Ferromagnetic Shape Memory Heusler Materials: Synthesis, Microstructure Characterization and Magnetostructural Properties
Abstract
:1. Introduction
2. Fundamental Concepts
2.1. Crystal Structures of Austenite and Martensite
2.2. Magnetostructural Coupling and Magnetic Behavior
3. Methods of Synthesis and Characterization
3.1. Synthesis
3.2. Characterization
4. Microstructural Effects on Properties
5. Summary
- On the basis of design, given that NiMn-based Heusler alloys are multiferroic and multifunctional, adaptation of cofactor conditions from GNLTM will certainly be useful in arriving at highly superior multifunctional compositions which can be readily used in applications. Combinatorial approach combined with GNLTM has the potential to revolutionize materials search by accelerating discovery and optimization of new and known materials.
- Processing methods and techniques have an influence on the MSM/MMSM and MC properties of these materials through benign changes in their microstructures. Every method has its advantages and disadvantages. While liquid processing ensures homogeneity of the alloys, issues such as multiphase solidification and chemical segregation, which tend to cover up the magnetostructural transitions, still persist. Melt-spinning can be useful in terms of homogeneity of grain size and avoidance of annealing but may still require secondary treatment for the realization of desired characteristics. In view of this, exclusion of a particular method, like P/M, may not be justified. The disadvantages of incomplete martensitic transformation, formation of secondary and intermetallic phases, etc., which are characteristic of P/M, can be overcome by appropriate heat treatment or thermomechanical procedures and through exact characterization of the starting powders.
- Various factors, such as composition, crystal structure, atomic ordering, volume of unit cell, grain size, presence or absence of secondary phases and heat treatment methods, which influence the MSM/MMSM and MC effects of these alloys, have been reviewed. The overriding factor is the composition, which influences both martensitic and magnetic transformations, the transformation temperatures, crystal structures, saturation magnetization and consequently the magnetostructural effects.
Funding
Conflicts of Interest
References
- James, R.D.; Zhang, Z. A way to search for multiferroic materials with “unlikely” combinations of physical properties. In Magnetism and Structure in Functional Materials; Manosa, L., Planes, A., Saxena, A., Eds.; Springer: New York, NY, USA, 2005. [Google Scholar]
- Planes, A.; Mañosa, L.; Acet, M. Magnetocaloric effect and its relation to shape-memory properties in ferromagnetic Heusler alloys. J. Phys. Condens. Matter 2009, 21, 233201. [Google Scholar] [CrossRef] [PubMed]
- Ullakko, K.; Huang, J.K.; Kantner, C.; O’Handley, R.C.; Kokorin, V.V. Large magnetic-field-induced strains in Ni2MnGa single crystals. Appl. Phys. Lett. 1996, 69, 1966–1968. [Google Scholar] [CrossRef]
- James, R.D.; Tickle, R.; Wuttig, M. Large field-induced strains in ferromagnetic shape memory materials. Mater. Sci. Eng. A 1999, 273, 320–325. [Google Scholar] [CrossRef]
- Sozinov, A.; Likachev, A.A.; Lanska, N.; Ulakko, K. Giant magnetic-field-induced strain in NiMnGa seven-layered martensitic phase. Appl. Phys. Lett. 2001, 80, 1746–1748. [Google Scholar] [CrossRef]
- Murray, S.J.; Marioni, M.; Allen, S.M.; O’Handley, R.C.; Lograsso, T.A. 6% magnetic-field-induced strain by twin-boundary motion in ferromagnetic Ni-Mn-Ga. Appl. Phys. Lett. 2000, 77, 886–888. [Google Scholar] [CrossRef]
- Murray, S.J. Large field induced strain in single crystalline Ni-Mn-Ga ferromagnetic shape memory alloy. J. Appl. Phys. 2000, 87, 5774–5776. [Google Scholar] [CrossRef]
- Sozinov, A.; Likhachev, A.A.; Lanska, N.; Ullakko, K.; Lindroos, V.K. Crystal Structure, Magnetic Anisotropy, and Mechanical Properties of Seven-Layered Martensite in Ni-Mn-Ga; International Society for Optics and Photonics: San Diego, CA, USA, 2002; pp. 195–205. [Google Scholar]
- Sutou, Y.; Imano, Y.; Koeda, N.; Omori, T.; Kainuma, R.; Ishida, K.; Oikawa, K. Magnetic and martensitic transformations of NiMnX(X = In, Sn, Sb) ferromagnetic shape memory alloys. Appl. Phys. Lett. 2004, 85, 4358–4360. [Google Scholar] [CrossRef]
- Krenke, T.; Duman, E.; Acet, M.; Wassermann, E.F.; Moya, X.; Manosa, L.; Planes, A. Inverse magnetocaloric effect in ferromagnetic Ni-Mn-Sn alloys. Nat. Mater. 2005, 4, 450–454. [Google Scholar] [CrossRef] [PubMed]
- Kainuma, R.; Imano, Y.; Ito, W.; Sutou, Y.; Morito, H.; Okamoto, S.; Kitakami, O.; Oikawa, K.; Fujita, A.; Kanomata, T.; et al. Magnetic-field-induced shape recovery by reverse phase transformation. Nature 2006, 439, 957–960. [Google Scholar] [CrossRef] [PubMed]
- Kainuma, R.; Imano, Y.; Ito, W.; Morito, H.; Sutou, Y.; Oikawa, K.; Fujita, A.; Ishida, K.; Okamoto, S.; Kitakami, O.; et al. Metamagnetic shape memory effect in a Heusler-type Ni43Co7Mn39Sn11 polycrystalline alloy. Appl. Phys. Lett. 2006, 88, 192513. [Google Scholar] [CrossRef]
- Planes, A.; Manosa, L.; Acet, M. Recent Progress and future perspectives in magnetic and metamagnetic shape-memory Heusler alloys. Mater. Sci. Forum 2013, 738–739, 391–399. [Google Scholar] [CrossRef]
- Pecharsky, V.K.; Gschneidner, K.A., Jr. Giant magnetocaloric effect in Gd5(Si2Ge2). Phys. Rev. Lett. 1997, 78, 4494. [Google Scholar] [CrossRef]
- Hu, F.-X.; Shen, B.-G.; Sun, J.-R. Magnetic entropy change in Ni51.5Mn22.7Ga25.8 alloy. Appl. Phys. Lett. 2000, 76, 3460–3462. [Google Scholar] [CrossRef]
- Pareti, L.; Solzi, M.; Albertini, F.; Paoluzi, A. Giant entropy change at the co-occurrence of structural and magnetic transitions in the Ni2.19Mn0.81Ga Heusler alloy. Eur. Phys. J. B 2003, 32, 303–307. [Google Scholar] [CrossRef]
- Marcos, J.; Planes, A.; Manosa, L.; Casanova, F.; Batlle, X.; Labarta, A.; Martinez, B. Magnetic field induced entropy change and magnetoelasticity in Ni-Mn-Ga alloys. Phys. Rev. B 2002, 66, 224413. [Google Scholar] [CrossRef]
