Comparing Apples to Apples: Why the Net Energy Analysis Community Needs to Adopt the Life-Cycle Analysis Framework
Abstract
:1. Introduction
1.1. Background
1.1.1. Short History of Net Energy Analysis (NEA) and Energy Return on Investment (EROI)
1.1.2. Short History of Life Cycle Assessment (LCA)
2. Methodological Commonalities between Net Energy Analysis (NEA) and Life Cycle Assessment (LCA)
2.1. What Is the Purpose of the Proposed Work and How Will It Be Analyzed? Goal and Scope Definition
2.1.1. Goal Definition, Intended Audience
- Reason 1:
- descriptive assessment of a specific technology (e.g., solar satellite); and
- Reason 2:
- comparative assessment of a range of energy resources/technologies;
- (1)
- “The goal of this analysis is to calculate the EROI of coal”;
- (2)
- “The goal of this analysis is to calculate the EROI of coal so that policy makers can compare it with the EROI of PV, wind, and natural gas.
2.1.2. Product System and Boundary Selection
2.1.3. Type of Analysis
2.1.4. Functional Unit Definition
2.2. Inventory Analysis
2.2.1. Truncation (“Cutoff”) Criteria
2.2.2. Allocation, Multiple Co-Products
2.3. Impact Assessment
2.3.1. Impact Category and Methodology Selection
2.3.2. Characterization
3. Data
4. Conclusions
The Net Energy To-Do List
- (a)
- Write a proper goal statement, including the following information:
- Intended application, i.e., is this a comparison study?
- Reasons for the research
- For whom the work is intended, i.e., the audience
- (b)
- (c)
- Clearly identify the functional unit of the analysis and make sure that this unit is the same as other units in the literature if the research is intended to be used comparatively.
- (d)
- Utilize process-level data when available and input-output level data as a backup/supplement
- Utilize the EcoInvent (or other) major LCI database as a primary loci for data
- Supplement these databases with other data when needed, but only after these datasets have been utilized
Author Contributions
Conflicts of Interest
Abbreviations
ERR | Energy Return Ratio |
EROI | Energy Return on Investment |
NER | Net Energy Ratio |
NEA | Net Energy Analysis |
LCA | Life Cycle Analysis |
References
- Hall, C.A.S.; Day, J.W. Revisiting the Limits to Growth after Peak Oil. Am. Sci. 2009, 97, 230–237. [Google Scholar] [CrossRef]
- Murphy, D.J.; Hall, C.A.S. Year in Review—EROI or Energy Return on (Energy) Invested. Ann. N. Y. Acad. Sci. 2010, 1185, 102–118. [Google Scholar] [CrossRef]
- Dale, M.; Krumdieck, S.; Bodger, P. Global Energy Modelling—A Biophysical Approach (GEMBA) Part 1: An Overview of Biophyscial Economics. Ecol. Econ. 2012, 73, 152–157. [Google Scholar] [CrossRef]
- Raugei, M.; Fullana-i-Palmer, P.; Fthenakis, V. The energy return on energy investment (EROI) of photovoltaics: Methodology and comparisons with fossil fuel life cycles. Energy Policy 2012, 45, 576–582. [Google Scholar] [CrossRef]
- Weißbach, D.; Ruprecht, G.; Huke, A.; Czerski, K.; Gottlieb, S.; Hussein, A. Energy intensities, EROIs (energy returned on invested), and energy payback times of electricity generating power plants. Energy 2013, 52, 210–221. [Google Scholar] [CrossRef]
- Prieto, P.A.; Hall, C. Spain’s Photovoltaic Revolution: The Energy Return on Investment; Springer: New York, NY, USA, 2013. [Google Scholar]
- Carbajales-Dale, M.; Raugei, M.; Fthenakis, V.; Barnhart, C. Energy return on investment (EROI) of solar PV: An attempt at reconciliation. Proc. IEEE 2015, 103, 995–999. [Google Scholar] [CrossRef]
- Raugei, M.; Carbajales-Dale, M.; Barnhart, C.; Fthenakis, V. Rebuttal: “Comments on ‘Energy intensities, EROIs (energy returned on invested), and energy payback times of electricity generating power plants’—Making clear of quite some confusion”. Energy 2015, 82, 1088–1091. [Google Scholar] [CrossRef]
- Raugei, M.; Leccisi, E. A comprehensive assessment of the energy performance of the full range of electricity generation technologies deployed in the United Kingdom. Energy Policy 2016, 90, 46–59. [Google Scholar] [CrossRef]
- Arvidsson, R.; Svanstrom, M. A framework for energy use indicators and their reporting in life cycle assessment. Integr. Environ. Assess. Manag. 2016, 12, 429–436. [Google Scholar] [CrossRef]
- Arvidsson, R.; Fransson, K.; Froling, M.; Svanstrom, M.; Molander, S. Energy use indicators in energy and life cycle assessments of biofuels: Review and recommendations. J. Clean. Prod. 2012, 31, 54–61. [Google Scholar] [CrossRef]
- Chapman, P. Energy Analysis: A Review of Methods and Applications. Omega 1976, 4, 19–33. [Google Scholar] [CrossRef]
- International Federation of Institutes for Advanced Studies (IFIAS). IFIAS Workshop Report, energy analysis and economics. Resour. Energy 1978, 1, 151–204. [Google Scholar]
- Connolly, T.J.; Spraul, J.R. Report of the NSF-Stanford Workshop on Net Energy Analysis; National Science Foundation: Washington, DC, USA, 1975. [Google Scholar]
- ISO 14042. Life Cycle Assessment—Impact Assessment; International Organization for Standardization: Geneva, Switzerland, 1998.
