
3.5.2. Policy Review
4. Grids
4.1. Lack of Network Capacity
4.1.1. Definition of Barriers
4.1.2. Policy Review
4.2. Intermittency, Controllability and Securing Peak Capacity
4.2.1. Definition of Barriers
- Matching supply and demand (market level—hourly perspective): In periods with high RES-E generation, supply may exceed demand, creating negative electricity prices in the spot market [126]. On the other hand, costly back-up capacity has to be held available for periods with low RES-E generation. Thus, RES-E volatility reduces the predictability of energy supply and increases the costs of electricity generation. This market based perspective focuses on hourly balance.
- Safe network operation: With preferred grid access of renewables, grid operators are challenged by peak renewable input. The additional variability at the production side is a challenge for securing stable voltage across grids. To accommodate unpredicted fluctuations, grid operators need to provide increased reserve power on the balancing market. In periods of very high feed-in, electricity supply may occasionally exceed the amount that can be safely absorbed while still maintaining adequate reserves and dynamic control in the system; energy production may need to be curtailed. This system operation perspective focuses on the balance of supply and demand on a second to minute basis.
4.2.2. Policy Review
4.3. Market Power and Regulation
4.3.1. Definition of Barriers
4.3.2. Policy Review
4.4. Cross-Border Externalities
4.4.1. Definition of Barriers
4.4.2. Policy Review
5. Storage and Demand Response
5.1. Economic Incentives
5.1.1. Definition of Barriers
5.1.2. Policy Review
5.2. Lack of Communication Infrastructure
5.2.1. Definition of Barriers
5.2.2. Policy Review
6. Integration of the Electricity System
6.1. A European Scenario for the Electricity System
6.2. Harmonisation of Policies
7. A Transition to Sustained Carbon Lock-Out
Barrier constituting carbon lock-in | Policies in place | Policies for carbon lock-out | |
---|---|---|---|
Generation | Learning and knowledge spillovers |
|
|
Capital market restrictions |
|
| |
Uneven political playing field |
|
| |
Community acceptance |
|
| |
Planning consent and policy commitment |
|
| |
Grids | Lack of network capacity |
|
|
Intermittency, controllability and securing peak capacity |
|
| |
Market power and regulation |
|
| |
Cross-border externalities |
|
| |
Storage and Demand | Economic Incentives |
|
|
Technology |
|
|
Acknowledgements
References and Notes
- Edenhofer, O.; Pichs Madruga, R.; Sokona, Y.; Seyboth, K.; Matschoss, P.; Kadner, S.; Zwickel, T.; Eickemeer, P.; Hansen, G.; Schlömer, S.; von Stechow, C. IPCC Special Report on Renewable Energy Sources and Climate Change; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- European Commission. COM (2008) 30: Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions: 20 20 by 2020—Europe’s Climate Change Opportunity; European Commission: Brussels, Belgium, 2008. [Google Scholar]
- European Commission. COM (2011) 31: Renewable Energy: Progressing towards the 2020 Target; European Commission: Brussels, Belgium, 2011. [Google Scholar]
- EUROSTAT Electricity generated from renewable sources. Available online: http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=nrg_ind_333a&lang=en (accessed on 24 October 2011).
- European Commission. SEC (2008) 57: “The Support of Electricity from Renewable Energy Sources” Accompanying Document to the Proposal for a Directive of the European Parliament and of the Council on the Promotion of the Use of Energy from Renewable Sources [COM (2008) 19 Final]; Commission Staff Working Document; European Commission: Brussels, Belgium, 2008. [Google Scholar]
- Unruh, G.C. Understanding carbon lock-in. Energy Policy 2000, 28, 817–830. [Google Scholar] [CrossRef]
- Sinn, H.-W. The Green Paradox; MIT Press: Cambridge, MA, USA, in press.
