Application of Differential Entropy in Characterizing the Deformation Inhomogeneity and Life Prediction of Low-Cycle Fatigue of Metals
Abstract
:1. Introduction
2. Methodology of Strain Inhomogeneity Analysis at the Grain Level for a Polycrystal under Cyclic Loading
2.1. Modeling the Material as Representative Volume Element
2.2. Constitutive Equations of Crystal Plasticity
2.3. Characterization of the Deformation Inhomogeneity by Statistical Parameters
3. Results
3.1. Calculation of Entropy for Fatigue Failure of Pure Copper
3.1.1. Strain Distribution in RVE with Increasing Numbers of Cycles
3.1.2. Predicting Low-Cycle Fatigue Failure by Entropy
3.2. Prediction of Fatigue Failure of a Nickel-Based Superalloy by Entropy
3.2.1. Entropy Increase with Cyclic Deformation of GH4169
3.2.2. The Influence of Model Mesh Size on the Result of Entropy Calculation
4. Conclusions
- The greater the strain amplitude , the larger the growing rates with cycles will be for the entropies and .
- Even in the absence of fatigue life data, the and can be obtained by simulation depending only on the material parameters for crystal plasticity. Once the critical values of and are determined by using the fatigue tests at only single strain amplitude, the fatigue lives can be predicted for other fatigue cycle at different strain amplitudes.
- The difference of the statistical results of and from the models with different mesh sizes is very small. This proves that the Shannon’s differential entropy calculation of strain using the present method is not sensitive to the mesh division.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
List of Symbols
Macroscopic Cauchy stress tensor | Components of macroscopic Cauchy stress tensor | ||
Macroscopic logarithmic strain tensor | Components of macroscopic logarithmic strain tensor | ||
Local Cauchy stress tensor | Components of local Cauchy stress tensor | ||
Local logarithmic strain tensor | Components of local logarithmic strain tensor | ||
Shear strain rate at α-slip system | Resolved shear stress at α-slip system | ||
α, β | Sequence number of slip system | Reference strain rate | |
Accumulated shear slip | Critical resolved shear stress at α-slip system | ||
Evolution rate of | Resolved back-stress on the α-slip system | ||
Evolution rate of | k′ | Rate sensitivity parameter | |
Kronecker delta | Hardening moduli | ||
Initial hardening rate | Hardening function | ||
Initial critical resolved shear stress | Saturation value of | ||
Linear hardening coefficient | Dynamic recovery coefficient | ||
λ | Static recovery coefficient | , | Material constants to describe cyclic hardening |
Unit vectors of the slip plane normal | Unit vectors of the slip direction | ||
Deformation gradient tensor | Elastic part of | ||
Schmid tensor | Deformation rate tensor | ||
Elastic deformation rate tensor | Plastic deformation rate tensor | ||
Fourth-order elasticity tensor | Jaumann rate of Cauchy stress | ||
Cauchy stress tensor at time t | Cauchy stress tensor at time t+Δt | ||