- ISO 14043:1998 Environmental Management—Life Cycle Assessment—Life Cycle Interpretation; International Organization for Standardization: Geneva, Switzerland, 1998.
- ISO 14040:1997 Environmental Management—Life Cycle Assessment—Principles and Framework; International Organization for Standardization: Geneva, Switzerland, 1997.
- ISO 14040:2006 Environmental Management—Life Cycle Assessment—Principles and Framework; International Organization for Standardization: Geneva, Switzerland, 2006.
- ISO 14044:2006 Environmental Management—Life Cycle Assessment—Requirements and Guidelines; International Organization for Standardization: Geneva, Switzerland, 2006.
- Brandt, A.R.; Dale, M.; Barnhart, C. Calculating systems-scale energy efficiency and net energy returns: A bottom-up matrix-based approach. Energy 2013, 62, 235–247. [Google Scholar] [CrossRef]
- Averson, A.; Hertwich, E.G. More caution is needed when using life cycle assessment to determine energy return on investment (EROI). Energy Policy 2015, 76, 1–6. [Google Scholar] [Green Version]
- Odum, H.T. Energy, Ecology, and Economics. Ambio 1973, 2, 220–227. [Google Scholar]
- Hall, C.A.S. Migration and Metabolism in a Temperature Stream Ecosystem. Ecology 1972, 53, 585–604. [Google Scholar] [CrossRef]
- Hannon, B.M. Bottles Cans Energy. Environment 1972, 14, 11–21. [Google Scholar] [CrossRef]
- Berry, S.R.; Fels, M.F. The energy cost of automobiles. Sci. Public Aff. 1973, 29, 11–17. [Google Scholar] [CrossRef]
- Hirst, E. Food-Related Energy Requirements. Science 1974, 184, 134–138. [Google Scholar] [CrossRef]
- Pimentel, D.; Hurd, L.E.; Bellotti, A.C.; Forster, M.J.; Oka, I.N.; Sholes, O.D.; Whitman, R.J. Food production and the energy crisis. Science 1973, 182, 443–449. [Google Scholar] [CrossRef]
- Chapman, P.F. Energy Costs: A Review of Methods. Energy Policy 1974, 2, 91–103. [Google Scholar] [CrossRef]
- Mortimer, N.D. The Energy Costs of Road and Rail Freight Transport, UK 1968; ERRG 004 R&D Rpt; Transport Road Research Laboratory: Berkshire, UK, 1974. [Google Scholar]
- Boustead, I. Resource implications with particular reference to energy requirements for glass and plastics milk bottles. Int. J. Dairy Technol. 1974, 27, 159–165. [Google Scholar] [CrossRef]
- Leach, G. Energy and food production. Food Policy 1975, 1, 62–73. [Google Scholar] [CrossRef]
- Slesser, M. Accounting for energy. Nature 1975, 254, 170–172. [Google Scholar] [CrossRef]
- Carter, A.P. Applications of Input-Output Analysis to Energy Problems. Science 1974, 184, 325–329. [Google Scholar] [CrossRef]
- Estrup, C. Energy Consumption Analysis by Application of National Input-Output Tables. Ind. Market. Manag. 1974, 3, 193–210. [Google Scholar] [CrossRef]
- Bullard, C.; Herendeen, R. The Energy Costs of Goods and Services. Energy Policy 1975, 3, 268–278. [Google Scholar] [CrossRef]
- Bullard, C.W.; Hannon, B.; Herendeen, R. Energy Flow through the U.S. Economy; University of Illinois Press: Urbana, IL, USA, 1975. [Google Scholar]
- Herendeen, R. Input-Output Techniques and Energy Cost of Commodities. Energy Policy 1978, 6, 162–165. [Google Scholar] [CrossRef]
- Energy Analysis Workshop on Methodology and Conventions; International Federation of Institutes of Advanced Study (IFIAS): Guldsmedshyttan, Sweden, 1974.