- Frondel, M.; Ritter, N.; Schmidt, C.M. Germany’s solar cell promotion: Dark clouds on the horizon. Energy Policy 2008, 36, 4198–4204. [Google Scholar] [CrossRef]
- Frondel, M.; Ritter, N.; Schmidt, C.M.; Vance, C. Economic impacts from the promotion of renewable energy technologies: The German experience. Energy Policy 2010, 38, 4048–4056. [Google Scholar] [CrossRef]
- Shalizi, Z.; Lecocq, F. Climate Change and the Economics of Targeted Mitigation in Sectors with Long-Lived Capital Stock; Policy Research Working Paper; World Bank: Washington, DC, USA, 2009. [Google Scholar]
- Davis, S.J.; Caldeira, K.; Matthews, H.D. Future CO2 emissions and climate change from existing energy infrastructure. Science 2010, 329, 1330–1333. [Google Scholar] [CrossRef] [PubMed]
- Sandén, B.A.; Azar, C. Near-term technology policies for long-term climate targets—Economy wide versus technology specific approaches. Energy Policy 2005, 33, 1557–1576. [Google Scholar] [CrossRef]
- Kalkuhl, M.; Edenhofer, O.; Lessmann, K. Learning or lock-in: Optimal technology policies to support mitigation. Resour. Energy Econ. 2012, 34, 1–23. [Google Scholar] [CrossRef]
- Lehmann, P.; Gawel, E. Why Should Support Schemes for Renewable Electricity Complement the EU Emissions Trading Scheme? UFZ Discussion Papers; Helmholtz Centre for Environmental Research—UFZ: Leipzig, Germany, 2011. [Google Scholar]
- Matthes, F. Greenhouse Gas Emissions Trading and Complementary Policies. Developing a Smart Mix for Ambitious Climate Policies; Öko-Institut e.V.: Berlin, Germany, 2010. [Google Scholar]
- Argote, L.; Epple, D. Learning curves in manufacturing. Science 1990, 247, 920–924. [Google Scholar] [CrossRef] [PubMed]
- Church, J.; Ware, R. Industrial Organization A Strategic Approach; McGraw Hill: Boston, MA, USA, 2000. [Google Scholar]
- Breyer, C.; Birkner, C.; Kersten, F.; Gerlach, A.; Goldschmidt, J.C.; Montoro, D.F.; Riede, M. Research and development investments in PV—A limiting factor for a fast PV diffusion? In Proceedings of the 25th European Photovoltaic Solar Energy Conference (WCPEC-5); Valencia, Spain, 6–10 September 2010. [Google Scholar]
- IEA. Experience Curves for Technology Policy; International Energy Agency (IEA): Paris, France, 2010. [Google Scholar]
- Neij, L. Cost development of future technologies for power generation—A study based on experience curves and complementary bottom-up assessments. Energy Policy 2008, 36, 2200–2211. [Google Scholar] [CrossRef]
- Irwin, D.A.; Klenow, P.J. Learning-by-doing spillovers in the semiconductor in-dustry. J. Polit. Econ. 1994, 102, 1200–1227. [Google Scholar] [CrossRef]
- Lehmann, P. Climate Policies with Pollution Externalities and Learning Spillovers; UFZ Discussion Papers; Helmholtz Centre for Environmental Research—UFZ: Leipzig, Germany, 2009. [Google Scholar]
- Jaffe, A.; Newell, R.; Stavins, R. A tale of two market failures: Technology and environmental policy. Ecol. Econ. 2005, 54, 164–174. [Google Scholar] [CrossRef]
- Held, A.; Ragwitz, M.; Haas, R. On the success of policy strategies for the promotion of electricity from renewable energy sources in the Eu. Energy Environ. 2006, 17, 849–868. [Google Scholar] [CrossRef]
- Mitchell, C.; Bauknecht, D.; Connor, P.M. Effectiveness through risk reduction: A comparison of the renewable obligation in England and Wales and the feed-in system in Germany. Energy Policy 2006, 34, 297–305. [Google Scholar] [CrossRef]
- Lipp, J. Lessons for effective renewable electricity policy from Denmark, Germany and the United Kingdom. Energy Policy 2007, 35, 5481–5495. [Google Scholar] [CrossRef]
- Toke, D. Renewable financial support systems and cost-effectiveness. J. Clean. Prod. 2007, 15, 280–287. [Google Scholar] [CrossRef]
- Fouquet, D.; Johansson, T.B. European renewable energy policy at crossroads—Focus on electricity support mechanisms. Energy Policy 2008, 36, 4079–4092. [Google Scholar] [CrossRef]
- Butler, L.; Neuhoff, K. Comparison of feed-in tariff, quota and auction mechanisms to support wind power development. Renew. Energy 2008, 33, 1854–1867. [Google Scholar] [CrossRef]
- Jacobsson, S.; Bergek, A.; Finon, D.; Lauber, V.; Mitchell, C.; Toke, D.; Verbruggen, A. EU renewable energy support policy: Faith or facts? Energy Policy 2009, 37, 2143–2146. [Google Scholar] [CrossRef]
- Haas, R.; Panzer, C.; Resch, G.; Ragwitz, M.; Reece, G.; Held, A. A historical review of promotion strategies for electricity from renewable energy sources in EU countries. Renew. Sustain. Energy Rev. 2011, 15, 1003–1034. [Google Scholar] [CrossRef]