Cauchy stress tensor under the configuration at time t+Δt | Average of local strain components over the RVE | ||
Standard deviation of local strain components over the RVE | Relative volume of -th element | ||
Volume of k-th element | Total volume of the RVE | ||
Normal strain in the macroscopic loading direction | First principal strain | ||
Relative volume fraction of the region where | Volume of the subdivision region with the strain interval | ||
Shannon’s information entropy | Shannon’s differential entropy for | ||
Shannon’s differential entropy for |
References
- Stephens, R.I.; Fatemi, A.; Stephens, R.R.; Fuchs, H.O. Metal Fatigue in Engineering, 2nd ed.; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2000. [Google Scholar]
- Lee, Y.L. Fatigue Testing and Analysis: Theory and Practice; Butterworth-Heinemann: Oxford, UK, 2005. [Google Scholar]
- Basquin, O.H. The exponential law of endurance tests. Proc. Am. Soc. Test. Mater. 1910, 10, 625–630. [Google Scholar]
- Manson, S.S. Behavior of materials under conditions of thermal stress. In Heat Transfer Symposium; University of Michigan Engineering Research Institute: Ann Arbor, MI, USA, 1953; pp. 9–75. [Google Scholar]
- Coffin, L.F., Jr. A study of the effect of cyclic thermal stresses on a ductile metal. Trans. ASME 1954, 76, 931–950. [Google Scholar]
- Morrow, J.D. Cyclic plastic strain energy and fatigue of metals. In Internal Friction, Damping, and Cyclic Plasticity; ASTM: West Conshohocken, PA, USA, 1965; pp. 45–86. [Google Scholar]
- Ni, K.; Mahadevan, S. Strain-based probabilistic fatigue life prediction of spot-welded joints. Int. J. Fatigue 2004, 26, 63–772. [Google Scholar] [CrossRef]
- Buciumeanu, M.; Palaghian, L.; Miranda, A.S.; Silva, F.S. Fatigue life predictions including the Bauschinger effect. Int. J. Fatigue 2011, 33, 145–152. [Google Scholar] [CrossRef]
- Wu, X.R.; Yang, S.J.; Han, X.P.; Liu, S.L.; Liu, Q.S.; Lu, K.R.; Li, J.N; Guan, H.R.; Feng, D. Data Manual for Materials of Aero-Engine, Aircraft Engine Design Data Manual for Materials; Aviation Industry Press: Beijing, China, 2008; pp. 363–556. (In Chinese) [Google Scholar]
- Ince, A.; Glinka, G. A generalized fatigue damage parameter for multiaxial fatigue life prediction under proportional and non-proportional loadings. Int. J. Fatigue 2014, 62, 34–41. [Google Scholar] [CrossRef]
- Ahmadzadeh, G.R.; Varvani-Farahani, A. Fatigue damage and life evaluation of SS304 and Al 7050-T7541 alloys under various multiaxial strain paths by means of energy-based Fatigue damage models. Mech. Mater. 2016, 98, 59–70. [Google Scholar] [CrossRef]
- Correia, J.; Apetre, N.; Arcari, A.; De Jesus, A.; Muñiz-Calvente, M.; Calçada, R.; Berto, F.; Fernández-Canteli, A. Generalized probabilistic model allowing for various fatigue damage variables. Int. J. Fatigue 2017, 100, 187–194. [Google Scholar] [CrossRef]