- Nilsson, S.; Kristoferson, L. Energy analysis and economics. Ambio 1976, 5, 27–29. [Google Scholar]
- Brandt, A.R.; Dale, M. A General Mathematical Framework for Calculating Systems-Scale Efficiency of Energy Extraction and Conversion: Energy Return on Investment (EROI) and Other Energy Return Ratios. Energies 2011, 4, 1211–1245. [Google Scholar] [CrossRef]
- Hall, C.A.S.; Cleveland, C.J.; Berger, M. Energy Return on Investment for United States Petroleum, Coal, and Uranium; Mitsch, W., Ed.; Elsevier: Amsterdam, The Netherlands, 1981; p. 715. [Google Scholar]
- Hall, C.A.S.; Cleveland, C.J. Petroleum Drilling and Production in the United States: Yield per Effort and Net Energy Analysis. Science 1981, 211, 576–579. [Google Scholar] [CrossRef]
- Odum, H.T. Environment, Power, and Society; John Wiley and Sons, Inc.: New York, NY, USA, 1971. [Google Scholar]
- Cleveland, C.J.; Costanza, R.; Hall, C.A.S.; Kauffmann, R. Energy and the U.S. Economy: A Biophysical Perspective. Science 1984, 225, 890–897. [Google Scholar] [CrossRef]
- Hall, C.A.S.; Kaufmann, R.; Cleveland, C.J. Energy and Resource Quality: The Ecology of the Economic Process; John Wiley and Sons, Inc.: New York, NY, USA, 1986. [Google Scholar]
- Cleveland, C. Net energy from the extraction of oil and gas in the United States. Energy 2005, 30, 769–782. [Google Scholar] [CrossRef]
- Gagnon, N.; Hall, C.A.S.; Brinker, L. A Preliminary Investigation of the Energy Return on Energy Invested for Global Oil and Gas Extraction. Energies 2009, 2, 490–503. [Google Scholar] [CrossRef]
- Brandt, A.R. Oil Depletion and the Energy Efficiency of Oil Production: The Case of California. Sustainability 2011, 3, 1833–1854. [Google Scholar] [CrossRef]
- Grandell, L.; Hall, C.A.S.; Hook, M. Energy Return on Investment for Norwegian Oil and Gas from 1991 to 2008. Sustainability 2011, 3, 2050–2070. [Google Scholar] [CrossRef]
- Guilford, M.C.; Hall, C.A.S.; O’Connor, P.; Cleveland, C.J. A New Long Term Assessment of Energy Return on Investment (EROI) for U.S. Oil and Gas Discovery and Production. Sustainability 2011, 3, 1866–1887. [Google Scholar] [CrossRef]
- Mulder, K.; Hagens, N.J. Energy Return on Investment: Towards a Consistent Framework. Ambio 2008, 37, 74–79. [Google Scholar] [CrossRef]
- Murphy, D.J.; Hall, C.A.S.; Dale, M.; Cleveland, C. Order from Chaos: A Preliminary Protocol for Determining the EROI of Fuels. Sustainability 2011, 3, 1888–1907. [Google Scholar] [CrossRef]
- Henshaw, P.F.; King, C.; Zarnikau, J. System Energy Assessment (SEA), Defining a Standard Measure of EROI for Energy Businesses as Whole Systems. Sustainability 2011, 3, 1908–1943. [Google Scholar] [CrossRef]
- Hunt, R.G.; Franklin, W.E.; Welch, R.O.; Cross, J.A.; Woodall, A.E. Resource and Environmental Profile Analysis of Nine Beverage Container Alternatives; Environmental Protection Agency (EPA): Washington, DC, USA, 1974; Volume 530.
