Discrete Particle Method for Simulating Hypervelocity Impact Phenomena
Abstract
:1. Introduction
2. Simulation Model
2.1. Initial Setup
2.2. Particle Potentials
2.2.1. Contact Potentials
2.2.2. Bonded Potentials
2.3. Sizing and Convergence Properties of Our Particle Model
2.3.1. Geometric Sizing Properties
2.3.2. Convergence Properties
3. Results and Discussion
3.1. Choice of Model Parameters
3.2. Validation with Experiment
3.2.1. Extension of Debris Cloud
3.2.2. Shape and Degree of Fragmentation
- The well defined front end (left side of debris cloud) as seen in the experiment is missing in the simulation.
- The large central fragment in the simulation did not fracture into a distinctive debris bubble behind the dense cloud center (right side of debris cloud) as seen in the experiment.
3.3. Analyzing Fragmentation
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Wegener, P.; Bendisch, J.; Krag, H.; Oswald, M.; Stabroth, S. Population evolution in the GEO vicinity. Adv. Space Res. 2003, 34, 1171–1176. [Google Scholar] [CrossRef]
- Liou, J.C.; Johnson, N.L. Planetary science. Risks in space from orbiting debris. Science 2006, 311, 340–341. [Google Scholar] [CrossRef] [PubMed]
- Liou, J.C. Collision activities in the future orbital debris environment. Adv. Space Res. 2006, 38, 2102–2106. [Google Scholar] [CrossRef]
- Liu, P.; Liu, Y.; Zhang, X. Improved shielding structure with double honeycomb cores for hyper-velocity impact. Mech. Res. Commun. 2015, 69, 34–39. [Google Scholar] [CrossRef]
- Kinslow, R. High-Velocity Impact Phenomena; Academic Press: Cookeville, TN, USA, 1970. [Google Scholar]
- Zukas, J.; Nicholas, T.; Swift, H. Impact Dynamics; John Wiley & Sons: New York, NY, USA, 1982. [Google Scholar]
- Zhang, X.; Guanghui, J.; Huang, H. Fragment identification and statistics method of hypervelocity impact SPH simulation. Chin. J. Aeronaut. 2011, 24, 18–24. [Google Scholar] [CrossRef]
- Watson, E. Hypervelocity Impact Phenomena: A Discrete Element Numerical Simulation Study. Master’s Thesis, Technische Universität München, München, Germany, 2015. [Google Scholar]
- Lucy, L.B. A numerical approach to the testing of the fission hypothesis. J. Astronom. 1977, 82, 1013–1024. [Google Scholar] [CrossRef]
- Monaghan, J.J.; Gingold, R.A. Shock simulation by the particle method SPH. J. Comput. Phys. 1983, 52, 374–389. [Google Scholar] [CrossRef]
- Libersky, L.D.; Petschek, A.G. Smooth particle hydrodynamics with strength of materials. In Advances in the Free-Lagrange Method Including Contributions on Adaptive Gridding and the Smooth Particle Hydrodynamics Method; Springer: Berlin/Heidelberg, Germany, 1991; pp. 248–257. [Google Scholar]
- Johnson, G.R.; Stryk, R.A.; Beissel, S.R. SPH for high velocity impact computations. Comput. Method Appl. Mach. Eng. 1996, 139, 347–373. [Google Scholar] [CrossRef]
- Johnson, G.R. Artificial viscosity effects for SPH impact computations. Int. J. Impact Eng. 1996, 18, 477–488. [Google Scholar] [CrossRef]
- Libersky, L.D.; Randles, P.W.; Carney, T.C.; Dickinson, D.L. Recent improvements in SPH modeling of hypervelocity impact. Int. J. Impact Eng. 1997, 20, 525–532. [Google Scholar] [CrossRef]
- Asadi Kalameh, H.; Karamali, A.; Anitescu, C.; Rabczuk, T. High velocity impact of metal sphere on thin metallic plate using smooth particle hydrodynamics (SPH) method. Front. Struct. Civ. Eng. 2012, 6, 101–110. [Google Scholar]
- Plassard, F.; Mespoulet, J.; Hereil, P. Hypervelocity impact of aluminium sphere against aluminium plate: Experiment and LS-DYNA correlation. In Proceedings of the 8th European LS-DYNA Users Conference, Strasbourg, France, 23–24 May 2011; pp. 1–11. [Google Scholar]
- Caleyron, F.; Combescure, A.; Faucher, V.; Potapov, S. Dynamic simulation of damage-fracture transition in smoothed particles hydrodynamics shells. Int. J. Numer. Methods Eng. 2012, 90, 707–738. [Google Scholar] [CrossRef]