- Straßberger, L.; Chauhan, A.; Czink, S.; Aktaa, J. High-temperature low-cycle fatigue behavior and microstructural evolution of an ODS steel based on conventional T91. Int. J. Fatigue 2017, 100, 50–57. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Wang, Q.Y.; Cao, M. Experimental study on fatigue behaviour of Shot-Peened Open-Hole steel plates. Materials 2017, 10, 996. [Google Scholar] [CrossRef] [PubMed]
- Radhakri, V. An analysis of Low Cycle Fatigue based on hysteresis energy. Fatigue Fract. Eng. Mater. Struct. 1980, 3, 75–84. [Google Scholar] [CrossRef]
- Kliman, V.; Bily, M. Hysteresis energy of cyclic loading. Mater. Sci. Eng. 1984, 68, 11–18. [Google Scholar] [CrossRef]
- Jiang, Y.Y.; Ott, W.; Baum, C.; Vormwald, M.; Nowack, H. Fatigue life predictions by integrating EVICD fatigue damage model and an advanced cyclic plasticity theory. Int. J. Plast. 2009, 25, 780–801. [Google Scholar] [CrossRef]
- Naderi, M.; Hoseini, S.H.; Khonsari, M.M. Probabilistic simulation of fatigue damage and life scatter of metallic components. Int. J. Plast. 2013, 43, 101–115. [Google Scholar] [CrossRef]
- Sistaninia, M.; Niffenegger, M. Prediction of damage-growth based fatigue life of polycrystalline materials using a microstructural modeling approach. Int. J. Fatigue 2014, 66, 118–126. [Google Scholar] [CrossRef]
- Zhang, Y.; You, Y.; Moumni, Z.; Anlas, G.; Zhu, J.; Zhang, W. Experimental and theoretical investigation of the frequency effect on low cycle fatigue of shape memory alloys. Int. J. Plast. 2017, 90, 1–30. [Google Scholar] [CrossRef]
- Devaux, J.; Gologanu, M.; Leblond, J.-B.; Perrin, G. On continued void growth in ductile metals subjected to cyclic loadings. In Proceedings of the IUTAM Symposium on Nonlinear Analysis of Fracture, Cambridge, UK, 3–7 September 1995; Willis, J.R., Ed.; Springer: Heidelberg, Germany, 1997; Volume 29, pp. 299–310. [Google Scholar]
- Steglich, D.; Pirondi, A.; Bonora, N.; Brocks, W. Micromechanical modelling of cyclic plasticity incorporating damage. Int. J. Solids Struct. 2005, 42, 337–351. [Google Scholar] [CrossRef]
- Shenoy, M.; Tjiptowidjojo, Y.; McDowell, D. Microstructure-sensitive modeling of polycrystalline IN 100. Int. J. Plast. 2008, 24, 1694–1730. [Google Scholar] [CrossRef]
- McDowell, D.L.; Dunne, F.P.E. Microstructure-sensitive computational modeling of fatigue crack formation. Int. J. Fatigue 2010, 32, 1521–1542. [Google Scholar] [CrossRef]
- Liakat, M.; Khonsari, M.M. Rapid estimation of fatigue entropy and toughness in metals. Mater. Des. 2014, 62, 149–157. [Google Scholar] [CrossRef]
- Li, L.; Shen, L.M.; Proust, G. Fatigue crack initiation life prediction for aluminium alloy 7075 using crystal plasticity finite element simulations. Mech. Mater. 2015, 81, 84–93. [Google Scholar] [CrossRef]
- Wan, V.V.C.; Jiang, J.; MacLachlan, D.W.; Dunne, F.P.E. Microstructure-sensitive fatigue crack nucleation in a polycrystalline Ni superalloy. Int. J. Fatigue 2016, 90, 181–190. [Google Scholar] [CrossRef]
- Chen, B.; Jiang, J.; Dunne, F.P. Microstructurally-sensitive fatigue crack nucleation in Ni-based single and oligo crystals. J. Mech. Phys. Solids 2017, 106, 15–33. [Google Scholar] [CrossRef] [Green Version]