- Haas, R.; Resch, G.; Panzer, C.; Busch, S.; Ragwitz, M.; Held, A. Efficiency and effectiveness of promotion systems for electricity generation from renewable energy sources—Lessons from EU countries. Energy 2011, 36, 2186–2193. [Google Scholar] [CrossRef]
- De Jager, D.; Klessman, C.; Stricker, E.; Winkel, T.; de Visser, E.; Koper, M.; Ragwitz, M.; Held, A.; Resch, G.; Busch, S. Financing Renewable Energy in the European Energy Market; ECOFYS: Berlin, Germany, 2011. [Google Scholar]
- European Commission. COM (2005) 627 Final: The Support of Electricity from Renewable Energy Sources; European Commission: Brussels, Belgium, 2005. [Google Scholar]
- IEA. IEA Photovoltaic Power Systems Programme (PVPS): National Reports; International Energy Agency (IEA): Paris, France, 2011. [Google Scholar]
- Del Río, P.; Gual, M.A. An integrated assessment of the feed-in tariff system in Spain. Energy Policy 2007, 35, 994–1012. [Google Scholar] [CrossRef]
- Kildegaard, A. Green certificate markets, the risk of over-investment, and the role of long-term contracts. Energy Policy 2008, 36, 3413–3421. [Google Scholar] [CrossRef]
- Wood, G.; Dow, S. What lessons have been learned in reforming the Renewables Obligation? An analysis of internal and external failures in UK renewable energy policy. Energy Policy 2011, 39, 2228–2244. [Google Scholar] [CrossRef]
- Bergek, A.; Jacobsson, S. Are tradable green certificates a cost-efficient policy driving technical change or a rent-generating machine? Lessons from Sweden 2003–2008. Energy Policy 2010, 38, 1255–1271. [Google Scholar] [CrossRef]
- Ford, A.; Vogstad, K.; Flynn, H. Simulating price patterns for tradable green certificates to promote electricity generation from wind. Energy Policy 2007, 35, 91–111. [Google Scholar] [CrossRef]
- Mendonca, M.; Jacobs, D.; Sovacool, B.K. Powering the Green Economy: The Feed-in Tariff Handbook; Routledge: Oxford, UK, 2009. [Google Scholar]
- Kreycik, C.; Couture, T.D.; Cory, K.S. Innovative Feed-In Tariff Designs that Limit Policy Costs; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2011. [Google Scholar]
- Couture, T.D.; Cory, K.; Kreycik, C.; Williams, E. Policymaker’s Guide to Feed-in Tariff Policy Design; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2010. [Google Scholar]
- de la Hoz, J.; Boix, O.; MartÃn, H.; Martins, B.; Graells, M. Promotion of grid-connected photovoltaic systems in Spain: Performance analysis of the period 1998–2008. Renew. Sustain. Energy Rev. 2010, 14, 2547–2563. [Google Scholar] [CrossRef]
- Isoard, S.; Soria, A. Technical change dynamics: Evidence from the emerging renewable energy technologies. Energy Econ. 2001, 23, 619–636. [Google Scholar] [CrossRef]
- Menanteau, P.; Finon, D.; Lamy, M.-L. Prices versus quantities: Choosing policies for promoting the development of renewable energy. Energy Policy 2003, 31, 799–812. [Google Scholar] [CrossRef]
- Neuhoff, K. Large-scale deployment of renewables for electricity generation. Oxf. Rev. Econ. Policy 2005, 21, 88–110. [Google Scholar] [CrossRef]
- Walz, R. Interaktion des EU emissionshandels mit dem erneuerbare energien gesetz. Z. Energiewirtschaft 2005, 29, 261–270. [Google Scholar]
- De Jager, D.; Rathmann, M.; Klessmann, C.; Coenraads, R.; Colamonico, C.; Buttazzoni, M. Policy Instrument Design to Reduce Financing Costs in Renewable Energy Technology Projects; ECOFYS: London, UK, 2008. [Google Scholar]
- Toke, D. Trading schemes, risks, and costs: The cases of the European Union Emissions Trading Scheme and the Renewables Obligation. Environ. Plan. C 2008, 26, 938–953. [Google Scholar] [CrossRef]
- Lemming, J. Financial risks for green electricity investors and producers in a tradable green certificate market. Energy Policy 2003, 31, 21–32. [Google Scholar] [CrossRef]
- Dinica, V. Support systems for the diffusion of renewable energy technologies—An investor perspective. Energy Policy 2006, 34, 461–480. [Google Scholar] [CrossRef]
- Schäfer, R.; Creutzig, F. Globale Treibhausgassteuer und Emissionshandel: Eine Frage des Instruments oder der Ausgestaltung? In Ablasshandel gegen Klimawandel? Marktbasierte Instrumente in der Globalen Klimapolitik und ihre Alternativen; Altvater, E., Brunnengräber, A., Eds.; VSA-Verlag: Hamburg, Germany, 2008; pp. 106–118. [Google Scholar]
- Ellerman, A.D.; Joskow, P.L. The European Union’s Emissions Trading System in Perspective; Pew Center on Global Climate Change: Arlington, VA, USA, 2008. [Google Scholar]
- Hintermann, B. Allowance price drivers in the first phase of the EU ETS. J. Environ. Econ. Manag. 2010, 59, 43–56. [Google Scholar] [CrossRef] [Green Version]