- Marcos, J.; Planes, A.; Manosa, L.; Casanova, F.; Batlle, X.; Labarta, A. Multiscale origin of the magnetocaloric effect in Ni-Mn-Ga shape-memory alloys. Phys. Rev. B 2003, 68, 094401. [Google Scholar] [CrossRef]
- Roy, S.B. First order magneto-structural phase transition and associated multi-functional properties in magnetic solids. J. Phys. Condens. Matter 2013, 25, 183201. [Google Scholar] [CrossRef] [PubMed]
- Franco, V.; Bl’azquez, J.S.; Ingale, B.; Conde, A. The magnetocaloric effect and magnetic refrigeration near room temperature: Materials and models. Annu. Rev. Mater. Res. 2012, 42, 305–342. [Google Scholar] [CrossRef]
- Schlagel, D.L.; Yuhasz, W.M.; Dennis, K.W.; McCallum, R.W.; Lograsso, T.A. Temperature dependence of the field-induced phase transformation in Ni50Mn37Sn13. Scr. Mater. 2008, 59, 1083–1086. [Google Scholar] [CrossRef]
- Moya, X.; Manosa, L.; Planes, A.; Krenke, T.; Duman, E.; Wassermann, E.F. Calorimetric study of the inverse magnetocaloric effect in ferromagnetic Ni-Mn-Sn. J. Magn. Magn. Mater. 2007, 316, e572–e574. [Google Scholar] [CrossRef]
- Sharma, V.K.; Chattopadhyay, M.K.; Roy, S.B. Large magnetocaloric effect in Ni50Mn33.66Cr0.34In16 alloy. J. Phys. D Appl. Phys. 2010, 43, 22. [Google Scholar] [CrossRef]
- Pandey, S.; Quetz, A.; Aryal, A.; Dubenko, I.; Mazumdar, D.; Stadler, S.; Ali, N. Large Inverse Magnetocaloric Effects and Giant Magnetoresistance in Ni-Mn-Cr-Sn Heusler Alloys. Magnetochemistry 2017, 3, 3. [Google Scholar] [CrossRef]
- Srivastava, V.; Song, Y.; Bhatti, K.; James, R.D. The direct conversion of heat to electricity using multiferroic alloys. Adv. Energy Mater. 2011, 1, 97–104. [Google Scholar] [CrossRef]
- Pramanick, A.; Wang, X.-L. Characterization of magnetoelastic coupling in ferromagnetic shape memory alloys using neutron diffraction. JOM 2012, 65, 54–64. [Google Scholar] [CrossRef]
- Franco, V.; Blázquez, J.S.; Ipus, J.J.; Law, J.Y.; Moreno-Ramírez, L.M.; Conde, A. Magnetocaloric effect: From materials research to refrigeration devices. Prog. Mater. Sci. 2018, 93, 112–232. [Google Scholar] [CrossRef]
- Khovaylo, V.V.; Rodionova, V.V.; Shevyrtalov, S.N.; Novosad, V. Magnetocaloric effect in “reduced” dimensions: Thin films, ribbons, and microwires of Heusler alloys and related compounds. Phys. Status Solidi B 2014, 251, 2104–2113. [Google Scholar] [CrossRef]
- Graf, T.; Felser, C. Heusler compounds at a glance. In Spintronics From Materials to Devices, 1st ed.; Felser, C., Fecher, G.H., Eds.; Springer: Dordrecht, The Netherlands, 2013; pp. 1–13. [Google Scholar]
- Pons, J.; Chernenko, V.A.; Santamarta, R.; Cesari, E. Crystal structure of martensitic phases in Ni-Mn-Ga shape memory alloys. Acta Mater. 2000, 48, 3027–3038. [Google Scholar] [CrossRef]
- Halder, M.; Mukadam, M.D.; Suresh, K.G.; Yusuf, S.M. Electronic, structural, and magnetic properties of the quaternary Heusler alloy NiCoMnZ (Z = Al, Ge, and Sn). J. Magn. Magn. Mater. 2015, 377, 220–225. [Google Scholar] [CrossRef]
- Srivastava, V.; Bhatti, K.P. Ferromagnetic shape memory Heusler alloys. In Ferroics and Multiferroics; Virk, H.S., Kleeman, W., Eds.; Trans Tech Publications Ltd.: Zurich, Switzerland, 2012; Volume 189, pp. 189–208. [Google Scholar]
- Ito, W.; Imano, Y.; Kainuma, R.; Sutou, Y.; Oikawa, K.; Ishida, K. Martensitic and Magnetic Transformation Behaviors in Heusler-Type NiMnIn and NiCoMnIn Metamagnetic Shape Memory Alloys; Springer Boston: Norwell, MA, USA, 2007; pp. 759–766. [Google Scholar]
- Khovaylo, V.V.; Kanomata, T.; Tanaka, T.; Nakashima, M.; Amako, Y.; Kainuma, R.; Umetsu, R.Y.; Morito, H.; Miki, H. Magnetic properties of Ni50Mn34.8In15.2 probed by Mössbauer spectroscopy. Phys. Rev. B 2009, 80, 144409. [Google Scholar] [CrossRef]
- Righi, L.; Albertini, F.; Fabbrici, S.; Paoluzi, A. Crystal structures of modulated martensitic phases of FSM Heusler alloys. In Advances in Magnetic Shape Memory Materials; Chernenko, V.A., Ed.; Trans Tech Publications Ltd.: Zurich, Switzerland, 2011; Volume 684, pp. 105–116. [Google Scholar]
- Bersuker, I.B. Recent Developments in the Jahn–Teller Effect. In The Jahn-Teller Effect. Fundamentals and Implications. For Physics and Chemistry; Köppel, H., Yarkony, D.R., Barentzen, H., Eds.; Springer: New York, NY, USA, 2009; pp. 3–23. [Google Scholar]
- Haritha, L.; Gangadhar Reddy, G.; Ramakanth, A.; Ghatak, S.K.; Nolting, W. Interplay of magnetic order and Jahn–Teller distortion in a model with strongly correlated electrons ystem. Physica B 2010, 405, 1701–1705. [Google Scholar] [CrossRef]
- Cong, D.Y.; Roth, S.; Schultz, L. Magnetic properties and structural transformations in Ni-Co-Mn-Sn multifunctional alloys. Acta Mater. 2012, 60, 5335–5351. [Google Scholar] [CrossRef]
- Sharma, V.K.; Chattopadhyay, M.K.; Roy, S.B. Kinetic arrest of the first order austenite to martensite phase transition in Ni50Mn34In16: Dc magnetization studies. Phys. Rev. B 2007, 76, 140401. [Google Scholar] [CrossRef]
- Zubar, T.I.; Panina, L.V.; Kovaleva, N.N.; Sharko, S.A.; Tishkevich, D.I.; Vinnik, D.A.; Gudkova, S.A.; Trukhanova, E.L.; Trofimov, E.A.; Chizhik, S.A.; et al. Anomalies in growth of electrodeposited Ni–Fe nanogranular films. Cryst. Eng. Comm. 2018, 20, 2306–2315. [Google Scholar] [CrossRef]
- Zubar, T.I.; Sharko, S.A.; Tishkevich, D.I.; Kovaleva, N.N.; Vinnik, D.A.; Gudkova, S.A.; Trukhanova, E.L.; Trofimov, E.A.; Chizhik, S.A.; Panina, L.V.; et al. Anomalies in Ni-Fe nanogranular films growth. J. Alloy. Compd. 2018, 748, 970–978. [Google Scholar] [CrossRef]
- Wang, X.; Shang, J.-X.; Wang, F.-H.; Jiang, C.-B.; Xu, H.-B. Origin of unusual properties in the ferromagnetic Heusler alloy Ni–Mn–Sn: A first-principles investigation. Scr. Mater. 2014, 89, 33–36. [Google Scholar] [CrossRef]
- Pérez-Reche, F.J.; Vives, E.; Mañosa, L.; Planes, A. Athermal Character of Structural Phase Transitions. Phys. Rev. Lett. 2001, 87, 19. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Wang, W.; Wu, D.; Xue, S.; Zhai, Q.; Frenzel, J.; Luo, Z. Athermal nature of the martensitic transformation in Heusler alloy Ni-Mn-Sn. Intermetallics 2013, 36, 90–95. [Google Scholar] [CrossRef]
