Bio-Wastes as an Alternative Household Cooking Energy Source in Ethiopia
Abstract
:1. Introduction
Background of the Country
2. Methodology
2.1. Description of the System Analyses
2.2. Determining the Study Assumptions
2.2.1. Energy Demand for Cooking
2.2.2. Thermal Output of the Conversion Systems
Stoves | Technology | Feedstock | LHV (GJ/t) | Efficiency (%) b | Thermal output (GJ/t) |
---|---|---|---|---|---|
TSF | traditional | residues or dung | 15 | 10 | 1.5 |
ISB | briquetting | residues | 19 | 20 | 3.8 |
Biogas | AD | residues | 8.8 a | 55 | 4.8 |
Biogas | AD | dung | 6.2 a | 55 | 3.4 |
2.2.3. Availability of Bio-Wastes
Crops | Land area (Mha) | Crop yield (t/ha) | RPR | Residues (t/ha) | Available residues (t/ha) | Available residues (mt) |
---|---|---|---|---|---|---|
Teff | 2.8 | 1.8 | 2.3 | 4.1 | 1.2 | 3.3 |
Barley | 1.0 | 1.8 | 1.3 | 2.3 | 0.7 | 0.7 |
Wheat | 1.6 | 2.1 | 1.3 | 2.7 | 0.8 | 2.3 |
Sorghum | 1.9 | 2.1 | 1.5 | 3.2 | 0.9 | 1.7 |
Maize | 2.0 | 3.0 | 1.4 | 4.2 | 1.3 | 2.6 |
Finger millet | 0.4 | 1.8 | 1.3 | 2.3 | 0.7 | 0.3 |
Other crops * | 2.4 | 1.5 | 1.3 | 2.0 | 0.6 | 1.4 |
Total/ave. | 12.0 | 2.0 | 1.5 | 3.0 | 0.9 | 11.0 |
Bio-wastes | Annual yield | Unit | Availability factor | Annual available yield | Unit |
---|---|---|---|---|---|
Residues | 3.0 | t/ha | 0.3 | 0.9 | t/ha |
Dung | 0.7 | t/cow | 0.4 | 0.3 | t/cow |
2.2.4. Driving the System Relationship
3. Results
3.1. Resources Required to Meet the Households’ Demands
Conversion technologies | Households biomass resources required to meet the demand | |||
---|---|---|---|---|
Residues (t) | Land (ha) | Dung (t) | Cows | |
TSF | 4.0 | 4.4 | 4.0 | 15 |
ISB | 1.6 | 1.8 | - | - |
Biogas | 1.2 | 1.3 | 1.6 | 6 |
3.2. Availability of Resources to Meet the Households’ Demand
Tenure size | Land (10 6 ha) | Households (10 6) | Holders (%) | Average holding (ha/hh) | Residues (ton/hh) | Potential energy (GJ/hh) | Useful energy per hh (GJ) | |||
---|---|---|---|---|---|---|---|---|---|---|
gross | available | gross | available | briquette | biogas | |||||
0.1–0.5 | 0.7 | 4.6 | 33 | 0.2 | 0.5 | 0.1 | 9 | 3 | 0.6 | 0.7 |
0.51–1.0 | 1.9 | 3.5 | 25 | 0.5 | 2 | 0 | 29 | 9 | 2 | 2 |
1.01–2.0 | 3.9 | 3.5 | 25 | 1.1 | 3 | 1 | 59 | 18 | 4 | 5 |
2.01–5.0 | 4.5 | 2.1 | 15 | 2.2 | 6 | 2 | 117 | 35 | 7 | 9 |
5.01–8.0 | 1.0 | 0.2 | 2 | 4.2 | 13 | 4 | 227 | 68 | 14 | 18 |
8.01–11 | 0.2 | 0.03 | 0.2 | 8.5 | 25 | 8 | 458 | 137 | 29 | 37 |
total/ave | 12.2 | 13.9 | 100 | 0.9 | 3 | 1 | 48 | 14 | 3 | 4 |
Cattle holding size | Cattle (106) | Holders (106) | Holders (%) | Cattle per hh | Dry dung per household (tons) | Potential energy (GJ/hh) | Useful energy | ||