- Herrera-Solaz, V.; Niffenegger, M. Application of hysteresis energy criterion in a microstructure-based model for fatigue crack initiation and evolution in austenitic stainless steel. Int. J. Fatigue 2017, 100, 84–93. [Google Scholar] [CrossRef]
- Pirondi, A.; Bonora, N. Modeling ductile damage under fully reversed cycling. Comput. Mater. Sci. 2003, 26, 129–141. [Google Scholar] [CrossRef]
- Lemaitre, J.; Desmorat, R. Engineering Damage Mechanics: Ductile, Creep, Fatigue and Brittle Failures; Springer: Heidelberg, Germany, 2005. [Google Scholar]
- Dunne, F.P.E.; Wilkinson, A.J.; Allen, R. Experimental and computational studies of low cycle fatigue crack nucleation in a polycrystal. Int. J. Plast. 2007, 23, 273–295. [Google Scholar] [CrossRef]
- Chaboche, J.L.; Kanouté, P.; Azzouz, F. Cyclic inelastic constitutive equations and their impact on the fatigue life predictions. Int. J. Plast. 2012, 35, 44–66. [Google Scholar] [CrossRef]
- Sangid, M.D.; Maier, H.J.; Sehitoglu, H. An energy-based microstructure model to account for fatigue scatter in polycrystals. J. Mech. Phys. Solids 2011, 59, 595–609. [Google Scholar] [CrossRef]
- Sweeney, C.A.; O’Brien, B.; Dunne, F.P.E.; McHugh, P.E.; Leen, S.B. Strain-gradient modelling of grain size effects on fatigue of CoCr alloy. Acta Mater. 2014, 78, 341–353. [Google Scholar] [CrossRef]
- Cheong, K.S.; Busso, E.P. Effects of lattice misorientations on strain heterogeneities in FCC polycrystals. J. Mech. Phys. Solids 2006, 54, 671–689. [Google Scholar] [CrossRef]
- Ma, S.; Yuan, H. A continuum damage model for multi-axial low cycle fatigue of porous sintered metals based on the critical plane concept. Mech. Mater. 2017, 104, 13–25. [Google Scholar] [CrossRef]
- Lemaitre, J.; Chaboche, J.L. Mechanics of Solid Materials; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Basaran, C.; Nie, S. An irreversible thermodynamics theory for damage mechanics of solids. Int. J. Damage Mech. 2004, 13, 205–223. [Google Scholar] [CrossRef]
- Naderi, M.; Amiri, M.; Khonsari, M.M. On the thermodynamic entropy of fatigue fracture. Proc. R. Soc. A Math. Phys. 2010, 466, 423–438. [Google Scholar] [CrossRef] [Green Version]
- Naderi, M.; Khonsari, M.M. An experimental approach to low-cycle fatigue damage based on thermodynamic entropy. Int. J. Solids Struct. 2010, 47, 875–880. [Google Scholar] [CrossRef]
- Amiri, M.; Naderi, M.; Khonsari, M.M. An experimental approach to evaluate the critical damage. Int. J. Damage Mech. 2011, 20, 89–112. [Google Scholar] [CrossRef]
- Liakat, M.; Khonsari, M.M. An experimental approach to estimate damage and remaining life of metals under uniaxial fatigue loading. Mater. Des. 2014, 57, 289–297. [Google Scholar] [CrossRef]
- Liakat, M.; Khonsari, M.M. Entropic characterization of metal fatigue with stress concentration. Int. J. Fatigue 2015, 70, 223–234. [Google Scholar] [CrossRef]
- Wang, J.D.; Yao, Y. An entropy based Low-Cycle fatigue life prediction model for solder materials. Entropy 2017, 19, 503. [Google Scholar] [CrossRef]