- Betz, R.; Sato, M. Emissions trading: Lessons learnt from the 1st phase of the EU ETS and prospects for the 2nd phase. Clim. Policy 2006, 6, 351–359. [Google Scholar] [CrossRef]
- Ulph, A.; Ulph, D. Optimal Climate Change Policies When Governments Cannot Commit; Discussion Paper; Department of Economics, University of St. Andrews: St. Andrews, UK, 2011. [Google Scholar]
- UBA. Umweltschädliche Subventionen in Deutschland; Umweltbundesamt (UBA): Dessau, Germany, 2008. [Google Scholar]
- Joskow, P. Lessons learned from electricity market liberalization. Energy J. 2008, 29, 9–42. [Google Scholar] [CrossRef]
- Grubb, M. Technologies, energy systems and the timing of CO2 emissions abatement. Energy Policy 1997, 25, 159–172. [Google Scholar] [CrossRef]
- Geroski, P.A. Innovation, technological opportunity, and market structure. Oxf. Econ. Paper 1990, 42, 586–602. [Google Scholar]
- Wüstenhagen, R.; Wolsink, M.; Bürer, M.J. Social acceptance of renewable energy innovation: An introduction to the concept. Energy Policy 2007, 35, 2683–2691. [Google Scholar] [CrossRef]
- Devine‐Wright, H.; Devine‐Wright, P. Social representations of electricity network technologies: Exploring processes of anchoring and objectification through the use of visual research methods. Br. J. Soc. Psychol. 2009, 48, 357–373. [Google Scholar] [CrossRef] [PubMed]
- Cass, N.; Walker, G. Emotion and rationality: The characterisation and evaluation of opposition to renewable energy projects. Emot. Space Soc. 2009, 2, 62–69. [Google Scholar] [CrossRef]
- Devine‐Wright, P. Beyond NIMBYism: Towards an integrated framework for understanding pub-lic perceptions of wind energy. Wind Energy 2005, 8, 125–139. [Google Scholar] [CrossRef]
- Haggett, C.; Toke, D. Crossing the great divide—Using multi‐method analysis to understand opposition to windfarms. Public Adm. 2006, 84, 103–120. [Google Scholar] [CrossRef]
- Kaldellis, J.K. Social attitude towards wind energy applications in Greece. Energy Policy 2005, 33, 595–602. [Google Scholar] [CrossRef]
- Wolsink, M. Wind power and the NIMBY-myth: Institutional capacity and the limited significance of public support. Renew. Energy 2000, 21, 49–64. [Google Scholar] [CrossRef]
- Upreti, B.R. Conflict over biomass energy development in the United Kingdom: Some observations and lessons from England and Wales. Energy Policy 2004, 32, 785–800. [Google Scholar] [CrossRef]
- Jenssen, T. The good, the bad, and the ugly: Acceptance and opposition as keys to bioenergy technologies. J. Urban Technol. 2010, 17, 99–115. [Google Scholar] [CrossRef]
- Zoellner, J.; Schweizer-Ries, P.; Wemheuer, C. Public acceptance of renewable energies: Results from case studies in Germany. Energy Policy 2008, 36, 4136–4141. [Google Scholar] [CrossRef]
- Devine‐Wright, P.; Howes, Y. Disruption to place attachment and the protection of restorative environments: A wind energy case study. J. Environ. Psychol. 2010, 30, 271–280. [Google Scholar] [CrossRef]
- Haggett, C. Understanding public responses to offshore wind power. Energy Policy 2011, 39, 503–510. [Google Scholar] [CrossRef]
- Firestone, J.; Kempton, W.; Krueger, A. Public acceptance of offshore wind power projects in the USA. Wind Energy 2009, 12, 183–202. [Google Scholar] [CrossRef]
- Aitken, M. Why we still don’t understand the social aspects of wind power: A critique of key assumptions within the literature. Energy Policy 2010, 38, 1834–1841. [Google Scholar] [CrossRef]
- Ellis, G.; Barry, J.; Robinson, C. Many ways to say “no”, different ways to say “yes”: Applying Q-Methodology to understand public acceptance of wind farm proposals. J. Environ. Plan. Manag. 2007, 50, 517–551. [Google Scholar] [CrossRef] [Green Version]
- Breukers, S.; Wolsink, M. Wind power implementation in changing institutional landscapes: An international comparison. Energy Policy 2007, 35, 2737–2750. [Google Scholar] [CrossRef]
- Toke, D.; Breukers, S.; Wolsink, M. Wind power deployment outcomes: How can we account for the differences? Renew. Sustain. Energy Rev. 2008, 12, 1129–1147. [Google Scholar] [CrossRef]
- Gross, C. Community perspectives of wind energy in Australia: The application of a justice and community fairness framework to increase social acceptance. Energy Policy 2007, 35, 2727–2736. [Google Scholar] [CrossRef]
- Walker, G.; Devine-Wright, P.; Hunter, S.; High, H.; Evans, B. Trust and community: Exploring the meanings, contexts and dynamics of community renewable energy. Energy Policy 2010, 38, 2655–2663. [Google Scholar] [CrossRef]