- Kakeshita, T.; Kuroiwa, K.; Shimizu, K.; Ikeda, T.; Yamagishi, A.; Date, M. A New Model Explainable for Both the Athermal and Isothermal Natures of Martensitic Transformations in Fe-Ni-Mn Alloys. Mater. Trans. JIM 1993, 34, 423–428. [Google Scholar] [CrossRef]
- Faran, E.; Shilo, D. Twin motion faster than the speed of sound. Phys. Rev. Lett. 2010, 104, 155501. [Google Scholar] [CrossRef] [PubMed]
- Kakeshita, T.; Kuroiwa, K.; Shimizu, K.; Ikeda, T.; Yamagishi, A.; Date, M. Effect of Magnetic Fields on Athermal and Isothermal Martensitic Transformations in Fe-Ni-Mn Alloys. Mater. Trans. JIM 1993, 34, 415–422. [Google Scholar] [CrossRef]
- Lee, Y.-H.; Todai, M.; Okuyama, T.; Fukuda, T.; Kakeshita, T.; Kainuma, R. Isothermal nature of martensitic transformation in an Ni45Co5Mn36.5In13.5 magnetic shape memory alloy. Scr. Mater. 2011, 64, 927–930. [Google Scholar] [CrossRef]
- Kustov, S.; Golovin, I.; Corró, M.L.; Cesari, E. Isothermal martensitic transformation in metamagnetic shape memory alloys. J. Appl. Phys. 2010, 107, 053525. [Google Scholar] [CrossRef]
- Chen, F.; Tong, Y.X.; Tian, B.; Zheng, Y.F.; Liu, Y. Time effect of martensitic transformation in Ni43Co7Mn41Sn9. Intermetallics 2010, 18, 188–192. [Google Scholar] [CrossRef]
- Ito, W.; Ito, K.; Umetsu, R.Y.; Kainuma, R.; Koyama, K.; Watanabe, K.; Fujita, A.; Oikawa, K.; Ishida, K.; Kanomata, T. Kinetic arrest of martensitic transformation in the NiCoMnIn metamagnetic shape memory alloy. Appl. Phys. Lett. 2008, 92, 021908. [Google Scholar] [CrossRef]
- Lakhani, A.; Banerjee, A.; Chaddah, P.; Chen, X.; Ramanujan, R.V. Magnetic glass in shape memory alloy: Ni45Co5Mn38Sn12. J. Phys. Condens. Matter 2012, 24, 386004. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Chen, X.; Dabade, V.; Shield, T.W.; James, R.D. Enhanced reversibility and unusual microstructure of a phase-transforming material. Nature 2013, 502, 85–88. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, V.; Chen, X.; James, R.D. Hysteresis and unusual magnetic properties in the singular Heusler alloy Ni45Co5Mn40Sn10. Appl. Phys. Lett. 2010, 97, 014101. [Google Scholar] [CrossRef]
- Delville, R.; Schryvers, D.; Zhang, Z.; James, R.D. Transmission electron microscopy investigation of microstructures in low-hysteresis alloys with special lattice parameters. Scr. Mater. 2009, 60, 293–296. [Google Scholar] [CrossRef]
- Lei, C.H.; Li, L.J.; Shu, Y.C.; Li, J.Y. Austenite-martensite interface in shape memory alloys. Appl. Phys. Lett. 2010, 96, 141910. [Google Scholar] [CrossRef]
- Gebhardt, T.; Music, D.; Takahashi, T.; Schneider, J.M. Combinatorial thin film materials science: From alloy discovery and optimization to alloy design. Thin Solid Films 2012, 520, 5491–5499. [Google Scholar] [CrossRef]
- Yang, S.; Wang, C.; Liu, X. Phase equilibria and composition dependence of martensitic transformation in Ni-Mn-Ga ternary system. Intermetallics 2012, 25, 101–108. [Google Scholar] [CrossRef]
- Miyamoto, T.; Nagasako, M.; Kainuma, R. Phase equilibria in the Ni–Mn–In alloy system. J. Alloy. Compd. 2013, 549, 57–63. [Google Scholar] [CrossRef]
- Porthun, S.; ten Berge, P.; Lodder, J.C. Bitter colloid observations of magnetic structures in perpendicular magnetic recording media. J. Magn. Magn. Mater. 1993, 123, 199–208. [Google Scholar] [CrossRef]
- Ao, W.Q.; Liu, F.S.; Li, J.Q.; Du, Y.; Liu, F.L. Isothermal section of the Ni–Mn–In ternary system at 773 K. J. Alloy. Compd. 2015, 622, 149–154. [Google Scholar] [CrossRef]
- Wachtel, E.; Henninger, F.; Predel, B. Constitution and magnetic properties of Ni-Mn-Sn alloys-solid and liquid state. J. Magn. Magn. Mater. 1983, 38, 305–315. [Google Scholar] [CrossRef]
- Graf, T.; Felser, C.; Parkin, S.S.P. Simple rules for the understanding of Heusler compounds. Prog. Solid State Chem. 2011, 39, 1–50. [Google Scholar] [CrossRef]
- Chen, F.; Tong, Y.X.; Li, L.; Sánchez Llamazares, J.L.; Sánchez-Valdés, C.F.; Müllner, P. The effect of step-like martensitic transformation on the magnetic entropy change of Ni40.6Co8.5Mn40.9Sn10 unidirectional crystal grown with the Bridgman-Stockbarger technique. J. Alloy. Compd. 2017, 691, 269–274. [Google Scholar] [CrossRef]
- Laudise, R.A.; Sunder, W.A.; O’Bryan, H.M.; Carlson, D.J.; Witt, A.F. Czochralski growth of single crystals of Ni3−xMnxSn. J. Cryst. Growth 1992, 118, 277–286. [Google Scholar] [CrossRef]
- Ito, K.; Ito, W.; Umetsu, R.Y.; Nagasako, M.; Kainuma, R.; Fujita, A.; Oikawa, K.; Ishida, K. Martensitic transformation in NiCoMnSn metamagnetic shape memory alloy powders. Mater. Trans. 2008, 49, 1915–1918. [Google Scholar] [CrossRef]
- Ahamed, R.; Ghomashchi, R.; Xie, Z.; Chen, L.; Munroe, P.; Xu, S. Powder processing and characterisation of a quinary Ni-Mn-Co-Sn-Cu Heusler alloy. Powder Technol. 2018, 324, 69–75. [Google Scholar] [CrossRef]
- Ito, K.; Ito, W.; Umetsu, R.Y.; Karaman, I.; Ishida, K.; Kainuma, R. Mechanical and shape memory properties of Ni43Co7Mn39Sn11 alloy compacts fabricated by pressureless sintering. Scr. Mater. 2010, 63, 1236–1239. [Google Scholar] [CrossRef]
- Ito, K.; Ito, W.; Umetsu, R.Y.; Karaman, I.; Ishida, K.; Kainuma, R. Metamagnetic shape memory effect in Porous Ni43Co7Mn39Sn11 alloy compacts fabricated by pressureless sintering. Mater. Trans. 2011, 52, 2270–2273. [Google Scholar] [CrossRef]
- Ito, K.; Ito, W.; Umetsu, R.Y.; Tajima, S.; Kawaura, H.; Kainuma, R.; Ishida, K. Metamagnetic shape memory effect in polycrystalline NiCoMnSn alloy fabricated by spark plasma sintering. Scr. Mater. 2009, 61, 504–507. [Google Scholar] [CrossRef]
- Monroe, J.A.; Cruz-Perez, J.; Yegin, C.; Karaman, I.; Geltmacher, A.B.; Everett, R.K.; Kainuma, R. Magnetic response of porous NiCoMnSn metamagnetic shape memory alloys fabricated using solid-state replication. Scr. Mater. 2012, 67, 116–119. [Google Scholar] [CrossRef]
- Anandh Vacuum Induction Melting Unit. Available online: http://home.iitk.ac.in/~anandh/lab/Induction%20Melting%20Unit2.pdf (accessed on 20 April 2018).
