Photovoltage Reversal in Organic Optoelectronic Devices with Insulator-Semiconductor Interfaces
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussions
3.1. The Equivalent Circuit of MISM Devices
3.2. Analyses of the “ON” Transients from the MISM Devices
3.3. Analyses of the “OFF” Transients from the MISM Devices
3.4. Photovoltage Reversal
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Gather, M.C.; Kohnen, A.; Meerholz, K. White organic light-emitting diodes. Adv. Mater. 2011, 23, 233–248. [Google Scholar] [CrossRef] [PubMed]
- Buechele, P.; Richter, M.; Tedde, S.F.; Matt, G.J.; Ankah, G.N.; Fischer, R.; Biele, M.; Metzger, W.; Lilliu, S.; Bikondoa, O.; et al. X-ray imaging with scintillator-sensitized hybrid organic photodetectors. Nat. Photonics 2015, 9, 843–848. [Google Scholar] [CrossRef]
- Zhao, Q.; Wang, H.L.; Jiang, L.; Zhen, Y.G.; Dong, H.L.; Hu, W.P. Solution-processed flexible organic ferroelectric phototransistor. ACS Appl. Mater. Interfaces 2017, 9, 43880–43885. [Google Scholar] [CrossRef] [PubMed]
- Hofle, S.; Lutz, T.; Egel, A.; Nickel, F.; Kettlitz, S.W.; Gomard, G.; Lemmer, U.; Colsmann, A. Influence of the emission layer thickness on the optoelectronic properties of solution processed organic light-emitting diodes. ACS Photonics 2014, 1, 968–973. [Google Scholar] [CrossRef]
- Mischok, A.; Siegmund, B.; Ghosh, D.S.; Benduhn, J.; Spoltore, D.; Bohm, M.; Frob, H.; Korner, C.; Leo, K.; Vandewal, K. Controlling tamm plasmons for organic narrowband near-infrared photodetectors. ACS Photonics 2017, 4, 2228–2234. [Google Scholar] [CrossRef]
- Wang, K.; Liu, C.; Meng, T.Y.; Yi, C.; Gong, X. Inverted organic photovoltaic cells. Chem. Soc. Rev. 2016, 45, 2937–2975. [Google Scholar] [CrossRef] [PubMed]
- Gelinas, S.; Rao, A.; Kumar, A.; Smith, S.L.; Chin, A.W.; Clark, J.; van der Poll, T.S.; Bazan, G.C.; Friend, R.H. Ultrafast long-range charge separation in organic semiconductor photovoltaic diodes. Science 2014, 343, 512–516. [Google Scholar] [CrossRef] [PubMed]
- Dou, L.T.; You, J.B.; Hong, Z.R.; Xu, Z.; Li, G.; Street, R.A.; Yang, Y. 25th anniversary article: A decade of organic/polymeric photovoltaic research. Adv. Mater. 2013, 25, 6642–6671. [Google Scholar] [CrossRef] [PubMed]
- In, S.; Mason, D.R.; Lee, H.; Jung, M.; Lee, C.; Park, N. Enhanced light trapping and power conversion efficiency in ultrathin plasmonic organic solar cells: A coupled optical-electrical multiphysics study on the effect of nanoparticle geometry. ACS Photonics 2015, 2, 78–85. [Google Scholar] [CrossRef]
- Hu, L.G.; Noda, Y.; Ito, H.; Kishida, H.; Nakamura, A.; Awaga, K. Optoelectronic conversion by polarization current, triggered by space charges at organic-based interfaces. Appl. Phys. Lett. 2010, 96, 243303. [Google Scholar] [CrossRef]
- Mihailetchi, V.D.; Wildeman, J.; Blom, P.W.M. Space-charge limited photocurrent. Phys. Rev. Lett. 2005, 94, 126602. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.G.; Liu, X.; Dalgleish, S.; Matsushita, M.M.; Yoshikawa, H.; Awaga, K. Organic optoelectronic interfaces with anomalous transient photocurrent. J. Mater. Chem. C 2015, 3, 5122–5135. [Google Scholar] [CrossRef]
- Dalgleish, S.; Matsushita, M.M.; Hu, L.G.; Li, B.; Yoshikawa, H.; Awaga, K. Utilizing photocurrent transients for dithiolene-based photodetection: Stepwise improvements at communications relevant wavelengths. J. Am. Chem. Soc. 2012, 134, 12742–12750. [Google Scholar] [CrossRef] [PubMed]
- Gautam, V.; Rand, D.; Hanein, Y.; Narayan, K.S. A polymer optoelectronic interface provides visual cues to a blind retina. Adv. Mater. 2014, 26, 1751–1756. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Dalgleish, S.; Matsushita, M.M.; Yoshikawa, H.; Awaga, K. Storage of an electric field for photocurrent generation in ferroelectric-functionalized organic devices. Nat. Commun. 2014, 5, 3279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sandberg, O.J.; Nyman, M.; Dahlstrom, S.; Sanden, S.; Torngren, B.; Smatt, J.H.; Osterbacka, R. On the validity of MIS-CELIV for mobility determination in organic thin-film devices. Appl. Phys. Lett. 2017, 110, 153504. [Google Scholar] [CrossRef]
- Noma, T.; Taguchi, D.; Manaka, T.; Lin, H.; Iwamoto, M. Determination of carrier mobility of semiconductor layer in organic metal-insulator-semiconductor diodes by displacement current and electric-field-induced optical second-harmonic generation measurements. Org. Electron. 2017, 43, 70–76. [Google Scholar] [CrossRef]