- Boltzmann, L. Über die Beziehung zwischen dem zweiten Hauptsatz der mechanischen Wärmetheorie und der Wahrscheinlichkeitsrechnung respektive den Sätzen über das Wärmegleichgewicht. Sitz. Akad. Wiss. Wien Math. Nat. Kl. 1877, 76, 373–435. [Google Scholar]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423, 623–656. [Google Scholar] [CrossRef]
- Shannon, C.E.; Weaver, W. The Mathematical Theory of Communication; University of Illinois Press: Champaign, IL, USA, 1963. [Google Scholar]
- Guan, X.; Jha, R.; Liu, Y. Probabilistic fatigue damage prognosis using maximum entropy approach. J. Intell. Manuf. 2012, 23, 163–171. [Google Scholar] [CrossRef]
- Kim, J.; Yi, J.; Kim, J.; Zi, G.; Kong, J.S. Fatigue life prediction methodology using entropy index of stress interaction and crack severity index of effective stress. Int. J. Damage Mech. 2013, 22, 375–392. [Google Scholar] [CrossRef]
- Manonukul, A.; Dunne, F.P.E. High- and low-cycle fatigue crack initiation using polycrystal plasticity. Proc. R. Soc. Lond. A 2004, 460, 1881–1903. [Google Scholar] [CrossRef]
- Sweeney, C.A.; Vorster, W.; Leen, S.B.; Sakurada, E.; McHugh, P.E.; Dunne, F.P.E. The role of elastic anisotropy, length scale and crystallographic slip in fatigue crack nucleation. J. Mech. Phys. Solids 2013, 61, 1224–1240. [Google Scholar] [CrossRef]
- Zhang, K.S.; Shi, Y.K.; Ju, J.W. Grain-level statistical plasticity analysis on strain cycle fatigue of a fcc metal. Mech. Mater. 2013, 64, 76–90. [Google Scholar] [CrossRef]
- Zhang, K.S.; Ju, J.W.; Li, Z.; Bai, Y.L.; Brocks, W. Micromechanics based fatigue life prediction of a polycrystalline metal applying crystal plasticity. Mech. Mater. 2015, 85, 16–37. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.S.; Shi, Y.K.; Xu, L.B.; Yu, D.K. Anisotropy of yielding/hardening and micro inhomogeneity of deforming/rotating for a polycrystalline metal under cyclic tension–compression. Acta Metall. Sin. 2011, 47, 1232–1300. (In Chinese) [Google Scholar]
- Hill, R.; Rice, J.R. Constitutive analysis of elastic-plastic crystal at arbitrary strain. J. Mech. Phys. Solids 1972, 20, 401–413. [Google Scholar] [CrossRef]
- Asaro, R.J.; Rice, J.R. Strain localization in ductile single crystals. J. Mech. Phys. Solids 1977, 25, 309–338. [Google Scholar] [CrossRef]
- Peirce, D.; Asaro, R.J.; Needleman, A. Material rate dependence and localized deformation in crystalline solids. Acta Metall. 1983, 31, 1951–1976. [Google Scholar] [CrossRef]
- Needleman, A.; Asaro, R.J.; Lemonds, J.; Peirce, D. Finite element analysis of crystalline solids. Comput. Methods Appl. Mech. Eng. 1985, 52, 689–708. [Google Scholar] [CrossRef]
- Hutchinson, J.W. Bounds and self-consistent estimates for creep of polycrystalline materials. Proc. R. Soc. Lond. A 1976, 348, 101–127. [Google Scholar] [CrossRef]
- Feng, L.; Zhang, G.; Zhang, K.S. Discussion of cyclic plasticity and viscoplasticity of single crystal nickel-based superalloy in large strain analysis: Comparison of anisotropic macroscopic model and crystallographic model. Int. J. Mech. Sci. 2004, 46, 1157–1171. [Google Scholar]