- Pérez-Sierra, A.M.; Pons, J.; Santamarta, R.; Vermaut, P.; Ochin, P. Solidification process and effect of thermal treatments on Ni–Co–Mn–Sn metamagnetic shape memory alloys. Acta Mater. 2015, 93, 164–174. [Google Scholar] [CrossRef]
- Yuhasz, W.M.; Schlagel, D.L.; Xing, Q.; Dennis, K.W.; McCallum, R.W.; Lograsso, T.A. Influence of annealing and phase decomposition on the magnetostructural transitions in Ni50Mn39Sn11. J. Appl. Phys. 2009, 105, 07A921. [Google Scholar] [CrossRef]
- Murakami, Y.; Watanabe, Y.; Kanaizuka, T.; Kachi, S. Magnetic Properties and Phase Change of Ni3-yMnySn Alloy. Trans. Jpn Inst. Metals 1981, 22, 551–557. [Google Scholar] [CrossRef]
- Schlagel, D.L.; McCallum, R.W.; Lograsso, T.A. Influence of solidification microstructure on the magnetic properties of Ni-Mn-Sn Heusler alloys. J. Alloy. Compd. 2008, 463, 38–46. [Google Scholar] [CrossRef]
- Bridgman-Stockbarger Technique. Available online: https://en.wikipedia.org/wiki/Bridgman%E2%80%93Stockbarger_technique (accessed on 1 May 2018).
- Huang, L.; Cong, D.Y.; Suo, H.L.; Wang, Y.D. Giant magnetic refrigeration capacity near room temperature in Ni 40Co10Mn40Sn10 multifunctional alloy. Appl. Phys. Lett. 2014, 104, 132407. [Google Scholar] [CrossRef]
- Provenzano, V.; Shapiro, A.J.; Shull, R.D. Reduction of hysteresis losses in the magnetic refrigerant Gd5Ge2Si2 by the addition of iron. Nature 2004, 429, 853–857. [Google Scholar] [CrossRef] [PubMed]
- Phan, T.-L.; Zhang, P.; Dan, N.H.; Yen, N.H.; Thanh, P.T.; Thanh, T.D.; Phan, M.H.; Yu, S.C. Coexistence of conventional and inverse magnetocaloric effects and critical behaviors in Ni50Mn50−xSnx (x = 13 and 14) alloy ribbons. Appl. Phys. Lett. 2012, 101, 212403. [Google Scholar] [CrossRef]
- Huang, Y.J.; Liu, J.; Hu, Q.D.; Liu, Q.H.; Karaman, I.; Li, J.G. Applications of the directional solidification in magnetic shape memory alloys. In Proceedings of the 4th International Conference on Advances in Solidification Processes, Windsor, UK, 8–11 July 2014. [Google Scholar]
- Cong, D.Y.; Wang, Y.D.; Zetterstrom, P.; Peng, R.L.; Delaplane, R.; Zhao, X.; Zuo, L. Crystal Structures and Textures of Hot Forged Ni48Mn30Ga22Alloy. Investigated by Neutron Diffraction Technique; Maney Publishing: London, UK, 2005; pp. 1412–1416. [Google Scholar]
- Cong, D.Y.; Wang, Y.D.; Lin Peng, R.; Zetterstrom, P.; Zhao, X.; Liaw, P.K.; Zuo, L. Crystal structures and textures in the hot-forged Ni-Mn-Ga shape memory alloys. Metall. Mater. Trans. A Phys. Met. Mater. Sci. 2006, 37, 1397–1403. [Google Scholar] [CrossRef]
- Ma, Y.; Yang, S.; Liu, Y.; Liu, X. The ductility and shape-memory properties of Ni-Mn-Co-Ga high-temperature shape-memory alloys. Acta Mater. 2009, 57, 3232–3241. [Google Scholar] [CrossRef]
- Larin, V.S.; Torcunov, A.V.; Zhukov, A.; González, J.; Vazquez, M.; Panina, L. Preparation and properties of glass-coated microwires. J. Magn. Magn. Mater. 2002, 249, 39–45. [Google Scholar] [CrossRef]
- Rodionova, V.; Ilyn, M.; Granovsky, A.; Perov, N.; Zhukova, V.; Abrosimova, G.; Aronin, A.; Kiselev, A.; Zhukov, A. Internal stress induced texture in Ni-Mn-Ga based glass-covered microwires. J. Appl. Phys. 2013, 114, 123914. [Google Scholar] [CrossRef] [Green Version]
- Zhukov, A.; Rodionova, V.; Ilyn, M.; Aliev, A.M.; Varga, R.; Michalik, S.; Aronin, A.; Abrosimova, G.; Kiselev, A.; Ipatov, M.; et al. Magnetic properties and magnetocaloric effect in Heusler-type glass-coated NiMnGa microwires. J. Alloy. Compd. 2013, 575, 73–79. [Google Scholar] [CrossRef] [Green Version]
- Shevyrtalov, S.; Zhukov, A.; Lyatun, I.; Medvedeva, S.; Miki, H.; Zhukova, V.; Rodionova, V. Martensitic transformation behavior of Ni2.44Mn0.48Ga1.08 thin glass-coated microwire. J. Alloy. Compd. 2018, 745, 217–221. [Google Scholar] [CrossRef]
- Shevyrtalov, S.; Zhukov, A.; Zhukova, V.; Rodionova, V. Internal stresses influence on magnetic properties of Ni-Mn-Ga Heusler-type microwires. Intermetallics 2018, 94, 42–46. [Google Scholar] [CrossRef]
- Shevyrtalov, S.; Zhukov, A.; Medvedeva, S.; Lyatun, I.; Zhukova, V.; Rodionova, V. Radial elemental and phase separation in Ni-Mn-Ga glass-coated microwires. J. Appl. Phys. 2018, 123, 173903. [Google Scholar] [CrossRef]
- Suryanarayana, C. Rapid Solidification Processing. In Encyclopedia of Materials: Science and Technology, 2nd ed.; Veyssière, P., Buschow, K.H.J., Cahn, R.W., Flemings, M.C., Ilschner, B., Kramer, E.J., Mahajan, S., Eds.; Elsevier: Oxford, UK, 2002; pp. 1–10. [Google Scholar]
- Sarı, U.; Aksoy, İ. Electron microscopy study of 2H and 18R martensites in Cu–11.92 wt % Al–3.78 wt % Ni shape memory alloy. J. Alloy. Compd. 2006, 417, 138–142. [Google Scholar] [CrossRef]
- Sade, M.; Lovey, F.C. The structure of the modified 2H martensite in Cu-Zn-Al. Scr. Metall. 1983, 17, 333–338. [Google Scholar] [CrossRef]
- Wang, W.; Li, H.; Ren, J.; Fu, J.; Zhai, Q.; Luo, Z.; Zheng, H. Enhanced magnetocaloric properties in annealed Heusler Ni-Mn-Sn ribbons. J. Magn. Magn. Mater. 2015, 374, 153–156. [Google Scholar] [CrossRef]
- Caballero-Flores, R.; González-Legarreta, L.; Rosa, W.O.; Sánchez, T.; Prida, V.M.; Escoda, L.; Suñol, J.J.; Batdalov, A.B.; Aliev, A.M.; Koledov, V.V.; et al. Magnetocaloric effect, magnetostructural and magnetic phase transformations in Ni50.3Mn36.5Sn13.2 Heusler alloy ribbons. J. Alloy. Compd. 2015, 629, 332–342. [Google Scholar] [CrossRef]
- Bruno, N.M.; Yegin, C.; Karaman, I.; Chen, J.-H.; Ross, J.H.; Liu, J.; Li, J. The effect of heat treatments on Ni43Mn42Co4Sn11 meta-magnetic shape memory alloys for magnetic refrigeration. Acta Mater. 2014, 74, 66–84. [Google Scholar] [CrossRef]
- Rama Rao, N.V.; Gopalan, R.; Manivel Raja, M.; Arout Chelvane, J.; Majumdar, B.; Chandrasekaran, V. Magneto-structural transformation studies in melt-spun Ni-Mn-Ga ribbons. Scr. Mater. 2007, 56, 405–408. [Google Scholar] [CrossRef]
