The Microstructure, Thermal, and Mechanical Properties of Sn-3.0Ag-0.5Cu-xSb High-Temperature Lead-Free Solder
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Microstructure of Solder Alloy
3.2. DSC Analysis of the Solder Alloy
3.3. Mechanical Properties of Solder Alloy
4. Conclusions
- (1)
- The microstructure study showed that after adding Sb, Sn-Sb phase, Cu6(Sn,Sb)5 phase, and Ag3(Sn,Sb) phase were formed in the solder alloy. The Ag3(Sn,Sb) phase and Cu6(Sn,Sb)5 phase are distributed in the β-Sn matrix phase. The addition of Sb suppresses and refines the formation of intermetallic compounds and improves the microstructure of the solder alloy.
- (2)
- The addition of Sb significantly increases the melting point and paste range of the Sn-3.0Ag-0.5Cu-xSb solder alloy. The melting point of the solder alloy increases with the increase of Sb. Among them, the thermal performance of Sn-3.0Ag-0.5Cu-25Sb is the best. The melting temperature of Sn-3.0Ag-0.5Cu-25Sb is 332.91 °C, and the solid–liquid temperature is 313.28–342.02 °C. The pasty range is 28.74 °C, which is lower than the 30 °C recommended by NCMS.
- (3)
- With the increase of Sb addition, the ultimate tensile strength of Sn-3.0Ag-0.5Cu-xSb (x = 0, 25, 28, and 31) solder alloy increases, while the elongation decreases. The ultimate tensile strength of the solder alloy increased from 29.45 MPa of Sn-3.0Ag-0.5Cu solder to 70.81 MPa of Sn-3.0Ag-0.5Cu-31Sb solder. The increase in the ultimate tensile strength of the solder alloy is due to the reduction in the thickness of IMC by Sb and solid solution hardening effect of Sb. The solder alloy changes from plastic fracture to brittle fracture.
- (4)
- The microhardness of the solder alloy is greatly improved. The microhardness of Sn-3.0Ag-0.5Cu is 12.1 HV at 100 g and the microhardness of Sn-3.0Ag-0.5Cu-25Sb is 35.1 HV at 100 g.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mahmudi, R.; Mahin-Shirazi, S. Effect of Sb addition on the tensile deformation behavior of lead-free Sn–3.5Ag solder alloy. Mater. Des. 2011, 32, 5027–5032. [Google Scholar] [CrossRef]
- Abtew, M.; Selvaduray, G. Lead-free Solders in Microelectronics. Mater. Sci. Eng. R Rep. 2000, 27, 95–141. [Google Scholar] [CrossRef]
- Sobhy, M.; El-Refai, A.M.; Fawzy, A. Effect of Graphene Oxide Nano-Sheets (GONSs) on thermal, microstructure and stress–strain characteristics of Sn-5 wt% Sb-1 wt% Ag solder alloy. J. Mater. Sci. Mater. Electron. 2015, 27, 2349–2359. [Google Scholar] [CrossRef]
- Zeng, K.; Tu, K. Six cases of reliability study of Pb-free solder joints in electronic packaging technology. Mater. Sci. Eng. R Rep. 2002, 38, 55–105. [Google Scholar] [CrossRef]
- Mahmudi, R.; Geranmayeh, A.R.; Khanbareh, H.; Jahangiri, N. Indentation creep of lead-free Sn–9Zn and Sn–8Zn–3Bi solder alloys. Mater. Des. 2009, 30, 574–580. [Google Scholar] [CrossRef]
- Zhang, L.; Xue, S.B.; Zeng, G.; Gao, L.L.; Ye, H. Interface reaction between SnAgCu/SnAgCuCe solders and Cu substrate subjected to thermal cycling and isothermal aging. J. Alloys Compd. 2012, 510, 38–45. [Google Scholar] [CrossRef]
- Sungkhaphaitoon, P.; Plookphol, T. The Effects of Antimony Addition on the Microstructural, Mechanical, and Thermal Properties of Sn-3.0Ag-0.5Cu Solder Alloy. Metall. Mater. Trans. A 2017, 49, 652–660. [Google Scholar] [CrossRef]
- Tsao, L.; Chang, S.; Lee, C.; Sun, W.; Huang, C. Effects of nano-Al2O3 additions on microstructure development and hardness of Sn3.5Ag0.5Cu solder. Mater. Des. 2010, 31, 4831–4835. [Google Scholar] [CrossRef]
