Highly Efficient and Low-Temperature Preparation of Plate-Like ZrB2-SiC Powders by a Molten-Salt and Microwave-Modified Boro/Carbothermal Reduction Method
Abstract
:1. Introduction
2. Experimental Procedures
2.1. Raw Materials
2.2. Methodologies
3. Results and Discussion
3.1. Effect of Firing Temperature on the Synthesis of ZrB2-SiC Powders
3.2. Effect of a Microwave Heating/Molten-Salt Medium on the Synthesis of ZrB2-SiC Powders
3.3. Effect of B4C Addition Amount on the Synthesis of ZrB2-SiC Powders
3.4. Effect of Salt/Reactant Weight Ratio on the Synthesis of ZrB2-SiC Powders
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Yin, J.; Chen, J.; Liu, X.; Zhang, H.; Yan, Y.; Huang, Z.; Jiang, D. Co-dispersion behavior of ZrB2-Sic-B4C-C powders with polyethyleneimine. Materials 2013, 6, 4249–4258. [Google Scholar] [CrossRef] [PubMed]
- Asl, M.S.; Nayebi, B.; Ahmadi, Z.; Zamharir, M.J.; Shokouhimehr, M. Effects of carbon additives on the properties of ZrB2–based composites: A review. Ceram. Int. 2018, 44, 7334–7348. [Google Scholar] [CrossRef]
- Nayebi, B.; Asl, M.S.; Kakroudi, M.G.; Farahbakhsh, I.; Shokouhimehr, M. Interfacial phenomena and formation of nano-particles in porous ZrB2-40 vol% B4C UHTC. Ceram. Int. 2016, 42, 17009–17015. [Google Scholar] [CrossRef]
- Shahedi Asl, M.; Nayebi, B.; Ahmadi, Z.; Parvizi, S.; Shokouhimehr, M. A novel ZrB2–VB2–ZrC composite fabricated by reactive spark plasma sintering. Mater. Sci. Eng. A 2018, 731, 131–139. [Google Scholar] [CrossRef]
- Cao, Y.; Zhang, H.; Li, F.; Lu, L.; Zhang, S. Preparation and characterization of ultrafine ZrB2–SiC composite powders by a combined sol–gel and microwave boro/carbothermal reduction method. Ceram. Int. 2015, 41, 7823–7829. [Google Scholar] [CrossRef]
- Zhao, B.; Zhang, Y.; Li, J.; Yang, B.; Wang, T.; Hu, Y.; Sun, D.; Li, R.; Yin, S.; Feng, Z. Morphology and mechanism study for the synthesis of ZrB2–SiC powders by different methods. J. Solid State Chem. 2013, 207, 1–5. [Google Scholar] [CrossRef]
- Zhang, H.; Yan, Y.J.; Huang, Z.R.; Liu, X.J.; Jiang, D.L. Pressureless sintering of ZrB2-SiC ceramics incorporating Sol-Gel synthesized ultra-fine ceramic powders. Key Eng. Mater. 2010, 434–435, 193–196. [Google Scholar] [CrossRef]
- Yan, Y.; Huang, Z.; Dong, S.; Jiang, D. Pressureless sintering of high-density ZrB2 and SiC ceramic composites. J. Am. Ceram. Soc. 2010, 89, 3589–3592. [Google Scholar] [CrossRef]
- Che, X.P.; Zhu, S.Z.; Yang, L.J.; Xu, Q. Solution-based synthesis of ultra-fine ZrB2 powders and ZrB2-SiC composite powders. Adv. Mater. Res. 2010, 105–106, 213–217. [Google Scholar] [CrossRef]
- Krishnarao, R.V.; Sankarasubramanian, R. Thermite assisted synthesis of ZrB2 and ZrB2-SiC through B4C reduction of ZrO2 and ZrSiO4 in air. J. Adv. Ceram. 2017, 6, 139–148. [Google Scholar] [CrossRef]
- Kljajević, L.; Matović, B.; Radosavljević-Mihajlović, A.; Rosić, M.; Bosković, S.; Devečerski, A. Preparation of ZrO2 and ZrO2/SiC powders by carbothermal reduction of ZrSiO4. J. Alloy. Compd. 2011, 509, 2203–2215. [Google Scholar] [CrossRef]
- Nayebi, B.; Asl, M.S.; Kakroudi, M.G.; Shokouhimehr, M. Temperature dependence of microstructure evolution during hot pressing of ZrB2-30 vol.% SiC composites. Int. J. Refract. Met. Hard Mater. 2016, 54, 7–13. [Google Scholar] [CrossRef]