- Chen, X.W.; Zhou, X.Q.; Li, X.L. On perforation of ductile metallic plates by blunt rigid projectile. Eur. J. Mech. A Solids 2009, 28, 273–283. [Google Scholar] [CrossRef]
- Libersky, L.D.; Petschek, A.G.; Carney, T.C.; Hipp, J.R.; Allahdadi, F.A. High Strain Lagrangian Hydrodynamics. J. Comput. Phys. 1993, 109, 67–75. [Google Scholar] [CrossRef]
- Roy, S.K.; Trabia, M.; O’Toole, B.; Hixson, R.; Becker, S.; Pena, M.; Jennings, R.; Somasoundaram, D.; Matthes, M.; Daykin, E.; et al. Study of Hypervelocity Projectile Impact on Thick Metal Plates. Shock Vibr. 2016, 2016, 4313480. [Google Scholar] [CrossRef]
- Ward, A.J.; Nance, R.P.; Xiao, X.; Shirley, A.D.; Cogar, J.R. 10+ km/sec Hypervelocity Impact Modeling with a Lagrangian Solver. In Proceedings of the IMPLAST 2010 Conference, Providence, RI, USA, 12–14 October 2010. [Google Scholar]
- Swegle, J.W.; Hicks, D.L.; Attaway, S.W. Smoothed Particle Hydrodynamics stability analysis. J. Comput. Phys. 1995, 116, 123–134. [Google Scholar] [CrossRef]
- Belytschko, T.; Guo, Y.; Liu, W.K.; Xiao, S.P. A unified stability analysis of meshless particle methods. Int. J. Numer. Methods Eng. 2000, 48, 1359–1400. [Google Scholar] [CrossRef]
- Hayhurst, C.J.; Livingstone, I.H.; Clegg, R.A.; Fairlie, G.E.; Hiermaier, S.J.; Lambert, M. Numerical Simulation of Hypervelocity Impacts on Aluminum and Nextel/Kevlar Whipple Shields. In Proceedings of the Hypervelocity Shielding Workshop, Galveston, TX, USA, 8–11 March 1998. [Google Scholar]
- Beissel, S.R.; Gerlach, C.a.; Johnson, G.R. Hypervelocity impact computations with finite elements and meshfree particles. Int. J. Impact Eng. 2006, 33, 80–90. [Google Scholar] [CrossRef]
- Fahrenthold, E.P.; Horban, B.A. An improved hybrid particle-element method for hypervelocity impact simulation. Int. J. Impact Eng. 2001, 26, 169–178. [Google Scholar] [CrossRef]
- Beissel, S.R.; Gerlach, C.A.; Johnson, G.R. A quantitative analysis of computed hypervelocity debris clouds. Int. J. Impact Eng. 2008, 35, 1410–1418. [Google Scholar] [CrossRef]
- Steinhauser, M.O. Computer Simulation in Physics and Engineering, 1st ed.; deGruyter: Berlin, Germany; Boston, MA, USA, 2013. [Google Scholar]
- Steinhauser, M.O. Computational Multiscale Modeling of Fluids and Solids, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Cundall, P.A.; Strack, O.D. A discrete numerical model for granular assemblies. Geotechnique 1979, 29, 47–65. [Google Scholar] [CrossRef]
- Curtin, W.A.; Scher, H. Brittle fracture in disordered materials: A spring network model. J. Mater. Sci. 1990, 5, 535–553. [Google Scholar] [CrossRef]
- Wittel, F.; Kun, F.; Herrmann, H.J.; Herrmann, H.J.; Kröplin, B.H. Fragmentation of Shells. Phys. Rev. Lett. 2004, 93, 035504-1–035504-4. [Google Scholar] [CrossRef] [PubMed]
- Matuttis, H.G.; Luding, S.; Herrmann, H.J. Discrete element simulations of dense packings and heaps made of spherical and non-spherical particles. Powder Technol. 2000, 109, 278–292. [Google Scholar] [CrossRef]
- Leszczynski, J.S. A discrete model of a two-particle contact applied to cohesive granular materials. Granul. Matter 2003, 5, 91–98. [Google Scholar] [CrossRef]
- Cleary, P.W.; Sawley, M.L. DEM modelling of industrial granular flows: 3D case studies and the effect of particle shape on hopper discharge. Appl. Math. Model. 2002, 26, 89–111. [Google Scholar] [CrossRef]
- Anand, A.; Curtis, J.S.; Wassgren, C.R.; Hancock, B.C.; Ketterhagen, W.R. Predicting discharge dynamics from a rectangular hopper using the discrete element method (DEM). Chem. Eng. Sci. 2008, 63, 5821–5830. [Google Scholar] [CrossRef]
- Guo, Y.; Wu, C.Y.; Kafui, K.D.; Thornton, C. Numerical analysis of density-induced segregation during die filling. Powder Technol. 2010, 197, 111–119. [Google Scholar] [CrossRef]