- Armin, A.; Juska, G.; Ullah, M.; Velusamy, M.; Burn, P.L.; Meredith, P.; Pivrikas, A. Balanced carrier mobilities: Not a necessary condition for high-efficiency thin organic solar cells as determined by MIS-CELIV. Adv. Energy Mater. 2014, 4, 1300954. [Google Scholar] [CrossRef]
- Peng, J.J.; Chen, X.Q.; Chen, Y.N.; Sandberg, O.J.; Osterbacka, R.; Liang, Z.Q. Transient extraction of holes and electrons separately unveils the transport dynamics in organic photovoltaics. Adv. Electron. Mater. 2016, 2, 1500333. [Google Scholar] [CrossRef]
- Nalwa, K.S.; Carr, J.A.; Mahadevapuram, R.C.; Kodali, H.K.; Bose, S.; Chen, Y.; Petrich, J.W.; Ganapathysubramanian, B.; Chaudhary, S. Enhanced charg separation in organic photovoltaic films doped with ferroelectric dipoles. Energy Environ. Sci. 2012, 5, 7042–7049. [Google Scholar] [CrossRef]
- Yuan, Y.; Sharma, P.; Xiao, Z.; Poddar, S.; Gruverman, A.; Ducharme, S.; Huang, J. Understanding the effect of ferroelectric polarization on power conversion efficiency of organic photovoltaic devices. Energy Environ. Sci. 2012, 5, 8558–8563. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Su, X.; Shen, M.; Zheng, F.; Xin, Y.; Zhang, L.; Hua, M.; Chen, Y.; Harris, V.G. Enhancement of photocurrent in ferroelectric films via the incorporation of narrow bandgap nanoparticles. Adv. Mater. 2012, 24, 1202–1208. [Google Scholar] [CrossRef] [PubMed]
- Asadi, K.; de Bruyn, P.; Blom, P.W.M.; de Leeuw, D.M. Origin of the efficiency enhancement in ferroelectric functionalized organic solar cells. Appl. Phys. Lett. 2011, 98, 183301. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Y.B.; Reece, T.J.; Sharma, P.; Poddar, S.; Ducharme, S.; Gruverman, A.; Yang, Y.; Huang, J.S. Efficiency enhancement in organic solar cells with ferroelectric polymers. Nat. Mater. 2011, 10, 296–302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lazarev, V.V.; Blinov, L.M.; Yudin, S.G.; Palto, S.P. Photovoltaic effect in an organic semiconductor controlled by a polymer ferroelectric. Crystallogr. Rep. 2015, 60, 286–288. [Google Scholar] [CrossRef]
- Hu, L.G.; Iwasaki, A.; Suizu, R.; Noda, Y.; Li, B.; Yoshikawa, H.; Matsushita, M.M.; Awaga, K.; Ito, H. Effect of photoinduced charge displacement on organic optoelectronic conversion. Phys. Rev. B 2011, 84, 205329. [Google Scholar] [CrossRef]
- Braun, S.; Salaneck, W.R.; Fahlman, M. Energy-level alignment at organic/metal and organic/organic interfaces. Adv. Mater. 2009, 21, 1450–1472. [Google Scholar] [CrossRef]
- Paasch, G.; Scheinert, S. Space charge layers in organic field-effect transistors with Gaussian or exponential semiconductor density of states. J. Appl. Phys. 2007, 101, 024514. [Google Scholar] [CrossRef]
- Asadi, K.; De Leeuw, D.M.; De Boer, B.; Blom, P.W.M. Organic non-volatile memories from ferroelectric phase-separated blends. Nat. Mater. 2008, 7, 547–550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Butler, K.T.; Frost, J.M.; Walsh, A. Ferroelectric materials for solar energy conversion: Photoferroics revisited. Energy Environ. Sci. 2015, 8, 838–848. [Google Scholar] [CrossRef] [Green Version]
- Paillard, C.; Bai, X.F.; Infante, I.C.; Guennou, M.; Geneste, G.; Alexe, M.; Kreisel, J.; Dkhil, B. Photovoltaics with ferroelectrics: Current status and beyond. Adv. Mater. 2016, 28, 5153–5168. [Google Scholar] [CrossRef] [PubMed]
- Seidel, J.; Fu, D.Y.; Yang, S.Y.; Alarcon-Llado, E.; Wu, J.Q.; Ramesh, R.; Ager, J.W. Efficient photovoltaic current generation at ferroelectric domain walls. Phys. Rev. Lett. 2011, 107, 126805. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, L.; Jin, W.; Feng, R.; Zaheer, M.; Nie, Q.; Chen, G.; Qiu, Z.-J.; Cong, C.; Liu, R. Photovoltage Reversal in Organic Optoelectronic Devices with Insulator-Semiconductor Interfaces. Materials 2018, 11, 1530. https://doi.org/10.3390/ma11091530
Hu L, Jin W, Feng R, Zaheer M, Nie Q, Chen G, Qiu Z-J, Cong C, Liu R. Photovoltage Reversal in Organic Optoelectronic Devices with Insulator-Semiconductor Interfaces. Materials. 2018; 11(9):1530. https://doi.org/10.3390/ma11091530
Chicago/Turabian StyleHu, Laigui, Wei Jin, Rui Feng, Muhammad Zaheer, Qingmiao Nie, Guoping Chen, Zhi-Jun Qiu, Chunxiao Cong, and Ran Liu. 2018. "Photovoltage Reversal in Organic Optoelectronic Devices with Insulator-Semiconductor Interfaces" Materials 11, no. 9: 1530. https://doi.org/10.3390/ma11091530
APA StyleHu, L., Jin, W., Feng, R., Zaheer, M., Nie, Q., Chen, G., Qiu, Z. -J., Cong, C., & Liu, R. (2018). Photovoltage Reversal in Organic Optoelectronic Devices with Insulator-Semiconductor Interfaces. Materials, 11(9), 1530. https://doi.org/10.3390/ma11091530