- Christensen, P.; Lund, H. Conflicting views of sustainability: The case of wind power and nature conservation in Denmark. Eur. Environ. 1998, 8, 1–6. [Google Scholar] [CrossRef]
- Devine‐Wright, P. Rethinking NIMBYism: The role of place attachment and place identity in explaining place‐protective action. J. Community Appl. Soc. Psychol. 2009, 19, 426–441. [Google Scholar] [CrossRef]
- Warren, C.R.; McFadyen, M. Does community ownership affect public attitudes to wind energy? A case study from south-west Scotland. Land Use Policy 2010, 27, 204–213. [Google Scholar] [CrossRef]
- Van der Horst, D.; Toke, D. Exploring the landscape of wind farm developments; local area characteristics and planning process outcomes in rural England. Land Use Policy 2010, 27, 214–221. [Google Scholar] [CrossRef]
- Cass, N.; Walker, G. Emotion and rationality: The characterisation and evaluation of opposition to renewable energy projects. Emot. Space Soc. 2009, 2, 62–69. [Google Scholar] [CrossRef]
- McLaren Loring, J. Wind energy planning in England, Wales and Denmark: Factors influencing project success. Energy Policy 2007, 35, 2648–2660. [Google Scholar] [CrossRef]
- Walker, G. The role for “community” in carbon governance. Wiley Interdiscip. Rev. 2011, 2, 777–782. [Google Scholar]
- Cowell, R.; Bristow, G.; Munday, M. Acceptance, acceptability and environmental justice: The role of community benefits in wind energy development. J. Environ. Plan. Manag. 2011, 54, 539–557. [Google Scholar] [CrossRef]
- Toke, D. Wind power in UK and Denmark: Can rational choice help explain different outcomes? Environ. Polit. 2002, 11, 83–100. [Google Scholar] [CrossRef]
- Toke, D.; Lauber, V. Anglo-Saxon and German approaches to neoliberalism and environmental policy: The case of financing renewable energy. Geoforum 2007, 38, 677–687. [Google Scholar] [CrossRef]
- Stenzel, T.; Frenzel, A. Regulating technological change—The strategic reactions of utility companies towards subsidy policies in the German, Spanish and UK electricity markets. Energy Policy 2008, 36, 2645–2657. [Google Scholar] [CrossRef]
- Mendonca, M.; Lacey, S.; Hvelplund, F. Stability, participation and transparency in renewable energy policy: Lessons from Denmark and the United States. Policy Soc. 2009, 27, 379–398. [Google Scholar] [CrossRef]
- Sovacool, B.K. The policy challenges of tradable credits: A critical review of eight markets. Energy Policy 2011, 39, 575–585. [Google Scholar] [CrossRef]
- Woodman, B.; Mitchell, C. Learning from experience? The development of the renewables obligation in England and Wales 2002–2010. Energy Policy 2011, 39, 3914–3921. [Google Scholar] [CrossRef]
- O’Hare, M. Not on my block you don’t: Facility siting and the strategic importance of compensation. Public Policy 1977, 25, 407–458. [Google Scholar]
- Frey, B.S.; Oberholzer-Gee, F. The cost of price incentives: An empirical analysis of motivation crowding- out. Am. Econ. Rev. 1997, 87, 746–755. [Google Scholar]
- Claro, E. Exchange relationships and the environment: The acceptability of compensation in the siting of waste disposal facilities. Environ. Values 2007, 16, 187–208. [Google Scholar] [CrossRef]
- Kunreuther, H.; Kleindorfer, P.; Knez, P.J.; Yaksick, R. A compensation mechanism for siting noxious facilities: Theory and experimental design. J. Environ. Econ. Manag. 1987, 14, 371–383. [Google Scholar] [CrossRef]
- O’Sullivan, A. Voluntary auctions for noxious facilities: Incentives to participate and the efficiency of siting decisions. J. Environ. Econ. Manag. 1993, 25, S12–S26. [Google Scholar] [CrossRef]
- Alain, J.-M.; Marchetti, N.; Tidball, M.M. Low-bid Auction Versus High-bid Auction For Siting Noxious Facilities in a Two-City Region: An Exact Approach; CIRANO Working Paper; Cenre Interuniversitaire de Recherche en Analyse des Organisations: Montreal, Canada, 2004. [Google Scholar]
- Besfamille, M.; Lozachmeur, J.-M. NIMBY and mechanism design under different constitutional constraints. Int. Tax Public Financ. 2009, 17, 114–132. [Google Scholar] [CrossRef]
- Yengin, D. Identical Preferences Lower Bound for Allocation of Heterogeneous Tasks and NIMBY Problems; Research Paper; University of Adelaide, School of Economics: Adelaide, SA, Australia, 2011. [Google Scholar]
- Quah, E. Cost‐benefit analysis and the problem of locating environmentally noxious facilities. J. Int. Dev. 1994, 6, 79–92. [Google Scholar] [CrossRef]