---|---|---|---|---|---|---|---|---|---|
gross | available | gross | available | biogas (GJ/hh) | |||||
1–2 | 6 | 4 | 35 | 2 | 1 | 0.4 | 19 | 8 | 1 |
3–4 | 13 | 4 | 32 | 4 | 2 | 1 | 44 | 18 | 3 |
5–9 | 22 | 3 | 26 | 7 | 5 | 2 | 88 | 35 | 7 |
10–19 | 7 | 1 | 6 | 10 | 7 | 3 | 120 | 48 | 9 |
20–49 | 4 | 0.1 | 1 | 35 | 24 | 10 | 435 | 174 | 33 |
Total/av | 53 | 12 | 100 | 4 | 3 | 1.2 | 56 | 22 | 4 |
4. Discussion
4.1. Opportunities and Challenges of Using Bio-Wastes as Cooking Energy Sources
4.2. Comparing the Results
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- CSA. Ethiopian Welfare Monitoring Survey Report of 2011; Central Statistical Agency (CSA) of Ethiopia: Addis Ababa, Ethiopia, 2012.
- IEA. Energy for All: Financial Access for the Poor in World Energy Outlook 2011; International Energy Agency (IEA): Paris, France, 2011. [Google Scholar]
- UNDP. The Energy Access Situation in Developing Countries: A Review Focussing on Least Developed Countries and Sub-Saharan Africa; United Nations Development Programme and World Health Organization (UNDP): New York, NY, USA, 2009. [Google Scholar]
- Arnold, J.; Köhlin, G.; Persson, R. Woodfuels, livelihoods, and policy interventions: Changing perspectives. World Dev. 2006, 34, 596–611. [Google Scholar] [CrossRef]
- Kebede, B.; Bekele, A.; Kedir, E. Can the urban poor afford modern energy? The case of Ethiopia. Energy Policy 2002, 30, 1029–1045. [Google Scholar] [CrossRef]
- Cooke, P.; Kohlin, G.; Hyde, W.F. Fuelwood, forests and community management—Evidence from household studies. Environ. Dev. Econ. 2008, 13, 103–135. [Google Scholar] [CrossRef]
- Gebreegziabher, Z.; Mekonnen, A.; Kassie, M.; Köhlin, G. Household Tree Planting in Tigrai, Northern Ethiopia: Tree Species, Purposes, and Determinants; Working Papers in Economics No 432; University of Gothenburg: Gothenburg, Sweden, 2010. [Google Scholar]
- Jetter, J.J.; Kariher, P. Solid-fuel household cook stoves: Characterization of performance and emissions. Biomass Bioenergy 2009, 33, 294–305. [Google Scholar] [CrossRef]
- MacCarty, N.; Still, D.; Ogle, D. Fuel use and emissions performance of fifty cooking stoves in the laboratory and related benchmarks of performance. Energy Sustain. Dev. 2010, 14, 161–171. [Google Scholar] [CrossRef]
- Subedi, M.; Matthews, R.B.; Pogson, M.; Abegaz, A.; Balana, B.B.; Oyesiku-Blakemore, J.; Smith, J. Can biogas digesters help to reduce deforestation in Africa? Biomass Bioenergy 2014, 70, 87–98. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Abdul Salam, P. Low greenhouse gas biomass options for cooking in the developing countries. Biomass Bioenergy 2002, 22, 305–317. [Google Scholar] [CrossRef]