- Kotadia, H.; Mokhtari, O.; Clode, M.; Green, M.; Mannan, S. Intermetallic compound growth suppression at high temperature in SAC solders with Zn addition on Cu and Ni–P substrates. J. Alloys Compd. 2012, 511, 176–188. [Google Scholar] [CrossRef]
- Gao, L.; Xue, S.; Zhang, L.; Sheng, Z.; Ji, F.; Dai, W.; Yu, S.-L.; Zeng, G. Effect of alloying elements on properties and microstructures of SnAgCu solders. Microelectron. Eng. 2010, 87, 2025–2034. [Google Scholar] [CrossRef]
- Ventura, T.; Terzi, S.; Rappaz, M.; Dahle, A.K. Effects of solidification kinetics on microstructure formation in binary Sn–Cu solder alloys. Acta Mater. 2011, 59, 1651–1658. [Google Scholar] [CrossRef] [Green Version]
- Fakpan, K.; Canyook, R. Effects of Sb and Zn Addition on Mechanical Properties and Corrosion Resistance of Sn–Ag–Cu Solders. Key Eng. Mater. 2017, 728, 129–134. [Google Scholar] [CrossRef]
- Lin, F.; Bi, W.; Ju, G.; Wang, W.; Wei, X. Evolution of Ag3Sn at Sn–3.0Ag–0.3Cu–0.05Cr/Cu joint interfaces during thermal aging. J. Alloys Compd. 2011, 509, 6666–6672. [Google Scholar] [CrossRef]
- Chantaramanee, S.; Sriwittayakul, W.; Sungkhaphaitoon, P. Effects of Antimony and Indium Addition on Wettability and Interfacial Reaction of Sn-3.0Ag-0.5Cu Lead Free Solder on Copper Substrate. Mater. Sci. Forum 2018, 928, 188–193. [Google Scholar] [CrossRef]
- Xiong, M.; Zhang, L. Interface reaction and intermetallic compound growth behavior of Sn-Ag-Cu lead-free solder joints on different substrates in electronic packaging. J. Mater. Sci. 2018, 54, 1741–1768. [Google Scholar] [CrossRef]
- Ma, H.; Qu, L.; Huang, M.; Gu, L.; Zhao, N.; Wang, L. In-situ study on growth behavior of Ag3Sn in Sn–3.5Ag/Cu soldering reaction by synchrotron radiation real-time imaging technology. J. Alloys Compd. 2012, 537, 286–290. [Google Scholar] [CrossRef]
- Han, Y.; Gao, Y.; Zhang, S.; Jing, H.; Wei, J.; Zhao, L.; Xu, L. Study of mechanical properties of Ag nanoparticle-modified graphene/Sn-Ag-Cu solders by nanoindentation. Mater. Sci. Eng. A 2019, 761, 138051. [Google Scholar] [CrossRef]
- Chou, T.-T.; Song, R.-W.; Chen, W.-Y.; Duh, J.-G. Enhancement of the mechanical strength of Sn-3.0Ag-0.5Cu/Ni joints via doping minor Ni into solder alloy. Mater. Lett. 2019, 235, 180–183. [Google Scholar] [CrossRef]
- Gierlotka, W. Thermodynamic Description of the Quaternary Ag-Bi-Cu-Sn System. J. Electron. Mater. 2017, 47, 212–224. [Google Scholar] [CrossRef]
- Chen, B.L.; Li, G.Y. Influence of Sb on IMC growth in Sn–Ag–Cu–Sb Pb-free solder joints in reflow process. Thin Solid Films 2004, 462, 395–401. [Google Scholar] [CrossRef]
- Lee, H.-T.; Chen, M.-H.; Jao, H.-M.; Hsu, C.-J. Effect of adding Sb on microstructure and adhesive strength of Sn-Ag solder joints. J. Electron. Mater. 2004, 33, 1048–1054. [Google Scholar] [CrossRef]
- Chen, B.; Li, G. An investigation of effects of Sb on the intermetallic formation in Sn-3.5Ag-0.7Cu solder joints. IEEE Trans. Compon. Packag. Technol. 2005, 28, 534–541. [Google Scholar] [CrossRef]
- Li, G.; Chen, B.; Shi, X.; Wong, S.C.; Wang, Z. Effects of Sb addition on tensile strength of Sn–3.5Ag–0.7Cu solder alloy and joint. Thin Solid Films 2006, 504, 421–425. [Google Scholar] [CrossRef]
- El-Daly, A.; Hammad, A.; Fawzy, A.; Nasrallh, D.A. Microstructure, mechanical properties, and deformation behavior of Sn–1.0Ag–0.5Cu solder after Ni and Sb additions. Mater. Des. 2013, 43, 40–49. [Google Scholar] [CrossRef]
- Okamoto, H.; Massalski, T.B. Binary alloy phase diagrams requiring further studies. J. Phase Equilib. Diffus. 1994, 15, 500–521. [Google Scholar] [CrossRef]