- Shahedi Asl, M.; Nayebi, B.; Shokouhimehr, M. TEM characterization of spark plasma sintered ZrB2–SiC–graphene nanocomposite. Ceram. Int. 2018, 44, 15269–15273. [Google Scholar] [CrossRef]
- Krishnarao, R.V. Preparation of ZrB2 and ZrB2-SiC powders in a single step reduction of zircon (ZrSiO4) with B4C. Ceram. Int. 2017, 43, 1205–1209. [Google Scholar] [CrossRef]
- Deng, X.; Du, S.; Zhang, H.; Li, F.; Wang, J.; Zhao, W.; Liang, F.; Huang, Z.; Zhang, S. Preparation and characterization of ZrB2–SiC composite powders from zircon via microwave-assisted boro/carbothermal reduction. Ceram. Int. 2015, 41, 14419–14426. [Google Scholar] [CrossRef]
- Ding, Z.; Deng, Q.; Shi, D.; Zhou, X.; Li, Y.; Ran, S.; Huang, Q. Synthesis of hexagonal columnar ZrB2 powders through dissolution-recrystallization approach by microwave heating method. J. Am. Ceram. Soc. 2015, 97, 3037–3040. [Google Scholar] [CrossRef]
- Tan, C.; Liu, J.; Zhang, H.; Wang, J.; Li, S.; Song, J.; Zhang, Y.; Zhang, S. Low temperature synthesis of 2H-SiC powders via molten-salt-mediated magnesiothermic reduction. Ceram. Int. 2017, 43, 2431–2437. [Google Scholar] [CrossRef]
- Cai, Z.; Xing, X.; Li, L.; Xu, Y. Molten salt synthesis of lead lanthanum zirconate titanate ceramic powders. J. Alloy. Compd. 2008, 454, 466–470. [Google Scholar] [CrossRef]
- Mahmoud, M.M.; Thumm, M. Crystallization of lithium disilicate glass using high frequency microwave processing. J. Am. Ceram. Soc. 2012, 95, 579–585. [Google Scholar] [CrossRef]
- Zawadzki, M. Preparation and characterization of ceria nanoparticles by microwave-assisted solvothermal process. J. Alloy. Compd. 2008, 454, 347–351. [Google Scholar] [CrossRef]
- Liu, J.; Huang, Z.; Huo, C.; Li, F.; Zhang, H.; Zhang, S. Low-temperature rapid synthesis of rod-like ZrB2 powders by molten-salt and microwave Co-assisted carbothermal reduction. J. Am. Ceram. Soc. 2016, 99, 2895–2898. [Google Scholar] [CrossRef]
- Wu, W.; Cai, J.; Wu, X.; Liao, S.; Wang, K.; Tao, L. Nanocrystalline LaMnO3 preparation and kinetics of crystallization process. Adv. Powder Technol. 2013, 24, 154–159. [Google Scholar]
- Gordon, J.; Kazemian, H.; Rohani, S. Rapid and efficient crystallization of MIL-53(Fe) by ultrasound and microwave irradiation. Microporous Mesoporous Mater. 2012, 162, 36–43. [Google Scholar] [CrossRef]
- Rizzuti, A.; Leonelli, C. Crystallization of aragonite particles from solution under microwave irradiation. Powder Technol. 2008, 186, 255–262. [Google Scholar] [CrossRef]
- Cho, S.; Jung, S.H.; Lee, K.H. Morphology-controlled growth of ZnO Nanostructures using microwave Irradiation: From basic to complex structures. J. Phys. Chem. C 2008, 112, 12769–12776. [Google Scholar] [CrossRef]
- Liu, H.; Xiang, K.; Yang, B.; Yang, S.; Li, Q. Microwave intensified synthesis of regular shaped sodium bisulfate crystal. Chem. Eng. Process. Process. Intensif. 2015, 95, 208–213. [Google Scholar] [CrossRef]
- Yan, C.; Liu, R.; Zhang, C.; Cao, Y.; Long, X. Synthesis of ZrB2 powders from ZrO2, BN, and C. J. Am. Ceram. Soc. 2016, 99, 16–19. [Google Scholar] [CrossRef]