- Werther, J.; Saenger, M.; Hartge, E.; Ogada, T.; Siagi, Z. Combustion of agricultural residues. Prog. Energy Combust. Sci. 2000, 26, 1–27. [Google Scholar] [CrossRef]
- Dasappa, S. Potential of biomass energy for electricity generation in Sub-Saharan Africa. Energy Sustain. Dev. 2011, 15, 203–213. [Google Scholar] [CrossRef]
- Kim, S.; Dale, B.E. Global potential bioethanol production from wasted crops and crop residues. Biomass Bioenergy 2004, 26, 361–375. [Google Scholar] [CrossRef]
- Smeets, E.M.W.; Faaij, A.P.C.; Lewandowski, I.M.; Turkenburg, W.C. A bottom-up assessment and review of global bio-energy potentials to 2050. Prog. Energy Combust. Sci. 2007, 33, 56–106. [Google Scholar] [CrossRef]
- Duku, M.H.; Gu, S.; Hagan, E.B. A comprehensive review of biomass resources and biofuels potential in Ghana. Renew. Sustain. Energy Rev. 2011, 15, 404–415. [Google Scholar] [CrossRef]
- Jingura, R.M.; Matengaifa, R. The potential for energy production from crop residues in Zimbabwe. Biomass Bioenergy 2008, 32, 1287–1292. [Google Scholar] [CrossRef]
- Nzila, C.; Dewulf, J.; Spanjers, H.; Kiriamiti, H.; van Langenhove, H. Biowaste energy potential in Kenya. Renew. Energy 2010, 35, 2698–2704. [Google Scholar] [CrossRef]
- Ravindranath, N.H.; Somashekar, H.I.; Nagaraja, M.S.; Sudha, P.; Sangeetha, G.; Bhattacharya, S.C.; Abdul Salam, P. Assessment of sustainable non-plantation biomass resources potential for energy in India. Biomass Bioenergy 2005, 29, 178–190. [Google Scholar] [CrossRef]
- Orskov, E.R.; Anchang, K.Y.; Subedi, M.; Smith, J. Overview of holistic application of biogas for small scale farmers in Sub-Saharan Africa. Biomass Bioenergy 2014, 70, 4–16. [Google Scholar] [CrossRef]
- Eshete, G.; Sonder, K.; ter Heegde, F. Report on the Feasibility Study of a National Programme for Domestic Biogas in Ethiopia; SNV Netherlands Development Organization: Addis Ababa, Ethiopia, 2006. [Google Scholar]
- Kariko-Buhwezi, B. Challenges to the sustainability of small scale biogas technologies in Uganda. In Proceedings of the Second International Conference on Advances in Engineering and Technology, Entebbe, Uganda, 31 January–1 February 2011.
- FAO. FAOSTAT. 2014. Available online: http://faostat.fao.org/ (accessed on 13 May 2014).
- Hurni, H. Agroecological Belts of Ethiopia. Explanatory Notes on Three Maps at a Scale of 1:1,000,000; University of Bern: Bern, Switzerland, 1998. [Google Scholar]
- CSA. National Land Utilizations, Crop Production and Livestock Survey Report; National Statistical Agency of Ethiopia (CSA), 2012. Available online: http://www.csa.gov.et/ (accessed on 11 May 2014).