- Fava, J. A Technical Framework for Life-Cycle Assessments; Society of Environmental Toxicology and Chemistry and SETAC Foundation for Environmental Education; Springer: Berlin, Germany, 1991. [Google Scholar]
- Consoli, F. Guidelines for Life-Cycle Assessment: A Code of Practice; Society of Environmental Toxicology and Chemistry: Pensacola, Florida, USA, 1993. [Google Scholar]
- King, C.W.; Maxwell, J.P.; Donovan, A. Comparing World Economic and Net Energy Metrics, Part 1: Single Technology and Commodity Perspective. Energies 2015, 8, 12949–12974. [Google Scholar] [CrossRef]
- Weidema, B.P.; Bauer, C.; Hischier, R.; Mutel, C.; Nemecek, T.; Reinhard, J.; Vadenbo, C.O.; Wernet, G. Overview and Methodology, Data Quality Guideline for the Ecoinvent Database Version 3; Ecoinvent Center: St. Gallen, Switzerland, 2013. [Google Scholar]
- Tillman, A.M.; Ekvall, T.; Baumann, H.; Rydberg, T. Choice of system boundaries in life cycle assessment. J. Clean. Prod. 1994, 2, 21–29. [Google Scholar] [CrossRef]
- Reap, J.; Roman, F.; Duncan, S.; Bras, B. A survey of unresolved problems in life cycle assessment—Part II impact assessment and interpretation. Int. J. Life Cycle Assess. 2008, 13, 374. [Google Scholar] [CrossRef]
- Reap, J.; Roman, F.; Duncan, S.; Bras, B. A survey of unresolved problems in life cycle assessment—Part I goals and scope and inventory analysis. Int. J. Life Cycle Assess. 2008, 13, 290. [Google Scholar] [CrossRef]
- Carnegie Mellon University Green Design Institute. (2008) Economic Input-Output Life Cycle Assessment (EIO-LCA), US 1997 Industry Benchmark Model. Available online: http://www.eiolca.net (accessed on 24 October 2016).
- Patzek, T. Thermodynamics of the Corn-Ethanol Biofuel Cycle. Crit. Rev. Plant Sci. 2004, 23, 519–567. [Google Scholar] [CrossRef]
- Pimentel, D.; Patzek, T.W. Ethanol Production Using Corn, Switchgrass, and Wood; Biodiesel Production Using Soybean and Sunflower. Nat. Resour. Res. 2005, 14, 65–76. [Google Scholar] [CrossRef]
- Shapouri, H.; Duffield, J.A.; McAloon, A.; Wang, M. The 2001 Net Energy Balance of Corn-Ethanol; Biomass Research and Development Technical Advisory Committee: Crystal City, VA, USA, 2004. [Google Scholar]
- Wang, M. Development and Use of GREET 1.6 Fuel-Cycle Model for Transportation Fuels and Vehicle Technologies; Report No. ANL/ESD/TM-163; Argonne National Laboratory: Argonne, IL, USA, 2001.
- Graboski, M. Fossil Energy Use in the Manufacture of Corn Ethanol; National Corn Growers Association: Chesterfield, MO, USA, 2002. [Google Scholar]
- Oliveira, M.E.D.D.; Vaughan, B.E.; Rykiel, E.J.J. Ethanol as Fuel: Energy and Carbon Dioxide Balance and Ecological Footprint. BioScience 2005, 55, 593–602. [Google Scholar] [CrossRef]
- Farrell, A.E.; Plevin, R.J.; Turner, B.T.; Jones, A.D.; O’Hare, M.; Kammen, D.M. Ethanol Can Contribute to Energy and Environmental Goals. Science 2006, 311, 506–508. [Google Scholar] [CrossRef]
- Curran, M.A. Life Cycle Assessment: Principles and Practice; EPA/600/R-06/060; US Environmental Protection Agency: Washington, DC, USA, 2006.
- Frischknecht, R.; Itten, R.; Sinha, P.; de Wild-Scholten, M.; Zhang, J.; Fthenakis, V.; Kim, H.C.; Raugei, M.; Stucki, M. Life Cycle Inventories and Life Cycle Assessment of Photovoltaic Systems; Report T12-04:2015; International Energy Agency (IEA): Paris, France, 2015. [Google Scholar]
- Zhang, Y.; Colosi, L.M. Practical ambiguities during calculation of energy ratios and their impacts on life cycle assessment calculations. Energy Policy 2013, 57, 630–633. [Google Scholar] [CrossRef]
- Fthenakis, V.; Kim, H. Photovoltaics: Life-cycle analyses. Sol. Energy 2011, 85, 1609–1628. [Google Scholar] [CrossRef]
- Hall, C.A.; Balogh, S.; Murphy, D.J. What is the Minimum EROI That a Sustainable Society Must Have? Energies 2009, 2, 25–47. [Google Scholar] [CrossRef]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Murphy, D.J.; Carbajales-Dale, M.; Moeller, D. Comparing Apples to Apples: Why the Net Energy Analysis Community Needs to Adopt the Life-Cycle Analysis Framework. Energies 2016, 9, 917. https://doi.org/10.3390/en9110917
Murphy DJ, Carbajales-Dale M, Moeller D. Comparing Apples to Apples: Why the Net Energy Analysis Community Needs to Adopt the Life-Cycle Analysis Framework. Energies. 2016; 9(11):917. https://doi.org/10.3390/en9110917
Chicago/Turabian StyleMurphy, David J., Michael Carbajales-Dale, and Devin Moeller. 2016. "Comparing Apples to Apples: Why the Net Energy Analysis Community Needs to Adopt the Life-Cycle Analysis Framework" Energies 9, no. 11: 917. https://doi.org/10.3390/en9110917