- Hernando, B.; Llamazares, J.L.S.; Santos, J.D.; Sanchez, M.L.; Escoda, L.; Sunol, J.J.; Varga, R.; Garcia, C.; Gonzalez, J. Grain oriented NiMnSn and NiMnIn Heusler alloys ribbons produced by melt spinning: Martensitic transformation and magnetic properties. J. Magn. Magn. Mater. 2009, 321, 763–768. [Google Scholar] [CrossRef]
- Ma, S.C.; Shih, C.W.; Liu, J.; Yuan, J.H.; Lee, S.Y.; Lee, Y.I.; Chang, H.W.; Chang, W.C. Wheel speed-dependent martensitic transformation and magnetocaloric effect in Ni-Co-Mn-Sn ferromagnetic shape memory alloy ribbons. Acta Mater. 2015, 90, 292–302. [Google Scholar] [CrossRef]
- Chen, X.; Naik, V.B.; Mahendiran, R.; Ramanujan, R.V. Optimization of Ni-Co-Mn-Sn Heusler alloy composition for near room temperature magnetic cooling. J. Alloy. Compd. 2014, 618, 187–191. [Google Scholar] [CrossRef]
- Chen, F.; Tong, Y.X.; Huang, Y.J.; Tian, B.; Li, L.; Zheng, Y.F. Suppression of gamma phase in Ni38Co12Mn 41Sn9 alloy by melt spinning and its effect on martensitic transformation and magnetic properties. Intermetallics 2013, 36, 81–85. [Google Scholar] [CrossRef]
- Pandey, S.; Quetz, A.; Ibarra-Gaytan, P.J.; Sanchez-Valdes, C.F.; Aryal, A.; Dubenko, I.; Mazumdar, D.; Sanchez Llamazares, J.L.; Stadler, S.; Ali, N. Effects of annealing on the magnetic properties and magnetocaloric effects of B doped Ni-Mn-In melt-spun ribbons. J. Alloy. Compd. 2018, 731, 678–684. [Google Scholar] [CrossRef]
- Vajpai, S.K.; Dube, R.K.; Chatterjee, P.; Sangal, S. A novel powder metallurgy processing approach to prepare fine-grained Cu-Al-Ni shape-memory alloy strips from elemental powders. Metall. Mater. Trans. A Phys. Met. Mater. Sci. 2012, 43, 2484–2499. [Google Scholar] [CrossRef]
- Perez-Saez, R.B.; Recarte, V.; No, M.L.; Ruano, O.A.; San, J.J. Advanced shape memory alloys processed by powder metallurgy. Adv. Eng. Mater. 2000, 2, 49–53. [Google Scholar] [CrossRef]
- Monastyrsky, G.E.; Odnosum, V.; Van Humbeeck, J.; Kolomytsev, V.I.; Koval, Y.N. Powder metallurgical processing of Ni–Ti–Zr alloys undergoing martensitic transformation: Part I. Intermetallics 2002, 10, 95–103. [Google Scholar] [CrossRef]
- Monastyrsky, G.E.; Van Humbeeck, J.; Kolomytsev, V.I.; Koval, Y.N. Powder metallurgical processing of Ni–Ti–Zr alloys undergoing martensitic transformation—Part II. Intermetallics 2002, 10, 613–624. [Google Scholar] [CrossRef]
- Valeanu, M.; Lucaci, M.; Crisan, A.D.; Sofronie, M.; Leonat, L.; Kuncser, V. Martensitic transformation of Ti50Ni30Cu20 alloy prepared by powder metallurgy. J. Alloy. Compd. 2011, 509, 4495–4498. [Google Scholar] [CrossRef]
- Terayama, A.; Kyogoku, H. Shape memory characteristics of the P/M-processed Ti–Ni–Cu alloys. Mater. Sci. Eng. A 2010, 527, 5484–5491. [Google Scholar] [CrossRef]
- Ibarra, A.; Rodriguez, P.P.; Recarte, V.; Perez-Landazabal, J.I.; No, M.L.; San Juan, J. Internal friction behaviour during martensitic transformation in shape memory alloys processed by powder metallurgy. Mater. Sci. Eng. A 2004, 370, 492–496. [Google Scholar] [CrossRef]
- Kim, Y.-W.; Chung, Y.-S.; Choi, E.; Nam, T.-H. Microstructure and Shape Memory Characteristics of Powder-Metallurgical-Processed Ti-Ni-Cu Alloys; Springer Boston: Norwell, MA, USA, 2012; pp. 2932–2938. [Google Scholar]
- Bertheville, B. Powder metallurgical processing of ternary Ni50Ti50−xZrx (x = 5, 10 at %) alloys. J. Alloy. Compd. 2005, 398, 94–99. [Google Scholar] [CrossRef]
- Zhang, X.; Xiang, Y. Combinatorial approaches for high-throughput characterization of mechanical properties. J. Mater. 2017, 3, 209–220. [Google Scholar] [CrossRef]
- Zarnetta, R.; Ehmann, M.; Savan, A.; Ludwig, A. Identification of optimized Ti–Ni–Cu shape memory alloy compositions for high-frequency thin film microactuator applications. Smart Mater. Struct. 2010, 19, 065032. [Google Scholar] [CrossRef]
- Zarnetta, R.; Savan, A.; Thienhaus, S.; Ludwig, A. Combinatorial study of phase transformation characteristics of a Ti–Ni–Pd shape memory thin film composition spread in view of microactuator applications. Appl. Surf. Sci. 2007, 254, 743–748. [Google Scholar] [CrossRef]
- Cui, J.; Chu, Y.S.; Famodu, O.O.; Furuya, Y.; Hattrick-Simpers, J.; James, R.D.; Ludwig, A.; Thienhaus, S.; Wuttig, M.; Zhang, Z.; et al. Combinatorial search of thermoelastic shape-memory alloys with extremely small hysteresis width. Nat. Mater. 2006, 5, 286–290. [Google Scholar] [CrossRef] [PubMed]
- Zarnetta, R.; Takahashi, R.; Young, M.L.; Savan, A.; Furuya, Y.; Thienhaus, S.; Maa, B.; Rahim, M.; Frenzel, J.; Brunken, H.; et al. Identification of quaternary shape memory alloys with near-zero thermal hysteresis and unprecedented functional stability. Adv. Funct. Mater. 2010, 20, 1917–1923. [Google Scholar] [CrossRef]
- Takeuchi, I.; Famodu, O.O.; Read, J.C.; Aronova, M.A.; Chang, K.S.; Craciunescu, C.; Lofland, S.E.; Wuttig, M.; Wellstood, F.C.; Knauss, L.; et al. Identification of novel compositions of ferromagnetic shape-memory alloys using composition spreads. Nat. Mater. 2003, 2, 180. [Google Scholar] [CrossRef] [PubMed]
- Famodu, O.O.; Hattrick-Simpers, J.; Aronova, M.; Chang, K.-S.; Murakami, M.; Wuttig, M.; Okazaki, T.; Furuya, Y.; Knauss, L.A.; Bendersky, L.A.; et al. Combinatorial Investigation of Ferromagnetic Shape-Memory Alloys in the Ni-Mn-Al Ternary System Using a Composition Spread Technique. Mater. Trans. 2004, 45, 173–177. [Google Scholar] [CrossRef] [Green Version]
- Dwivedi, A.; Wyrobek, T.J.; Warren, O.L.; Hattrick-Simpers, J.; Famodu, O.O.; Takeuchi, I. High-throughput screening of shape memory alloy thin-film spreads using nanoindentation. J. Appl. Phys. 2008, 104, 073501. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Wu, Z.; Yang, H.; Liu, Y.; Wang, W.; Ma, X.; Wu, G. Martensitic transformation and magnetic properties in ferromagnetic shape memory alloy Ni43Mn46Sn11−xSix. Intermetallics 2011, 19, 1605–1611. [Google Scholar] [CrossRef]