- UN. World Urban and Rural Population; Population Estimates and Projection Section, United Nations Population Division: New York, NY, USA, 2014. [Google Scholar]
- Demirbas, K.; Sahin-Demirbas, K.A. Compacting of Biomass for Energy Densification. Energy Sources Part A Recovery Util. Environ. Eff. 2009, 31, 1063–1068. [Google Scholar] [CrossRef]
- Tucho, G.T.; Weesie, P.D.; Nonhebel, S. Assessment of renewable energy resources potential for large scale and standalone applications in Ethiopia. Renew. Sustain. Energy Rev. 2014, 40, 422–431. [Google Scholar] [CrossRef]
- Barnes, D.F.; Floor, W.M. Rura enery in developing countries: A Challenge for Economic Development. Annu. Rev. Energy Environ. 1996, 21, 497–530. [Google Scholar] [CrossRef]
- Kowsari, R.; Zerriffi, H. Three dimensional energy profile: A conceptual framework for assessing household energy use. Energy Policy 2011, 39, 7505–7517. [Google Scholar] [CrossRef]
- Ameha, A. Sustainable Supply of Wood Resources from Adaba-Dodola Forest Priority Area. Paper Presented on the Alumni Seminar; Addis Ababa University: Addis Ababa, Ethiopia, 2002. [Google Scholar]
- Bewket, W. Household level tree planting and its implications for environmental management in the northwestern highlands of Ethiopia: A case study in the Chemoga watershed, Blue Nile basin. Land Degrad. Dev. 2003, 14, 377–388. [Google Scholar] [CrossRef]
- O’Sullivan, K.; Barnes, D.F. Energy Policies and Multitopic Household Surveys: Guidelines for Questionnaire Design in Living Standards Measurement Studies; World Bank Publications: Washington, DC, USA, 2007. [Google Scholar]
- Rosillo-Calle, F. The Biomass Assessment Handbook: Bioenergy for a Sustainable Environment; Earthscan: London, UK, 2007. [Google Scholar]
- Jekayinfa, S.; Scholz, V. Potential availability of energetically usable crop residues in Nigeria. Energy Sources Part A 2009, 31, 687–697. [Google Scholar] [CrossRef]
- Zeng, X.; Ma, Y.; Ma, L. Utilization of straw in biomass energy in China. Renew. Sustain. Energy Rev. 2007, 11, 976–987. [Google Scholar] [CrossRef]
- Purohit, P.; Tripathi, A.K.; Kandpal, T.C. Energetics of coal substitution by briquettes of agricultural residues. Energy 2006, 31, 1321–1331. [Google Scholar] [CrossRef]
- Demirbas, A. Sustainable charcoal production and charcoal briquetting. Energy Sources Part A 2009, 31, 1694–1699. [Google Scholar] [CrossRef]
- Zinoviev, S.; Müller-Langer, F.; Das, P.; Bertero, N.; Fornasiero, P.; Kaltschmitt, M.; Centi, G.; Miertus, S. Next-generation biofuels: Survey of emerging technologies and sustainability issues. ChemSusChem 2010, 3, 1106–1133. [Google Scholar] [CrossRef] [PubMed]
- Weiland, P. Biogas production: Current state and perspectives. Appl. Microbiol. Biotechnol. 2010, 85, 849–860. [Google Scholar] [CrossRef] [PubMed]
- Batzias, F.A.; Sidiras, D.K.; Spyrou, E.K. Evaluating livestock manures for biogas production: A GIS based method. Renew. Energy 2005, 30, 1161–1176. [Google Scholar] [CrossRef]
- Bond, T.; Templeton, M.R. History and future of domestic biogas plants in the developing world. Energy Sustain. Dev. 2011, 15, 347–354. [Google Scholar] [CrossRef]
- Jingura, R.M.; Matengaifa, R. Optimization of biogas production by anaerobic digestion for sustainable energy development in Zimbabwe. Renew. Sustain. Energy Rev. 2009, 13, 1116–1120. [Google Scholar] [CrossRef]
- Omer, A.; Fadalla, Y. Biogas energy technology in Sudan. Renew. Energy 2003, 28, 499–507. [Google Scholar] [CrossRef]