- Lüthi, S.; Prässler, T. Analyzing policy support instruments and regulatory risk factors for wind energy deployment—A developers’ perspective. Energy Policy 2011, 39, 4876–4892. [Google Scholar] [CrossRef]
- European Commission. SEC(2009) 503 Final: Working Document: The Renewable Energy Progress Report Accompanying Document to the Communication from the Commission to the Council and the European Parliament; European Commission: Brussels, Belgium, 2009. [Google Scholar]
- Ecorys; Eclareon; EREC; Golder Associates. Assessment of Non-Cost Barriers to Renewable Energy Growth in EU Member States; Ecorys: Rotterdam, The Netherlands, 2010. [Google Scholar]
- Nadaï, A. “Planning”, “siting” and the local acceptance of wind power: Some lessons from the French case. Energy Policy 2007, 35, 2715–2726. [Google Scholar] [CrossRef]
- Ragwitz, M.; Held, A.; Resch, G.; Faber, T.; Haas, R.; Huber, C.; Morthorst, P.; Jensen, S.G.; Coenraads, R.; Voogt, M.; et al. OPTRES: Assessment and Optimisation of Renewable Support Schemes in the European Electricity Market; Intelligent Energy for Europe; ISI, EEG, ECOFYS, Risoe, LEI, EnBW: Karlsruhe, Germany, 2007. [Google Scholar]
- Borggrefe, F.; Nüßler, A. Auswirkungen fluktuierender Windverstromung auf Strommärkte und Übertragungsnetze. UmweltWirtschaftsForum 2009, 17, 333–343. [Google Scholar] [CrossRef]
- ENTSO-E. Ten-Year Network Development Plan 2010–2020; European Network of Transmission System Operators for Electricity (ENTSO-E): Brussels, Belgium, 2010. [Google Scholar]
- De Decker, J.; Kreutzkamp, P. Offshore Electricity Grid Infrastructure in Europe—A Techno-Economic Assessment; European Wind Energy Association (EWEA): Brussels, Belgium, 2011. [Google Scholar]
- BDEW. Abschätzung des Ausbaubedarfs in deutschen Verteilungsnetzen aufgrund von Photovoltaik- und Windeinspeisungen bis 2020; Bundesverband der Energie und Wasserwirtschaft (BDEW): Berlin, Germany, 2011. [Google Scholar]
- Baldick, R.; Kahn, E. Network costs and the regulation of wholesale competition in electric power. J. Regul. Econ. 1993, 5, 367–384. [Google Scholar] [CrossRef]
- Stoft, S. Power System Economics: Designing Markets for Electricity; IEEE Press & Wiley Interscience: Hoboken, NJ, USA, 2002; Volume 2. [Google Scholar]
- Ackermann, T. Distributed Resources in a Re-Regulated Market Environment. Ph.D. Dissertation, KTH Royal Institute of Technology, Stockholm, Sweden, 2004. [Google Scholar]
- Li, F.; Tolley, D.; Padhy, N.P.; Wang, J. Framework for assessing the economic efficiencies of long-run network pricing models. IEEE Trans. Power Syst. 2009, 24, 1641–1648. [Google Scholar] [CrossRef] [Green Version]
- Brandstätt, C.; Brunekreeft, G.; Friedrichsen, N. Smart Pricing to Reduce Network Investment in Smart Distribution Grids—Experience in Germany. In Smart Grid: Integrating Renewable,Distributed and Efficient Energy; Sioshansi, F.P., Ed.; Elsevier: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Lopes, J.A.P.; Hatziargyriou, N.; Mutale, J.; Djapic, P.; Jenkins, N. Integrating distributed generation into electric power systems: A review of drivers, challenges and opportunities. Electr. Power Syst. Res. 2007, 77, 1189–1203. [Google Scholar] [CrossRef]
- Brunekreeft, G.; Neuhoff, K.; Newbery, D. Electricity transmission: An overview of the current debate. Util. Policy 2005, 13, 73–93. [Google Scholar] [CrossRef]
- Teckenburg, E.; Rathmann, M.; Winkel, T.; Ragwitz, M.; Steinhilber, S.; Resch, G.; Panzer, C.; Busch, S.; Konstantinaviciute, I. Renewable Energy Country Profiles; ECOFYS, Fraunhofer ISI, Energy Economics Group, LEI: Karlsruhe, Germany, 2011. [Google Scholar]
- Brandstätt, C.; Brunekreeft, G.; Jahnke, K. How to deal with negative power price spikes? Flexible voluntary curtailment agreements for large-scale integration of wind. Energy Policy 2011, 39, 3732–3740. [Google Scholar] [CrossRef]
- Brandstätt, C.; Brunekreeft, G.; Friedrichsen, N. Locational signals to reduce network investments in smart distribution grids: What works and what not? Util. Policy. [CrossRef]
- National Grid. Connection and Use of System Code (CUSC) 2011, Section 14: Charging Methodologies; National Grid: Northampton, UK, 2011. [Google Scholar]
- ENA. EHV Distribution Charging Methodology (EDCM); Energy Networks Association (ENA): London, UK, 2011. [Google Scholar]
- Bundesregierung. Verordnung über die Entgelte für den Zugang zu Elektrizitätsversorgungsnetzen (Stromnetzentgeltverordnung—StromNEV); BGBl. I S. 2225. Bundesregierung: Berlin, Germany, 25 July 2005. Available online: http://www.gesetze-im-internet.de/bundesrecht/stromnev/gesamt.pdf (accessed on 15 February 2012).