- Aksoy, S.; Acet, M.; Wassermann, E.F.; Krenke, T.; Moya, X.; Manosa, L.; Planes, A.P.; Deen, P. Structural properties and magnetic interactions in martensitic Ni-Mn-Sb alloys. Magazin 2009, 89, 2093–2109. [Google Scholar] [CrossRef]
- Dubenko, I.; Quetz, A.; Pandey, S.; Aryal, A.; Eubank, M.; Rodionov, I.; Prudnikov, V.; Granovsky, A.; Lahderanta, E.; Samanta, T.; et al. Multifunctional properties related to magnetostructural transitions in ternary and quaternary Heusler alloys. J. Magn. Magn. Mater. 2015, 383, 186–189. [Google Scholar] [CrossRef] [Green Version]
- Krenke, T.; Duman, E.; Acet, M.; Wasserman, E.F.; Moya, X.; Manosa, L.; Planes, A.; Suard, E.; Ouladdiaf, B. Magnetic superelasticity and inverse magnetocaloric effect in Ni-Mn-In. Phys. Rev. B 2007, 75, 104414. [Google Scholar] [CrossRef]
- Krenke, T.; Duman, E.; Acet, M.; Moya, X.; Manosa, L.; Planes, A. Effect of Co and Fe on the inverse magnetocaloric properties of Ni-Mn-Sn. J. Appl. Phys. 2007, 102, 033903. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Liu, Z.; Yang, H.; Liu, Y.; Wu, G. Effect of Co addition on martensitic phase transformation and magnetic properties of Mn50Ni40−xIn10Cox polycrystalline alloys. Intermetallics 2011, 19, 1839–1848. [Google Scholar] [CrossRef]
- Wang, Z.L.; Cong, D.Y.; Nie, Z.H.; Gao, J.; Liu, W.; Wang, Y.D. The suppression and recovery of martensitic transformation in a Ni–Co–Mn–In magnetic shape memory alloy. J. Alloy. Compd. 2012, 511, 41–44. [Google Scholar] [CrossRef]
- Pérez-Landazábal, J.I.; Lambri, O.A.; Bonifacich, F.G.; Sánchez-Alarcos, V.; Recarte, V.; Tarditti, F. Influence of defects on the irreversible phase transition in Fe–Pd ferromagnetic shape memory alloys. Acta Mater. 2015, 86, 110–117. [Google Scholar] [CrossRef]
- Meng, Q.; Yang, H.; Liu, Y.; Nam, T.-H.; Chen, F. Thermal arrest analysis of thermoelastic martensitic transformations in shape memory alloys. J. Mater. Res. 2011, 26, 1243–1252. [Google Scholar] [CrossRef]
- Brandon, D.; Kaplan, W.D. Optical Microscopy. In Microstructural Characterization of Materials; John Wiley & Sons, Ltd.: Hobo, NJ, USA, 2008; pp. 123–177. [Google Scholar]
- Krenke, T.; Acet, M.; Wasserman, E.F.; Moya, X.; Manosa, L.; Planes, A. Martensitic transitions and nature of ferromagnetism in the austenitic and martensitic states of Ni-Mn-Sn alloys. Phys. Rev. B 2005, 72, 014412. [Google Scholar] [CrossRef]
- Xu, X.; Ito, W.; Katakura, I.; Tokunaga, M.; Kainuma, R. In situ optical microscopic observation of NiCoMnIn metamagnetic shape memory alloy under pulsed high magnetic field. Scr. Mater. 2011, 65, 946–949. [Google Scholar] [CrossRef]
- Katakura, I.; Tokunaga, M.; Matsuo, A.; Kawaguchi, K.; Kindo, K.; Hitomi, M.; Akahoshi, D.; Kuwahara, H. Development of high-speed polarizing imaging system for operation in high pulsed magnetic field. Rev. Sci. Instrum. 2010, 81, 043701. [Google Scholar] [CrossRef] [PubMed]
- Brandon, D.; Kaplan, W.D. Diffraction Analysis of Crystal Structure. In Microstructural Characterization of Materials; John Wiley & Sons, Ltd.: Hobo, NJ, USA, 2008; pp. 55–122. [Google Scholar]
- Bhatti, K.P.; El-Khatib, S.; Srivastava, V.; James, R.D.; Leighton, C. Small-angle neutron scattering study of magnetic ordering and inhomogeneity across the martensitic phase transformation in Ni50−xCoxMn40Sn10 alloys. Phys. Rev. B 2012, 85, 134450. [Google Scholar] [CrossRef]
- Brown, P.J.; Crangle, J.; Kanomata, T.; Matsumoto, M.; Neumann, K.U.; Ouladdiaf, B.; Ziebeck, K.R.A. The crystal structure and phase transitions of the magnetic shape memory compound Ni2MnGa. J. Phys. Condens. Matter 2002, 14, 10159. [Google Scholar] [CrossRef]
- Brandon, D.; Kaplan, W.D. Scanning Electron Microscopy. In Microstructural Characterization of Materials; John Wiley & Sons, Ltd.: Hobo, NJ, USA, 2008; pp. 261–331. [Google Scholar]
- Brandon, D.; Kaplan, W.D. Transmission Electron Microscopy. In Microstructural Characterization of Materials; John Wiley & Sons, Ltd.: Hobo, NJ, USA, 2008; pp. 179–260. [Google Scholar]
- Delville, R.; Kasinathan, S.; Zhang, Z.; Humbeeck, J.V.; James, R.D.; Schryvers, D. Transmission electron microscopy study of phase compatibility in low hysteresis shape memory alloys. Philos. Mag. 2010, 90, 177–195. [Google Scholar] [CrossRef] [Green Version]
- Murakami, Y.; Yano, T.; Shindo, D.; Kainuma, R.; Arima, T. Transmission Electron Microscopy on Magnetic Phase Transformations in Functional Materials; Springer Boston: Norwell, MA, USA, 2007; pp. 815–820. [Google Scholar]
- Hurrich, C.; Roth, S.; Wendrock, H.; Potschke, M.; Cong, D.Y.; Rellinghaus, B.; Schultz, L. Influence of grain size and training temperature on strain of polycrystalline Ni50Mn29Ga21 samples. In Proceedings of the Joint European Magnetic Symposia, Krakow, Poland, 23–28 August 2010; Institute of Physics Publishing: Krakow, Poland, 2011. [Google Scholar]
- Cong, D.Y.; Zhang, Y.D.; Esling, C.; Wang, Y.D.; Zhao, X.; Zuo, L. Crystallographic features during martensitic transformation in Ni-Mn-Ga ferromagnetic shape memory alloys. In Proceedings of the Materials Processing and Texture—15th International Conference on Textures of Materials, Pittsburgh, PA, USA, 1–6 June 2008; American Ceramic Society: Pittsburgh, PA, USA, 2008; pp. 397–403. [Google Scholar]
- Yan, H.; Zhang, Y.; Xu, N.; Senyshyn, A.; Brokmeier, H.-G.; Esling, C.; Zhao, X.; Zuo, L. Crystal structure determination of incommensurate modulated martensite in Ni–Mn–In Heusler alloys. Acta Mater. 2015, 88, 375–388. [Google Scholar] [CrossRef]
- National SQUID Facility IIT Delhi. What Is Superconducting Quantum Interface Device (SQUID)? Available online: http://squid.iitd.ernet.in/Basic_Literature.htm (accessed on 20 April 2018).