- Deublein, D.; Steinhauser, A. Biogas from Waste and Renewable Resources: An Introduction; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Lehtomäki, A. Biogas Production from Energy Crops and Crop Residues; University of Jyväskylä: Jyväskylä, Finland, 2006. [Google Scholar]
- Rajendran, K.; Aslanzadeh, S.; Taherzadeh, M.J. Household biogas digesters—A review. Energies 2012, 5, 2911–2942. [Google Scholar] [CrossRef]
- Karaj, S.; Rehl, T.; Leis, H.; Müller, J. Analysis of biomass residues potential for electrical energy generation in Albania. Renew. Sustain. Energy Rev. 2010, 14, 493–499. [Google Scholar] [CrossRef]
- Scarlat, N.; Martinov, M.; Dallemand, J.-F. Assessment of the availability of agricultural crop residues in the European Union: Potential and limitations for bioenergy use. Waste Manag. 2010, 30, 1889–1897. [Google Scholar] [CrossRef] [PubMed]
- Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 2004, 304, 1623–1627. [Google Scholar] [CrossRef] [PubMed]
- Haileslassie, A.; Priess, J.; Veldkamp, E.; Teketay, D.; Lesschen, J.P. Assessment of soil nutrient depletion and its spatial variability on smallholders’ mixed farming systems in Ethiopia using partial versus full nutrient balances. Agric. Ecosyst. Environ. 2005, 108, 1–16. [Google Scholar] [CrossRef]
- Haileslassie, A.; Priess, J.A.; Veldkamp, E.; Lesschen, J.P. Smallholders’ soil fertility management in the Central Highlands of Ethiopia: Implications for nutrient stocks, balances and sustainability of agroecosystems. Nutr. Cycl. Agroecosyst. 2006, 75, 135–146. [Google Scholar] [CrossRef]
- Duguma, L.A.; Minang, P.A.; Freeman, O.E.; Hager, H. System wide impacts of fuel usage patterns in the Ethiopian highlands: Potentials for breaking the negative reinforcing feedback cycles. Energy Sustain. Dev. 2014, 20, 77–85. [Google Scholar] [CrossRef]
- Valbuena, D.; Erenstein, O.; Tui, S.; Abdoulaye, T.; Claessens, L.; Duncan, A.J.; Gerard, B.; Rufino, M.C.; Teufel, N.; van Rooyen, A.; et al. Conservation agriculture in mixed crop-livestock systems: Scoping crop residue trade-offs in sub-Saharan Africa and South Asia. Field Crops Res. 2012, 132, 175–184. [Google Scholar] [CrossRef]
- Mengistu, M.G.; Simane, B.; Eshete, G.; Workneh, T.S. A review on biogas technology and its contributions to sustainable rural livelihood in Ethiopia. Renew. Sustain. Energy Rev. 2015, 48, 306–316. [Google Scholar] [CrossRef]
- Gwavuya, S.G.; Abele, S.; Barfuss, I.; Zeller, M.; Müller, J. Household energy economics in rural Ethiopia: A cost-benefit analysis of biogas energy. Renew. Energy 2012, 48, 202–209. [Google Scholar] [CrossRef]
- Fischer, G.; Schrattenholzer, L. Global bioenergy potentials through 2050. Biomass Bioenergy 2001, 20, 151–159. [Google Scholar] [CrossRef]
- Berndes, G.; Hoogwijk, M.; van den Broek, R. The contribution of biomass in the future global energy supply: A review of 17 studies. Biomass Bioenergy 2003, 25, 1–28. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tucho, G.T.; Nonhebel, S. Bio-Wastes as an Alternative Household Cooking Energy Source in Ethiopia. Energies 2015, 8, 9565-9583. https://doi.org/10.3390/en8099565
Tucho GT, Nonhebel S. Bio-Wastes as an Alternative Household Cooking Energy Source in Ethiopia. Energies. 2015; 8(9):9565-9583. https://doi.org/10.3390/en8099565
Chicago/Turabian StyleTucho, Gudina Terefe, and Sanderine Nonhebel. 2015. "Bio-Wastes as an Alternative Household Cooking Energy Source in Ethiopia" Energies 8, no. 9: 9565-9583. https://doi.org/10.3390/en8099565
APA StyleTucho, G. T., & Nonhebel, S. (2015). Bio-Wastes as an Alternative Household Cooking Energy Source in Ethiopia. Energies, 8(9), 9565-9583. https://doi.org/10.3390/en8099565