- Allen, W.; Perepezko, J. Constitution of the tin-antimony system. Scr. Metall. Mater. 1990, 24, 2215–2220. [Google Scholar] [CrossRef]
- Allen, W.P.; Perepezko, J.H. Solidification of undercooled Sn-Sb peritectic alloys: Part I. Microstructural evolution. Metall. Mater. Trans. A 1991, 22, 753–764. [Google Scholar] [CrossRef]
- Luo, Z.-B.; Zhao, J.; Gao, Y.-J.; Wang, L. Revisiting mechanisms to inhibit Ag3Sn plates in Sn–Ag–Cu solders with 1wt.% Zn addition. J. Alloys Compd. 2010, 500, 39–45. [Google Scholar] [CrossRef]
- Lin, L.-W.; Song, J.-M.; Lai, Y.-S.; Chiu, Y.-T.; Lee, N.-C.; Uan, J.-Y. Alloying modification of Sn–Ag–Cu solders by manganese and titanium. Microelectron. Reliab. 2009, 49, 235–241. [Google Scholar] [CrossRef]
- National Center for Manufacturing Sciences. Lead-Free Solder Project Final Report; NCMS Report 0401RE96; National Center for Manufacturing Sciences: Ann Arbor, MI, USA, 1997. [Google Scholar]
- Zhu, F.; Zhang, H.; Guan, R.; Liu, S. Effects of temperature and strain rate on mechanical property of Sn96.5Ag3Cu0.5. J. Alloys Compd. 2007, 438, 100–105. [Google Scholar] [CrossRef]
- Koleňák, R.; Martinkovič, M.; Koleňáková, M. Shear Strength and Dsc Analysis of High-Temperature Solders. Arch. Metall. Mater. 2013, 58, 529–533. [Google Scholar] [CrossRef]
- Shohji, I.; Toyama, Y. Effect of Strain Rate on Tensile Properties of Miniature Size Specimens of Several Lead-Free Alloys. Mater. Sci. Forum 2014, 786, 2810–2815. [Google Scholar] [CrossRef]
- Lee, H.-T.; Hu, S.-Y.; Hong, T.-F.; Chen, Y.-F. The Shear Strength and Fracture Behavior of Sn-Ag-xSb Solder Joints with Au/Ni-P/Cu UBM. J. Electron. Mater. 2008, 37, 867–873. [Google Scholar] [CrossRef]
Materials | Sn | Ag | Cu | Sb |
---|---|---|---|---|
Sn-3.0Ag-0.5Cu | balance | 3.11 | 0.48 | — |
Sn-3.0Ag-0.5Cu-25Sb | balance | 3.24 | 0.47 | 25.09 |
Sn-3.0Ag-0.5Cu-28Sb | balance | 3.18 | 0.51 | 28.17 |
Sn-3.0Ag-0.5Cu-31Sb | balance | 3.35 | 0.47 | 31.21 |
Position | Element | Possible Composition | |||
---|---|---|---|---|---|
Sn | Ag | Cu | Sb | ||
A | 99.00 | 0.41 | 0.59 | — | β-Sn |
B | 24.65 | 75.35 | — | — | Ag3Sn |
C | 65.73 | — | 34.27 | — | Cu6Sn5 |
D | 53.39 | — | — | 46.61 | SnSb |
E | 23.36 | 70.21 | — | 6.43 | Ag3 (Sn,Sb) |
F | 60.51 | — | 33.69 | 5.80 | Cu6 (Sn,Sb)5 |
G | 88.93 | — | — | 11.07 | β-Sn |
Solder Alloys | Tonset (°C) | Tend (°C) | Pasty Range (Tend–Tonset) (°C) | Melting Temperature(°C) |
---|---|---|---|---|
Sn-3.0Ag-0.5Cu | 216.32 | 221.51 | 5.19 | 218.90 |
Sn-3.0Ag-0.5Cu-25Sb | 313.28 | 342.02 | 28.74 | 332.91 |
Sn-3.0Ag-0.5Cu-28Sb | 314.64 | 353.31 | 38.67 | 342.53 |
Sn-3.0Ag-0.5Cu-31Sb | 320.95 | 368.73 | 47.78 | 354.68 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Yan, Y.; Gao, T.; Xu, G. The Microstructure, Thermal, and Mechanical Properties of Sn-3.0Ag-0.5Cu-xSb High-Temperature Lead-Free Solder. Materials 2020, 13, 4443. https://doi.org/10.3390/ma13194443
Li C, Yan Y, Gao T, Xu G. The Microstructure, Thermal, and Mechanical Properties of Sn-3.0Ag-0.5Cu-xSb High-Temperature Lead-Free Solder. Materials. 2020; 13(19):4443. https://doi.org/10.3390/ma13194443
Chicago/Turabian StyleLi, Chaojun, Yanfu Yan, Tingting Gao, and Guodong Xu. 2020. "The Microstructure, Thermal, and Mechanical Properties of Sn-3.0Ag-0.5Cu-xSb High-Temperature Lead-Free Solder" Materials 13, no. 19: 4443. https://doi.org/10.3390/ma13194443
APA StyleLi, C., Yan, Y., Gao, T., & Xu, G. (2020). The Microstructure, Thermal, and Mechanical Properties of Sn-3.0Ag-0.5Cu-xSb High-Temperature Lead-Free Solder. Materials, 13(19), 4443. https://doi.org/10.3390/ma13194443