- Shevyrtalov, S.; Miki, H.; Ohtsuka, M.; Grunin, A.; Lyatun, I.; Mashirov, A.; Seredina, M.; Khovaylo, V.; Rodionova, V. Martensitic transformation in polycrystalline substrate-constrained and freestanding Ni-Mn-Ga films with Ni and Ga excess. J. Alloy. Compd. 2018, 741, 1098–1104. [Google Scholar] [CrossRef]
- Lázpita, P.; Sasmaz, M.; Cesari, E.; Barandiarán, J.M.; Gutiérrez, J.; Chernenko, V.A. Martensitic transformation and magnetic field induced effects in Ni42Co8Mn39Sn11 metamagnetic shape memory alloy. Acta Mater. 2016, 109, 170–176. [Google Scholar] [CrossRef]
- Huang, L.; Cong, D.Y.; Ma, L.; Nie, Z.H.; Wang, M.G.; Wang, Z.L.; Suo, H.L.; Ren, Y.; Wang, Y.D. Large magnetic entropy change and magnetoresistance in a Ni41Co9Mn40Sn10 magnetic shape memory alloy. J. Alloy. Compd. 2015, 647, 1081–1085. [Google Scholar] [CrossRef]
- Zhang, X.; Qian, M.; Su, R.; Geng, L. Giant room-temperature inverse and conventional magnetocaloric effects in Ni–Mn–In alloys. Mater. Lett. 2016, 163, 274–276. [Google Scholar] [CrossRef]
- Zhang, X.; Qian, M.; Miao, S.; Su, R.; Liu, Y.; Geng, L.; Sun, J. Enhanced magnetic entropy change and working temperature interval in Ni–Mn–In–Co alloys. J. Alloy. Compd. 2016, 656, 154–158. [Google Scholar] [CrossRef]
- Sozinov, A.; Likhachev, A.A.; Lanska, N.; Soderberg, O.; Ullakko, K.; Lindroos, V.K. Effect of Crystal Structure on Magnetic-Field-Induced Strain in Ni-Mn-Ga; International Society for Optics and Photonics: San Diego, CA, USA, 2003; pp. 586–594. [Google Scholar]
- Sozinov, A.; Lanska, N.; Soroka, A.; Zou, W. 12% magnetic field-induced strain in Ni-Mn-Ga-based non-modulated martensite. Appl. Phys. Lett. 2013, 102, 021902. [Google Scholar] [CrossRef]
- Khalid, F.A.; Abbas, S.Z. Characterization and properties of ferromagnetic shape memory alloys. Mater. Charact. 2011, 62, 1134–1140. [Google Scholar] [CrossRef]
- Monroe, J.A.; Karaman, I.; Basaran, B.; Ito, W.; Umetsu, R.Y.; Kainuma, R.; Koyama, K.; Chumlyakov, Y.I. Direct measurement of large reversible magnetic-field-induced strain in Ni-Co-Mn-In metamagnetic shape memory alloys. Acta Mater. 2012, 60, 6883–6891. [Google Scholar] [CrossRef]
- Karaca, H.E.; Karaman, I.; Basaran, B.; Ren, Y.; Chumlyakov, Y.I.; Maier, H.J. Magnetic field-induced phase transformation in NiMnColn magnetic shape-memory alloys-a new actuation mechanism with large work output. Adv. Funct. Mater. 2009, 19, 983–998. [Google Scholar] [CrossRef]
- Li, Z.; Xu, K.; Zhang, Y.L.; Jing, C. Reproducible magnetostrain behavior induced by structure transformation for Ni46Co4Mn39Sn11 Heusler alloy. J. Appl. Phys. 2015, 117, 023902. [Google Scholar] [CrossRef]
- He, W.Q.; Huang, H.B.; Liu, Z.H.; Ma, X.Q. First-principles investigation of magnetic properties and metamagnetic transition of NiCoMnZ(Z = In, Sn, Sb) Heusler alloys. Intermetallics 2017, 90, 140–146. [Google Scholar] [CrossRef]
- Aguilar-Ortiz, C.O.; Soto-Parra, D.; Álvarez-Alonso, P.; Lázpita, P.; Salazar, D.; Castillo-Villa, P.O.; Flores-Zúñiga, H.; Chernenko, V.A. Influence of Fe doping and magnetic field on martensitic transition in Ni–Mn–Sn melt-spun ribbons. Acta Mater. 2016, 107, 9–16. [Google Scholar] [CrossRef]
- Yang, L.H.; Zhang, H.; Hu, F.X.; Sun, J.R.; Pan, L.Q.; Shen, B.G. Magnetocaloric effect and martensitic transition in Ni50Mn36−xCoxSn14. J. Alloy. Compd. 2014, 588, 46–48. [Google Scholar] [CrossRef]
- Ingale, B.; Gopalan, R.; Raja, M.M.; Chandrasekaran, V.; Ram, S. Magnetostructural transformation, microstructure, and magnetocaloric effect in Ni-Mn-Ga Heusler alloys. J. Appl. Phys. 2007, 102, 1. [Google Scholar] [CrossRef]
- Rao, N.V.R.; Gopalan, R.; Chandrasekaran, V.; Suresh, K.G. Microstructure, magnetic properties and magnetocaloric effect in melt-spun Ni-Mn-Ga ribbons. J. Alloy. Compd. 2009, 478, 59–62. [Google Scholar] [CrossRef]
- Rama Rao, N.V.; Gopalan, R.; Chandrasekaran, V.; Suresh, K.G. Phase coexistence, microstructure and magnetism in Ni-Mn-Sb alloys. J. Phys. D Appl. Phys. 2009, 42, 6. [Google Scholar] [CrossRef]
- Zheng, H.; Wang, W.; Yu, J.; Zhai, Q.; Luo, Z. Martensitic transformation in melt-spun Heusler Ni-Mn-Sn-Co ribbons. J. Mater. Res. 2014, 29, 880–886. [Google Scholar] [CrossRef]
- Zheng, H.; Wang, W.; Xue, S.; Zhai, Q.; Frenzel, J.; Luo, Z. Composition-dependent crystal structure and martensitic transformation in Heusler Ni-Mn-Sn alloys. Acta Mater. 2013, 61, 4648–4656. [Google Scholar] [CrossRef]
- Gschneidner Jr, K.A.; Mudryk, Y.; Pecharsky, V.K. On the nature of the magnetocaloric effect of the first-order magnetostructural transition. Scr. Mater. 2012, 67, 572–577. [Google Scholar] [CrossRef]
- Trung, N.T.; Zhang, L.; Caron, L.; Buschow, K.H.J.; Brück, E. Giant magnetocaloric effects by tailoring the phase transitions. Appl. Phys. Lett. 2010, 96, 172504. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Sierra, A.M.; Bruno, N.M.; Pons, J.; Cesari, E.; Karaman, I. Atomic order and martensitic transformation entropy change in Ni–Co–Mn–In metamagnetic shape memory alloys. Scr. Mater. 2016, 110, 61–64. [Google Scholar] [CrossRef]
- Kustov, S.; Corró, M.L.; Pons, J.; Cesari, E. Entropy change and effect of magnetic field on martensitic transformation in a metamagnetic Ni–Co–Mn–In shape memory alloy. Appl. Phys. Lett. 2009, 94, 191901. [Google Scholar] [CrossRef]
- Recarte, V.; Pérez-Landazábal, J.I.; Sánchez-Alarcos, V.; Rodríguez-Velamazán, J.A. Dependence of the martensitic transformation and magnetic transition on the atomic order in Ni–Mn–In metamagnetic shape memory alloys. Acta Mater. 2012, 60, 1937–1945. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Alarcos, V.; Recarte, V.; Pérez-Landazábal, J.I.; Gómez-Polo, C.; Rodríguez-Velamazán, J.A. Role of magnetism on the martensitic transformation in Ni–Mn-based magnetic shape memory alloys. Acta Mater. 2012, 60, 459–468. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Alarcos, V.; Recarte, V.; Pérez-Landazábal, J.; Cesari, E.; Rodríguez-Velamazán, J. Long-Range Atomic Order and Entropy Change at the Martensitic Transformation in a Ni-Mn-In-Co Metamagnetic Shape Memory Alloy. Entropy 2014, 16, 2756. [Google Scholar] [CrossRef]
