Assessment of Wood Bio-Concrete Properties Modified with Silane–Siloxane
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Wood Bio-Concrete
2.3. Silane Treatment Procedures
2.4. Cementitious Paste Test Procedures
2.4.1. Rheological Tests
2.4.2. Isothermal Calorimetry
2.4.3. Thermogravimetric Analysis
2.5. Wood Bio-Concrete Test Procedures
2.5.1. Flow Table and Entrained Air Tests
2.5.2. Compressive Strength
2.5.3. Capillary Water Absorption
3. Results and Discussion
3.1. Cementitious Paste
3.1.1. Rheology
3.1.2. Isothermal Calorimetry
3.1.3. Thermogravimetric Analysis
3.2. Wood Bio-Concrete
3.2.1. Consistency Index, Entrained Air, and Bulk Density
3.2.2. Compressive Strength
3.2.3. Capillary Water Absorption
4. Concluding Remarks
- (i)
- The incorporation of 1% silane in the cementitious paste increased the rheological parameters, delayed hydration by approximately 6 h compared to the reference, and slightly decreased the heat of hydration in 5%.
- (ii)
- Wood bio-concrete with silane incorporation (WBC-SIL) showed an 8% lower consistency index and the entrained air content in fresh state was reduced by 51% in comparison to WBC-REF.
- (iii)
- The use of external coating (WBC-EC) did not alter the mechanical properties of the composite. On the other hand, the addition of silane in the mixture (WBC-SIL and WBC-SIL+EC) caused an increase of approximately 24% in compressive strength and 94% in the modulus of elasticity.
- (iv)
- WBC-EC treatment was effective in capillary water absorption only in the first hour of the test (with the absorption rate being reduced by 81% compared to WBC-REF in the same period) while the addition of silane to the mixture (WBC-SIL and WBC-SIL+EC) showed excellent performance, with a reduction in the absorption rate up to 95% compared to WBC-REF, preventing the entry of water and capillary rise within the composite and improving its durability.
5. Study Limitations and Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Al Abdallah, H.; Abu-Jdayil, B.; Iqbal, M.Z. Improvement of mechanical properties and water resistance of bio-based thermal insulation material via silane treatment. J. Clean. Prod. 2022, 346, 131242. [Google Scholar] [CrossRef]
- Himeur, Y.; Ghanem, K.; Alsalemi, A.; Bensaali, F.; Amira, A. Artificial intelligence based anomaly detection of energy consumption in buildings: A review, current trends and new perspectives. Appl. Energy 2021, 287, 116601. [Google Scholar] [CrossRef]
- Boehm, S.; Lebling, K.; Levin, K.; Fekete, H.; Jaeger, J.; Waite, R.; Nilsson, A.; Thwaites, J.; Wilson, R.; Geiges, A.; et al. State of climate action 2021: Systems transformations required to limit global warming to 1.5 c. World Resour. Inst. 2021, 10, 46830. [Google Scholar] [CrossRef]
- Sáez-Pérez, M.P.; Brümmer, M.; Durán-Suárez, J.A. A review of the factors affecting the properties and performance of hemp aggregate concretes. J. Build. Eng. 2020, 31, 101323. [Google Scholar] [CrossRef]
- Schandl, H.; Fischer-Kowalski, M.; West, J.; Giljum, S.; Dittrich, M.; Eisenmenger, N.; Geschke, A.; Lieber, M.; Wieland, H.; Schaffartzik, A.; et al. Global material flows and resource productivity: Forty years of evidence. J. Ind. Ecol. 2018, 22, 827–838. [Google Scholar] [CrossRef]
- Torres, A.; Brandt, J.; Lear, K.; Liu, J. A looming tragedy of the sand commons. Science 2017, 357, 970–971. [Google Scholar] [CrossRef]
- Ansell, M.P.; Lawrence, M.; Jiang, Y.; Shea, A.; Hussain, A.; Calabria-Holley, J.; Walker, P. Natural plant-based aggregates and bio-composite panels with low thermal conductivity and high hygrothermal efficiency for applications in construction. In Nonconventional and Vernacular Construction Materials; Woodhead Publishing: Sawston, UK, 2020; pp. 217–245. [Google Scholar]
- Bošković, I.; Radivojević, A. Life cycle greenhouse gas emissions of hemp-lime concrete wall constructions in Serbia: The impact of carbon sequestration, transport, waste production and end of life biogenic carbon emission. J. Build. Eng. 2023, 66, 105908. [Google Scholar] [CrossRef]