- Frederick, C.O.; Armstrong, P.J. A mathematical representation of the multiaxial Bauschinger effect. Mater. High. Temp. 2007, 24, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Pan, J.; Rice, J.R. Rate sensitivity of plastic flow and implications for yield-surface vertices. Int. J. Solids Struct. 1983, 19, 973–987. [Google Scholar] [CrossRef] [Green Version]
- Hutchinson, J.W. Elastic-plastic behaviour of polycrystalline metals and composites. Proc. R. Soc. Lond. A 1970, 319, 247–272. [Google Scholar] [CrossRef]
- Chang, Y.W.; Asaro, R.J. An experimental study of shear localization in aluminum-copper single crystals. Acta Metall. 1981, 29, 241–257. [Google Scholar] [CrossRef]
- Hibbitt, Karlsson and Sorensen (ABAQUS). ABAQUS Reference Manuals; Version 6.5; Hibbitt, Karlsson & Sorensen, Inc.: Pawtucket, RI, USA, 2005. [Google Scholar]
- Michalowicz, J.V.; Nichols, J.M.; Bucholtz, F. The consept of entropy, In Handbook of Differential Entropy; Chapman and Hall/CRC: Boca Raton, FL, USA, 2013; pp. 19–44. [Google Scholar]
Cu + Ag | P | Bi | Sb | As | Fe | Ni | Pb | Sn | Zn | Mn | Cd |
---|---|---|---|---|---|---|---|---|---|---|---|
99.935 | 0.0416 | 0.0036 | 0.001 | 0.0015 | 0.0032 | 0.0023 | 0.003 | 0.0019 | 0.0025 | 0.0034 | 0.001 |
C | Cr | Mu | Nb + Ta | Ni | Fe | Al | Ti |
0.015~0.08 | 17.0~21.0 | 2.80~3.80 | 4.75~5.50 | 50.0~55.0 | Rest | 0.30~0.70 | 0.75~1.15 |
Si | Mn | Co | Cu | P | S | B | |
≤0.35 | ≤0.35 | ≤1.00 | ≤0.30 | ≤0.015 | ≤0.015 | ≤0.006 |
Young’s Modulus (E) GPa | MPa | MPa | mm/mm |
---|---|---|---|
108 | 66.4 | 297 | 1.2 |
Young’s Modulus (E) GPa | MPa | MPa | mm/mm |
---|---|---|---|
150.5 | 1230 | 1090 | 0.52 |
Elastic Constants | Material Parameters of the Crystal Viscoplastic Model | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C11 | C12 | C44 | τ0 | τs | h0 | a | c | λ | e1 | e2 | q | k′ | ||
GPa | GPa | GPa | MPa | MPa | MPa | MPa | MPa | s−1 | - | s−1 | ||||
136.4 | 98.334 | 61.074 | 13.9 | 30 | 96 | 20.6 | 1.42 | 0 | 0.41 | 5.0 | 1 × 10−3 | 1 | 200 |
Elastic Constants | Material Parameters of the Crystal Viscoplastic Model | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C11 | C12 | C44 | τ0 | τs | h0 | a | c | λ | e1 | e2 | q | k′ | |
GPa | GPa | GPa | MPa | MPa | MPa | GPa | GPa | s−1 | - | - | s−1 | ||
206.7 | 137.98 | 73.65 | 260 | 265 | 80 | 35 | 0.43 | 0 | 0 | 0 | 1 × 10−3 | 1 | 150 |
[53] | ||||
---|---|---|---|---|
Average/Upper/Lower | Average/Upper/Lower | |||
0.3% | 6359/6900/7660 | 6973 | 4.23/4.30/4.15 | 3.89/3.96/3.81 |
0.4% | 2760/2998/3016 | 2925 | 4.08/4.10/4.03 | 3.76/3.762/3.70 |
0.5% | 1417/1714/3050 | 2060 | 4.23/4.46/3.99 | 3.92/4.14/3.69 |
0.6% | 1002/1133/1345 | 1160 | 4.16/4.24/4.06 | 3.85/3.93/3.75 |
Estimations Based on | ||||||||||||||
4.23 (Ea = 0.003) | 4.08 (Ea = 0.004) | 4.23 (Ea = 0.005) | 4.16 (Ea = 0.006) | |||||||||||
Average/Upper/Lower | Average/Upper/Lower | Average/Upper/Lower | Average/Upper/Lower | |||||||||||
0.003 | 6973 | 7660 | 6359 | 5728 | 5951 | 5469 | 6973 | 9297 | 5149 | 6385 | 7006 | 5636 | ||