- Jung, E.Y.; Kim, J.H.; Jung, S.H.; Choi, S.C. Synthesis of ZrB2 powders by carbothermal and borothermal reduction. J. Alloy. Compd. 2012, 538, 164–168. [Google Scholar] [CrossRef]
- Ran, S.; Biest, O.V.D.; Vleugels, J. ZrB2 powders synthesis by borothermal reduction. J. Am. Ceram. Soc. 2010, 93, 1586–1590. [Google Scholar]
- Zhang, S.; Khangkhamano, M.; Zhang, H.; Yeprem, H.A. Novel synthesis of ZrB2 powder via molten-salt-mediated magnesiothermic reduction. J. Am. Ceram. Soc. 2014, 97, 1686–1688. [Google Scholar] [CrossRef]
- Guo, W.M.; Tan, D.W.; Zhang, Z.L.; Xie, H.; Wu, L.X.; Lin, H.T. Synthesis of fine ZrB2 powders by new borothermal reduction of coarse ZrO2 powders. Ceram. Int. 2016, 42, 15087–15090. [Google Scholar] [CrossRef]
- An, G.S.; Han, J.S.; Hur, J.U.; Choi, S.C. Synthesis of sub-micro sized high purity zirconium diboride powder through carbothermal and borothermal reduction method. Ceram. Int. 2017, 43, 5896–5900. [Google Scholar] [CrossRef]
- Liu, H.T.; Qiu, H.Y.; Guo, W.M.; Zou, J.; Zhang, G.J. Synthesis of rod-like ZrB2 powders. Adv. Appl. Ceram. 2015, 114, 418–422. [Google Scholar] [CrossRef]
- Qiu, H.Y.; Guo, W.M.; Zou, J.; Zhang, G.J. ZrB2 powders prepared by boro/carbothermal reduction of ZrO2: The effects of carbon source and reaction atmosphere. Powder Technol. 2012, 217, 462–466. [Google Scholar] [CrossRef]
- Li, R.X.; Lou, H.J.; Yin, S.; Zhang, Y.; Jiang, Y.S.; Zhao, B.; Li, J.P.; Feng, Z.H.; Sato, T. Nanocarbon-dependent synthesis of ZrB2 in a binary ZrO2 and boron system. J. Alloy. Compd. 2011, 509, 8581–8583. [Google Scholar] [CrossRef]
- Guo, W.M.; Zhang, G.J. Reaction processes and characterization of ZrB2 powder prepared by boro/carbothermal reduction of ZrO2 in vacuum. J. Am. Ceram. Soc. 2009, 92, 264–267. [Google Scholar] [CrossRef]
- Xie, B.Y.; Yu, J.C.; Ma, L.; Zhang, Y.J.; Gong, H.Y.; Lin, X.; Liu, Y. Effect of SiC addition on the formation of ZrB2 through reaction of ZrO2, boric acid (H3BO3) and carbon black. Ceram. Int. 2017, 43, 16457–16461. [Google Scholar] [CrossRef]
- Song, S.; Li, R.; Gao, L.; Sun, C.; Hu, P.; Zhen, Q. Synthesis and growth behavior of micron-sized rod-like ZrB2 powders. Ceram. Int. 2018, 44, 4640–4645. [Google Scholar] [CrossRef]
- Velashjerdi, M.; Sarpoolaky, H.; Mirhabibi, A. Novel synthesis of ZrB2 powder by low temperature direct molten salt reaction. Ceram. Int. 2015, 41, 12554–12559. [Google Scholar] [CrossRef]
- Kaiser, A.; Lobert, M.; Telle, R. Thermal stability of zircon (ZrSiO4). J. Eur. Ceram. Soc. 2008, 28, 2199–2211. [Google Scholar] [CrossRef]
- Puclin, T.; Kaczmarek, W.A.; Ninham, B.W. Dissolution of ZrSiO4 after mechanical milling with Al2O3. Mater. Chem. Phys. 1995, 40, 105–109. [Google Scholar] [CrossRef]
- Huang, Z.; Li, F.; Jiao, C.; Liu, J.; Huang, J.; Lu, L.; Zhang, H.; Zhang, S. Molten salt synthesis of La2Zr2O7 ultrafine powders. Ceram. Int. 2016, 42, 6221–6227. [Google Scholar] [CrossRef]
Sample Number | Molar Ratio | Heating Mode | Temperature (°C) | Soaking Time (min) | Salt Medium | Weight Ratio of Salt/Reactant | ||
---|---|---|---|---|---|---|---|---|
ZrSiO4 | B4C | C | ||||||
MB-1 | 1.00 | 0.80 | 4.50 | MWH | 1100 | 0 | NaCl/KCl | 2.0 |
MB-2 | 1.00 | 0.80 | 4.50 | MWH | 1150 | 0 | NaCl/KCl | 2.0 |
MB-3 | 1.00 | 0.80 | 4.50 | MWH | 1200 | 0 | NaCl/KCl | 2.0 |