- Nicolosi, M. Wind power integration and power system flexibility—An empirical analysis of extreme events in Germany under the new negative price regime. Energy Policy 2010, 38, 7257–7268. [Google Scholar] [CrossRef] [Green Version]
- European Parliament. Council Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the Promotion of the Use of Energy from Renewable Sources and Amending and Subsequently Repealing Directives 2001/77/EC and 2003/30/EC; European Parliament: Brussels, Belgium, 2009. [Google Scholar]
- White & Case. EEG-Novelle 2012 im Überblick; White & Case: Köln, Germany, 2011. [Google Scholar]
- Sensfuß, F.; Ragwitz, M.; Kratzat, M.; Langniß, O.; Obersteiner, C.; Müller, T.; Merten, F.; Fischedick, M. Fortentwicklungdes Erneuerbaren Energien Gesetzes (EEG) zur Marktdurchdringung Erneuerbarer Energienim Deutschen und Europäischen Strommarkt; Fraunhofer ISI: Karlsruhe, Germany, 2007. [Google Scholar]
- Klein, A.; Pfluger, B.; Held, A.; Resch, G.; Faber, T. Evaluation of Different feed-in Tariff Design Options—Best Practice Paper for the International Feed-In Cooperation; Energy Economics Group/Fraunhofer ISI: Karlsruhe, Germany, 2008. [Google Scholar]
- DECC. Planning our Electric Future: A White Paper for Secure, Affordable and Low Carbon electricity; Department of Energy and Climate Change (DECC): London, UK, 2011. [Google Scholar]
- DECC. Planning Our Electric Future: Technical Update; Department of Energy and Climate Change (DECC): London, UK, 2011. [Google Scholar]
- Couture, T.; Gagnon, Y. An analysis of feed-in tariff remuneration models: Implications for renewable energy investment. Energy Policy 2010, 38, 955–965. [Google Scholar] [CrossRef]
- Newbery, D. Contracting for Wind Generation; Cambridge Working Paper in Economics; University of Cambridge: Cambridge, UK, 2011. [Google Scholar]
- Doherty, R.; O’Malley, M. The efficiency of Ireland’s Renewable Energy Feed-In Tariff (REFIT) for wind generation. Energy Policy 2011, 39, 4911–4919. [Google Scholar] [CrossRef]
- European Commission, DG Competition. SEC (2006) 1724: Report on Energy Sector Inquiry; European Commission, DG Competition: Brussels, Belgium, 2007. [Google Scholar]
- Brunekreeft, G. Anreizregulierung bei erhöhtem Investitionsbedarf in Stromverteilnetze. Energiewirtschaftliche Tagesfr. 2011, 61, 15–18. [Google Scholar]
- Müller, C.; Growitsch, C.; Wissner, M. Regulierung, Effizienz und das Anreizdilemma bei Investitionen in intelligente Netze. Z. Energiewirtschaft 2011, 35, 159–171. [Google Scholar] [CrossRef]
- Bauknecht, D.; Koch, M. Netzinnovationen und Netzregulierung im Dilemma zwischen Kosteneffizienz und Investitionsbedarf. Energiewirtschaftliche Tagesfr. 2010, 12, 8–11. [Google Scholar]
- OFGEM. RIIO—A New Way to Regulate Energy Networks—Final Decision; Factsheet; Ofgem: London, UK, 2010. [Google Scholar]
- Dyer, C.H.; Hammond, G.P.; Jones, C.I.; McKenna, R.C. Enabling technologies for industrial energy demand management. Energy Policy 2008, 36, 4434–4443. [Google Scholar] [CrossRef]
- Faruqui, A.; Hledik, R.; Tsoukalis, J. The power of dynamic pricing. Electr. J. 2009, 22, 42–56. [Google Scholar] [CrossRef]
- Faruqui, A.; Harris, D.; Hledik, R. Unlocking the €53 billion savings from smart meters in the EU: How increasing the adoption of dynamic tariffs could make or break the EU’s smart grid investment. Energy Policy 2010, 38, 6222–6231. [Google Scholar] [CrossRef]
- Andersson, S.-L.; Elofsson, A.K.; Galus, M.D.; Göransson, L.; Karlsson, S.; Johnsson, F.; Andersson, G. Plug-in hybrid electric vehicles as regulating power providers: Case studies of Sweden and Germany. Energy Policy 2010, 38, 2751–2762. [Google Scholar] [CrossRef]
- Borggrefe, F.; Neuhoff, K. Balancing and Intraday Market Design: Options for Wind Integration; DIW Discussion Paper; Deutsches Institut für Wirtschaftsforschung (DIW): Berlin, Germany, 2011. [Google Scholar]
- Zhang, T.; Nuttall, W.J. An Agent Based Simulation of Smart Metering Technology Adoption; Cambridge Working Papers in Economics; Faculty of Economics, University of Cambridge: Cambridge, UK, 2007. [Google Scholar]
- Jaffe, A.; Stavins, R.N. The energy paradox and the diffusion of conservation technology. Resour. Energy Econ. 1994, 16, 91–122. [Google Scholar] [CrossRef]
- European Parliament. Council Directive 2010/31/EC of the European Parliament and of the Council of 19 May 2010 on the Energy Performance of Buildings (Recast); European Parliament: Brussels, Belgium, 2010. [Google Scholar]
- Wissner, M. Smart Metering; WIK Diskussionsbeitrag; Wissenschaftliches Institut für Infrastruktur und Kommunikationsdienste (WIK): Bad Honnef, Germany, 2009. [Google Scholar]
- DENA. Dena Grid Study II—Integration of Renewable Energy Sources in the German Power Supply System from 2015–2020 with an Outlook to 2025; Deutsche Energie-Agentur (DENA): Berlin, Germany, 2010. [Google Scholar]