0.004 | 3768 | 4214 | 3346 | 2925 | 3016 | 2760 | 3768 | 5415 | 2566 | 3425 | 3818 | 2851 | ||
0.005 | 2071 | 2325 | 1822 | 1626 | 1682 | 1508 | 2071 | 3050 | 1417 | 1863 | 2087 | 1576 | ||
0.006 | 1295 | 1482 | 1153 | 1021 | 1061 | 966 | 1295 | 1862 | 896 | 1160 | 1345 | 1002 | ||
Estimations Based on | ||||||||||||||
3.89 (Ea = 0.003) | 3.76 (Ea = 0.004) | 3.92 (Ea = 0.005) | 3.85 (Ea = 0.006) | |||||||||||
Average/Upper/Lower | Average/Upper/Lower | Average/Upper/Lower | Average/Upper/Lower | |||||||||||
0.003 | 6973 | 7660 | 6359 | 5925 | 5960 | 5603 | 7182 | 9279 | 5543 | 6655 | 7321 | 5889 | ||
0.004 | 3797 | 4174 | 3320 | 2925 | 3016 | 2760 | 3864 | 5384 | 2670 | 3556 | 4014 | 2905 | ||
0.005 | 1993 | 2243 | 1755 | 1604 | 1615 | 1475 | 2060 | 3050 | 1417 | 1886 | 2129 | 1576 | ||
0.006 | 1286 | 1454 | 1067 | 1001 | 1013 | 933 | 1330 | 1976 | 906 | 1160 | 1345 | 1002 |
[9] | ||||
---|---|---|---|---|
0.0045 | 9904/5457 | 7681 | 4.24 | 4.06 |
0.006 | 1494 | - | 4.28 | 3.89 |
0.008 | 370 | - | 3.96 | 3.65 |
0.009 | 207 | - | 3.77 | 3.48 |
0.010 | 354 | - | 4.52 | 4.17 |
0.013 | 80/94 | 87 | 3.85 | 3.65 |
Estimates Based on | ||||||
4.24 (Ea = 0.0045) | 4.28 (Ea = 0.006) | 3.96 (Ea = 0.008) | 3.77 (Ea = 0.009) | 4.52 (Ea = 0.01) | 3.85 (Ea = 0.013) | |
0.0045 | 7681 | 8164 | 5795 | 4737 | 10124 | 5133 |
0.006 | 1440 | 1494 | 1086 | 873 | 1905 | 954 |
0.008 | 500 | 527 | 370 | 303 | 683 | 332 |
0.009 | 347 | 366 | 260 | 207 | 467 | 230 |
0.010 | 260 | 272 | 191 | 154 | 354 | 169 |
0.013 | 138 | 146 | 98 | 79 | 188 | 87 |
Estimates Based on | ||||||
4.06 (Ea = 0.0045) | 3.89 (Ea = 0.006) | 3.65 (Ea = 0.008) | 3.48 (Ea = 0.009) | 4.17 (Ea = 0.01) | 3.65 (Ea = 0.013) | |
0.0045 | 7681 | 6497 | 5097 | 4250 | 8548 | 5097 |
0.006 | 1810 | 1494 | 1165 | 946 | 2067 | 1165 |
0.008 | 601 | 496 | 370 | 308 | 694 | 370 |
0.009 | 414 | 336 | 256 | 207 | 466 | 256 |
0.010 | 305 | 248 | 187 | 150 | 354 | 187 |
0.013 | 159 | 125 | 87 | 69 | 185 | 87 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.-H.; Shen, X.-H.; He, L.; Zhang, K.-S. Application of Differential Entropy in Characterizing the Deformation Inhomogeneity and Life Prediction of Low-Cycle Fatigue of Metals. Materials 2018, 11, 1917. https://doi.org/10.3390/ma11101917
Zhang M-H, Shen X-H, He L, Zhang K-S. Application of Differential Entropy in Characterizing the Deformation Inhomogeneity and Life Prediction of Low-Cycle Fatigue of Metals. Materials. 2018; 11(10):1917. https://doi.org/10.3390/ma11101917
Chicago/Turabian StyleZhang, Mu-Hang, Xiao-Hong Shen, Lei He, and Ke-Shi Zhang. 2018. "Application of Differential Entropy in Characterizing the Deformation Inhomogeneity and Life Prediction of Low-Cycle Fatigue of Metals" Materials 11, no. 10: 1917. https://doi.org/10.3390/ma11101917
APA StyleZhang, M. -H., Shen, X. -H., He, L., & Zhang, K. -S. (2018). Application of Differential Entropy in Characterizing the Deformation Inhomogeneity and Life Prediction of Low-Cycle Fatigue of Metals. Materials, 11(10), 1917. https://doi.org/10.3390/ma11101917