MB-4 | 1.00 | 0.80 | 4.50 | MWH | 1100 | 20 | NaCl/KCl | 2.0 |
MB-5 | 1.00 | 0.80 | 4.50 | MWH | 1150 | 20 | NaCl/KCl | 2.0 |
MB-6 | 1.00 | 0.80 | 4.50 | MWH | 1200 | 20 | NaCl/KCl | 2.0 |
MB-7 | 1.00 | 0.80 | 4.50 | MWH | 1250 | 20 | NaCl/KCl | 2.0 |
MB-8 | 1.00 | 0.80 | 4.50 | MWH | 1200 | 20 | NaCl/KCl | 0.5 |
MB-9 | 1.00 | 0.80 | 4.50 | MWH | 1200 | 20 | NaCl/KCl | 1.0 |
MB-10 | 1.00 | 0.80 | 4.50 | CH | 1200 | 20 | NaCl/KCl | 2.0 |
MB-11 | 1.00 | 0.80 | 4.50 | MWH | 1200 | 20 | — | 2.0 |
MB-12 | 1.00 | 0.70 | 4.50 | MWH | 1200 | 20 | NaCl/KCl | 2.0 |
Ref. No. | Product | Raw Materials | Modified Technique | Temperature (°C) | Soaking Time (min) | Atmosphere | Morphology of ZrB2 |
---|---|---|---|---|---|---|---|
[27] | ZrB2 | ZrO2, BN, C | — | 1550 | 90 | ||
[31] | ZrB2 | ZrO2, B | — | 1600 | 90 | Vaccum | |
[32] | ZrB2 | ZrO2, B4C | — | 1250 | 60 | Ar | Bar-like |
[33] | ZrB2 | ZrO2, B4C, C | — | 1500 | 60 | Vaccum | Rod-like |
[34] | ZrB2 | ZrO2, B4C, C | — | 1300 | 60 | Vaccum | Rod |
[28] | ZrB2 | ZrO2, B4C, B2O3, C | — | 1250 | 180 | Ar | Rod-like |
[35] | ZrB2 | Zr(NO3)3, B, C | — | 1550 | 120 | Plate-like | |
[29] | ZrB2 | ZrO2, H3BO3, B | — | 1000 | 120 | ||
[36] | ZrB2 | ZrO2, B4C, C | — | 1650 | 60 | Vaccum | Columnar |
[37] | ZrB2-SiC | ZrO2, H3BO3, C, SiC | — | 1600 | 90 | Ar | Columnar |
[14] | ZrB2-SiC | ZrSiO4, B4C, C | — | 1600 | 90 | Ar | |
[30] | ZrB2 | ZrO2, Na2B4O7, Mg | Molten-salt | 1200 | 180 | Ar | |
[39] | ZrB2 | KBF4, K2ZrF6, Al | Molten-salt | 800 | 120 | Ar | Plate-like |
[38] | ZrB2 | ZrOCl2·8H2O, Na2B4O7·10H2O, C12H22O11 | Molten-salt | 1400 | 240 | Ar | Rod-like |
[16] | ZrB2 | ZrOCl2-8H2O, H3BO3, Chitosan Glutaraldehyde, raw ZrB2 | Microwave | 1320 | 60 | Ar | Columnar |
[5] | ZrB2-SiC | ZrOCl2·8H2O, H3BO3, C6H12O6·H2O, C6H8O7·H2O, C2H6O2 | Microwave | 1300 | 180 | Ar | |
[15] | ZrB2-SiC | ZrSiO4, B2O3, C | Microwave | 1300 | 180 | Ar | |
This work | ZrB2-SiC | ZrO2, B4C, C | Microwave and Molten-salt | 1200 | 20 | Ar | Rod-like |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, Y.; Liang, F.; Liu, J.; Zhang, J.; Zhang, H.; Zhang, S. Highly Efficient and Low-Temperature Preparation of Plate-Like ZrB2-SiC Powders by a Molten-Salt and Microwave-Modified Boro/Carbothermal Reduction Method. Materials 2018, 11, 1811. https://doi.org/10.3390/ma11101811
Zeng Y, Liang F, Liu J, Zhang J, Zhang H, Zhang S. Highly Efficient and Low-Temperature Preparation of Plate-Like ZrB2-SiC Powders by a Molten-Salt and Microwave-Modified Boro/Carbothermal Reduction Method. Materials. 2018; 11(10):1811. https://doi.org/10.3390/ma11101811
Chicago/Turabian StyleZeng, Yuan, Feng Liang, Jianghao Liu, Jun Zhang, Haijun Zhang, and Shaowei Zhang. 2018. "Highly Efficient and Low-Temperature Preparation of Plate-Like ZrB2-SiC Powders by a Molten-Salt and Microwave-Modified Boro/Carbothermal Reduction Method" Materials 11, no. 10: 1811. https://doi.org/10.3390/ma11101811
APA StyleZeng, Y., Liang, F., Liu, J., Zhang, J., Zhang, H., & Zhang, S. (2018). Highly Efficient and Low-Temperature Preparation of Plate-Like ZrB2-SiC Powders by a Molten-Salt and Microwave-Modified Boro/Carbothermal Reduction Method. Materials, 11(10), 1811. https://doi.org/10.3390/ma11101811