- Von Hirschhausen, C.; Wand, R.; Beestermöller, C. Bewertung der dena-Netzstudie II und des europäischen Infrastrukturprogramms; Technical University Berlin: Berlin, Germany, 2010. [Google Scholar]
- Klessmann, C.; Lamers, P.; Ragwitz, M.; Resch, G. Design options for cooperation mechanisms under the new European renewable energy directive. Energy Policy 2010, 38, 4679–4691. [Google Scholar] [CrossRef]
- Muñoz, M.; Oschmann, V.; David Tàbara, J. Harmonization of renewable electricity feed-in laws in the European Union. Energy Policy 2007, 35, 3104–3114. [Google Scholar] [CrossRef]
- Söderholm, P. Harmonization of renewable electricity feed-in laws: A comment. Energy Policy 2008, 36, 946–953. [Google Scholar] [CrossRef]
- SRU. Wege zur 100% Erneuerbaren Stromerzeugung; Sachverständigenrat für Umweltfragen (SRU): Berlin, Germany, 2011. [Google Scholar]
- Markard, J.; Truffer, B. Technological innovation systems and the multi-level perspective: Towards an integrated framework. Res. Policy 2008, 37, 596–615. [Google Scholar] [CrossRef]
- Geels, F.W.; Schot, J. Typology of sociotechnical transition pathways. Res. Policy 2007, 36, 399–417. [Google Scholar] [CrossRef]
- Verbong, G.; Geels, F. The ongoing energy transition: Lessons from a socio-technical, multi-level analysis of the Dutch electricity system (1960–2004). Energy Policy 2007, 35, 1025–1037. [Google Scholar] [CrossRef]
- Deakins, D.; Freel, M. Entrepreneurial learning and the growth process in SMEs. Learn. Organ. 1998, 5, 144–155. [Google Scholar] [CrossRef]
- Hall, P.A. Policy paradigms, social learning, and the state: The case of economic policymaking in Britain. Comp. Polit. 1993, 25, 275–296. [Google Scholar] [CrossRef]
- Geels, F.; Deuten, J.J. Local and global dynamics in technological development: A socio-cognitive perspective on knowledge flows and lessons from reinforced concrete. Sci. Public Policy 2006, 33, 265–275. [Google Scholar] [CrossRef]
- Szarka, J. Wind power, policy learning and paradigm change. Energy Policy 2006, 34, 3041–3048. [Google Scholar] [CrossRef]
- Verbong, G.; Geels, F.W.; Raven, R. Multi-niche analysis of dynamics and policies in Dutch renewable energy innovation journeys (1970–2006): Hype-cycles, closed networks and technology-focused learning. Technol. Anal. Strateg. Manag. 2008, 20, 555–573. [Google Scholar] [CrossRef]
- Truffer, B.; Voß, J.-P.; Konrad, K. Mapping expectations for system transformations: Lessons from Sustainability Foresight in German utility sectors. Technol. Forecast. Soc. Change 2008, 75, 1360–1372. [Google Scholar] [CrossRef]
- Azariadis, C. Self-fulfilling prophecies. J. Econ. Theory 1981, 25, 380–396. [Google Scholar] [CrossRef]
- Henshel, R.L. Do self-fulfilling prophecies improve or degrade predictive accuracy? How sociology and economics can disagree and both be right. J. Socio Econ. 1993, 22, 85–104. [Google Scholar] [CrossRef]
- Hermens, A. Knowledge exchange in strategic alliances: Learning in tension. Creat. Innov. Manag. 2001, 10, 189–200. [Google Scholar] [CrossRef]
- Raven, R.P.J.M.; Heiskanen, E.; Lovio, R.; Hodson, M.; Brohmann, B. The contribution of local experiments and negotiation processes to field-level learning in emerging (Niche) technologies. Bull. Sci. Technol. Soc. 2008, 28, 464–477. [Google Scholar] [CrossRef]
- Jacobsson, S.; Lauber, V. The politics and policy of energy system transformation—Explaining the German diffusion of renewable energy technology. Energy Policy 2006, 34, 256–276. [Google Scholar] [CrossRef]
- Lewis, J.I.; Wiser, R.H. Fostering a renewable energy technology industry: An international comparison of wind industry policy support mechanisms. Energy Policy 2007, 35, 1844–1857. [Google Scholar] [CrossRef]
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Lehmann, P.; Creutzig, F.; Ehlers, M.-H.; Friedrichsen, N.; Heuson, C.; Hirth, L.; Pietzcker, R. Carbon Lock-Out: Advancing Renewable Energy Policy in Europe. Energies 2012, 5, 323-354. https://doi.org/10.3390/en5020323
Lehmann P, Creutzig F, Ehlers M-H, Friedrichsen N, Heuson C, Hirth L, Pietzcker R. Carbon Lock-Out: Advancing Renewable Energy Policy in Europe. Energies. 2012; 5(2):323-354. https://doi.org/10.3390/en5020323
Chicago/Turabian StyleLehmann, Paul, Felix Creutzig, Melf-Hinrich Ehlers, Nele Friedrichsen, Clemens Heuson, Lion Hirth, and Robert Pietzcker. 2012. "Carbon Lock-Out: Advancing Renewable Energy Policy in Europe" Energies 5, no. 2: 323-354. https://doi.org/10.3390/en5020323
APA StyleLehmann, P., Creutzig, F., Ehlers, M.-H., Friedrichsen, N., Heuson, C., Hirth, L., & Pietzcker, R. (2012). Carbon Lock-Out: Advancing Renewable Energy Policy in Europe. Energies, 5(2), 323-354. https://doi.org/10.3390/en5020323