- Liu, L.; Kafui, K.D.; Thornton, C. Impact breakage of spherical, cuboidal and cylindrical agglomerates. Powder Technol. 2010, 199, 189–196. [Google Scholar] [CrossRef]
- Samimi, A.; Hassanpour, A.; Ghadiri, A. Single and bulk compressions of soft granules: Experimental study and DEM evaluation. Chem. Eng. Sci. 2005, 60, 3993–4004. [Google Scholar] [CrossRef]
- Martin, C.L.; Bouvard, D. Study of the cold compaction of composite powders by the discrete element method. Acta Mater. 2003, 51, 373–386. [Google Scholar] [CrossRef]
- Markauskas, D.; Kačianauskas, R. Compacting of particles for biaxial compression test by the discrete element method. J. Civ. Eng. Manag. 2010, 12, 153–161. [Google Scholar]
- Owen, P.J.; Cleary, P.W. Prediction of screw conveyor performance using the Discrete Element Method (DEM). Powder Technol. 2009, 193, 274–288. [Google Scholar] [CrossRef]
- Yang, R.Y.; Yu, A.B.; McElroy, L.; Bao, J. Numerical simulation of particle dynamics in different flow regimes in a rotating drum. Powder Technol. 2008, 188, 170–177. [Google Scholar] [CrossRef]
- Alizadeh, E.; Bertrand, F.; Chaouki, J. Discrete element simulation of particle mixing and segregation in a tetrapodal blender. Comput. Chem. Eng. 2014, 64, 1–12. [Google Scholar] [CrossRef]
- Grass, K.; Blumen, A.; Steinhauser, M.O.; Thoma, K. Sequential modeling of failure behavior in cohesive brittle materials. In Proceedings of the 5th International Conference on Micromechanics of Granular Media, Stuttgart, Germany, 18–22 July 2005; García-Rocho, R., Herrmann, H.J., Sean, M., Eds.; 2005; pp. 1447–1550. [Google Scholar]
- Steinhauser, M.O.; Kühn, M.; Grass, K. Numerical simulation of fracture and failure dynamics in brittle solids. In Proceedings of the 12th Int Symposium on Plasticity and Its Current Applications, Halifax, NS, Canada, 17–22 July 2006; pp. 1–3. [Google Scholar]
- Steinhauser, M.O.; Grass, K.; Strassburger, E.; Blumen, A. Impact failure of granular materials—Non-equilibrium multiscale simulations and high-speed experiments. Int. J. Plast. 2009, 25, 161–182. [Google Scholar] [CrossRef]
- Kadau, D.; Bartels, G.; Brendel, L.; Wolf, D.E. Contact dynamics simulations of compacting cohesive granular systems. Comp. Phys. Commun. 2002, 147, 190–193. [Google Scholar] [CrossRef]
- Jones, J.E. On the determination of molecular fields. I. From the variation of the viscosity of a gas with temperature. Proc. R. Soc. A Math. Phys. Eng. Sci. 1924, 106, 441–462. [Google Scholar] [CrossRef]
- Piekutowski, A.J. Formation and Description of Debris Clouds Produced by Hypervelocity Impact; Technical Report NASA Contractor Report 4707; University of Dayton Research Institute: Dayton, OH, USA, 1996. [Google Scholar]
- Bjork, R.L.; Olshaker, A.E. The Role of Melting and Vaporization in Hypervelocity Impact; Technical Report; United States Air Force Project Rand: Santa Monica, CA, USA, 1965. [Google Scholar]
Shock | Impact | |
---|---|---|
Pressure [GPa] | Velocity [km/s] | |
Incipient Melting | 70 | 5.6 |
Complete Melting | 100 | 7.0 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Watson, E.; Steinhauser, M.O. Discrete Particle Method for Simulating Hypervelocity Impact Phenomena. Materials 2017, 10, 379. https://doi.org/10.3390/ma10040379
Watson E, Steinhauser MO. Discrete Particle Method for Simulating Hypervelocity Impact Phenomena. Materials. 2017; 10(4):379. https://doi.org/10.3390/ma10040379
Chicago/Turabian StyleWatson, Erkai, and Martin O. Steinhauser. 2017. "Discrete Particle Method for Simulating Hypervelocity Impact Phenomena" Materials 10, no. 4: 379. https://doi.org/10.3390/ma10040379
APA StyleWatson, E., & Steinhauser, M. O. (2017). Discrete Particle Method for Simulating Hypervelocity Impact Phenomena. Materials, 10(4), 379. https://doi.org/10.3390/ma10040379