- Yang, S.; Wang, C.; Shi, Z.; Wang, J.; Zhang, J.; Huang, Y.; Liu, X. Microstructure, martensitic transformation, mechanical and shape memory properties of Ni–Co–Mn–In high-temperature shape memory alloys under different heat treatments. Mater. Sci. Eng. A 2016, 655, 204–211. [Google Scholar] [CrossRef]
- Ma, Y.; Jiang, C.; Li, Y.; Xu, H.; Wang, C.; Liu, X. Study of Ni50+xMn25Ga25−x (x = 2–11) as high-temperature shape-memory alloys. Acta Mater. 2007, 55, 1533–1541. [Google Scholar] [CrossRef]
- Yang, S.; Su, Y.; Wang, C.; Zhu, J.; Liu, X. Microstructure, martensitic transformation and shape memory effect of Ni38Co12Mn41In9 alloy. Mater. Lett. 2013, 108, 215–218. [Google Scholar] [CrossRef]
- Tan, C.; Zhang, K.; Tian, X.; Cai, W. Effect of Gd addition on microstructure, martensitic transformation and mechanical properties of Ni50Mn36Sn14 ferromagnetic shape memory alloy. J. Alloy. Compd. 2017, 692, 288–293. [Google Scholar] [CrossRef]
- Pérez-Checa, A.; Feuchtwanger, J.; Musiienko, D.; Sozinov, A.; Barandiaran, J.M.; Ullakko, K.; Chernenko, V.A. High temperature Ni45Co5Mn25−xFexGa20Cu5 ferromagnetic shape memory alloys. Scr. Mater. 2017, 134, 119–122. [Google Scholar] [CrossRef]
- Zhao, X.G.; Hsieh, C.C.; Lai, J.H.; Cheng, X.J.; Chang, W.C.; Cui, W.B.; Liu, W.; Zhang, Z.D. Effects of annealing on the magnetic entropy change and exchange bias behavior in melt-spun Ni–Mn–In ribbons. Scr. Mater. 2010, 63, 250–253. [Google Scholar] [CrossRef]
- Yuhasz, W.M.; Schlagel, D.L.; Xing, Q.; McCallum, R.W.; Lograsso, T.A. Metastability of ferromagnetic Ni–Mn–Sn Heusler alloys. J. Alloy. Compd. 2010, 492, 681–684. [Google Scholar] [CrossRef]
- Das, R.; Saravanan, P.; Arvindha Babu, D.; Perumal, A.; Srinivasan, A. Influence of solidification rate and heat treatment on magnetic refrigerant properties of melt spun Ni51Mn34In14Si1 ribbons. J. Magn. Magn. Mater. 2013, 344, 152–157. [Google Scholar] [CrossRef]
- Sánchez-Alarcos, V.; Pérez-Landazábal, J.I.; Recarte, V.; Lucia, I.; Vélez, J.; Rodríguez-Velamazán, J.A. Effect of high-temperature quenching on the magnetostructural transformations and the long-range atomic order of Ni–Mn–Sn and Ni–Mn–Sb metamagnetic shape memory alloys. Acta Mater. 2013, 61, 4676–4682. [Google Scholar] [CrossRef] [Green Version]
Example Alloys | Process | Crystal Structure | MFIS | Ref. |
---|---|---|---|---|
Ni49.8Mn28.5Ga21.7 | Bridgman | bct, I4/mmm | 6% | [6] |
Ni48.8Mn29.7Ga21.5 | Bridgman | 7M orthorhombic | 9.50% | [5] |
Ni2MnGa | Single crystal | bct | 0.20% | [3] |
Ni506Mn28.3Ga21.1 | Arc-melting | 7M | 500 ppm | [151] |
Ni48.0Mn30.6Ga21.5 | 5M | 160 ppm | ||
Ni46Mn24Ga22Co4Cu4 | Induction melting | NM | 12% | [150] |
Ni45Co5Mn36.7In13.3 | Induction melting | L21 and 14M | 3% | [11] |
Ni43Co7Mn39Sn11 | Induction melting | L21 and 10M/6M | 1.00% | [12] |
Ni45.7Co4.8Mn35.6In13.8 | Bridgman | L21 | 3.10% | [152] |
Ni45Mn36.5Co5In13.5 | Induction melting | L21 and 6M | 1.20% | [153] |
Ni0.50Mn0.34In0.16 | Arc-melting | 10M | 0.12% | [123] |
Ni46Co4Mn39Sn11 | Arc-melting | L21 | 0.01% | [154] |
Ni50Mn34In16 | Density functional theory using PBE formulation | - | −4.5% | [155] |
Ni44.9Co5.1Mn37.5In12.5 | - | −5.1% | ||
Ni40.9Co9.1Mn37.5Sn12.5 | - | −2.6% | ||
Ni35.2Co14.8Mn37.5Sb12.5 | - | −2.7% |
Example Alloys | Process | Crystal Structure | ΔSm (J/kgK) | Ref. |
---|---|---|---|---|
Ni45Mn43CrSn11 | Arc-melting, annealed | Cubic and tetragonal | 39.7 | [24] |
Ni41Co9Mn40Sn10 | Arc-melting, annealed | 6M | 31.9 | [146] |
Ni43Co7Mn39Sn11 | As-spun annealed | L21 and L10 L21 and L10 | 9.5 23.9 | [99] |
Ni42.6Mn39.6Sn9.7Fe8.1 | Melt-spun | 7M | 11.0 | [156] |
Ni42Co8Mn39Sn11 | Arc-melting, annealed at 1170 K, 14 d | L21 | - | [145] |
Ni49Mn39Sn12 | Melt-spun | L21 | 8.2 | [94] |
Ni50Mn34Co2Sn14 | Arc-melting | L21 | 48.8 | [157] |
Ni48Co2Mn38Sn12 | Melt-spun | Austenite | 32 | [100] |
Ni0.50Mn0.34In0.16 | Arc-melting | 10M | 12 | [123] |
Ni50Mn33.66Cr0.34In16 | Arc-melting | Austenite and orthorhombic | 17.7 | [23] |
Ni49.5Mn25.4Ga25.1 | Single crystal | Austenite | ~11 | [17] |
Ni2.19Mn0.81Ga | Arc-melting | Monophase | 20 | [16] |
Ni54.8Mn20.3Ga24.9 | Arc-melting | Non-modulated | −7.0 | [158] |
Ni55Mn18.9Ga26.1 | Arc-melting | 7M | −5.2 | [158] |
Ni55.3Mn18.1Ga26.6 | Arc-melting | Austenite | −1.3 | [158] |
Ni55Mn20.6Ga24.4 | Melt-spun | 7M | −9.5 | [159] |
Ni55Mn19.6Ga25.4 | Melt-spun | 7M | −10.4 | [159] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahamed Khan, R.A.; Ghomashchi, R.; Xie, Z.; Chen, L. Ferromagnetic Shape Memory Heusler Materials: Synthesis, Microstructure Characterization and Magnetostructural Properties. Materials 2018, 11, 988. https://doi.org/10.3390/ma11060988
Ahamed Khan RA, Ghomashchi R, Xie Z, Chen L. Ferromagnetic Shape Memory Heusler Materials: Synthesis, Microstructure Characterization and Magnetostructural Properties. Materials. 2018; 11(6):988. https://doi.org/10.3390/ma11060988
Chicago/Turabian StyleAhamed Khan, Riaz Ahamed, Reza Ghomashchi, Zonghan Xie, and Lei Chen. 2018. "Ferromagnetic Shape Memory Heusler Materials: Synthesis, Microstructure Characterization and Magnetostructural Properties" Materials 11, no. 6: 988. https://doi.org/10.3390/ma11060988
APA StyleAhamed Khan, R. A., Ghomashchi, R., Xie, Z., & Chen, L. (2018). Ferromagnetic Shape Memory Heusler Materials: Synthesis, Microstructure Characterization and Magnetostructural Properties. Materials, 11(6), 988. https://doi.org/10.3390/ma11060988