- Collet, F. Hygric and thermal properties of bio-aggregate based building materials. In Bio-Aggregates Based Building Materials: State-of-the-Art Report of the RILEM Technical Committee 236-BBM; Springer: Berlin/Heidelberg, Germany, 2017; pp. 125–147. [Google Scholar]
- Tripathi, N.; Hills, C.D.; Singh, R.S.; Atkinson, C.J. Biomass waste utilisation in low-carbon products: Harnessing a major potential resource. NPJ Clim. Atmos. Sci. 2019, 2, 35. [Google Scholar] [CrossRef]
- Bourzik, O.; Akkouri, N.; Baba, K.; Nounah, A. Study of the effect of wood waste powder on the properties of concrete. Mater. Today Proc. 2022, 58, 1459–1463. [Google Scholar] [CrossRef]
- Boumaaza, M.; Belaadi, A.; Alshahrani, H.; Bourchak, M.; Jawaid, M. Building Material in Circular Economy: The Suitability of Wood Waste in Bio-concrete Development. In Wood Waste Management and Products; Springer Nature Singapore: Singapore, 2023; pp. 111–126. [Google Scholar]
- Berger, F.; Gauvin, F.; Brouwers, H.J.H. The recycling potential of wood waste into wood-wool/cement composite. Constr. Build. Mater. 2020, 260, 119786. [Google Scholar] [CrossRef]
- Delannoy, G.; Marceau, S.; Gle, P.; Gourlay, E.; Guéguen-Minerbe, M.; Amziane, S.; Farcas, F. Durability of hemp concretes exposed to accelerated environmental aging. Constr. Build. Mater. 2020, 252, 119043. [Google Scholar] [CrossRef]
- Nozahic, V.; Amziane, S.; Torrent, G.; Saïdi, K.; De Baynast, H. Design of green concrete made of plant-derived aggregates and a pumice–lime binder. Cem. Concr. Compos. 2012, 34, 231–241. [Google Scholar] [CrossRef]
- Sun, H.Y.; Yang, Z.; Shan, G.L.; Xu, N.; Sun, G.X. Current situation of research and application of silicone water repellent for protecting reinforced concrete. In Proceedings of the 7th International Conference on Bridge Maintenance, Safety and Management, Shanghai, China, 7–11 July 2014; pp. 7–11. [Google Scholar]
- Polder, R.B.; Borsje, H.; Vries, H.D. Prevention of reinforcement corrosion by hydrophobic treatment of concrete. HERON 2001, 46, 227–238. [Google Scholar]
- Schueremans, L.; Van Gemert, D.; Giessler, S. Chloride penetration in RC-structures in marine environment–long term assessment of a preventive hydrophobic treatment. Constr. Build. Mater. 2007, 21, 1238–1249. [Google Scholar] [CrossRef]
- Zhu, Y.G.; Kou, S.C.; Poon, C.S.; Dai, J.G.; Li, Q.Y. Influence of silane-based water repellent on the durability properties of recycled aggregate concrete. Cem. Concr. Compos. 2013, 35, 32–38. [Google Scholar] [CrossRef]
- StJ, M.; Bäuml, M.F. Internal impregnation of concrete: Experimental results and application experiences. In Proceedings of the 4th International Conference on Water Repellent Treatment of Building Materials, Stockholm, Sweden, 12–13 April 2005; pp. 133–144. [Google Scholar]
- de Aguiarda Gloria, A.L.D.; da Gloria, M.H.Y.R.; Hasparyk, N.P.; Filho, R.D.T. Effect of Silane on Physical and Mechanical Properties of Wood Bio-Concrete Exposed to Wetting/Drying Cycles. In Bio-Based Building Materials, Proceedings of the International Conference on Bio-Based Building Materials, Vienna, Austria, 21–23 June 2023; Springer Nature Switzerland: Cham, Switzerland, 2023; pp. 158–170. [Google Scholar]
- Al-Kaseasbeh, Q.; Al-Qaralleh, M. Valorization of hydrophobic wood waste in concrete mixtures: Investigating the micro and macro relations. Results Eng. 2023, 17, 100877. [Google Scholar] [CrossRef]
- Liu, Z.; Han, C.; Li, Q.; Li, X.; Zhou, H.; Song, X.; Zu, F. Study on wood chips modification and its application in wood-cement composites. Case Stud. Constr. Mater. 2022, 17, e01350. [Google Scholar] [CrossRef]
- Caldas, L.R.; Da Gloria MH, Y.R.; Pittau, F.; Andreola, V.M.; Habert, G.; Toledo Filho, R.D. Environmental impact assessment of wood bio-concretes: Evaluation of the influence of different supplementary cementitious materials. Constr. Build. Mater. 2021, 268, 121146. [Google Scholar] [CrossRef]
- Sharba, A.A.K.; Hason, M.M.; Hanoon, A.N.; Qader, D.N.; Amran, M.; Abdulhameed, A.A.; Al Zand, A.W. Push-out test of waste sawdust-based steel-concrete–Steel composite sections: Experimental and environmental study. Case Stud. Constr. Mater. 2022, 17, e01570. [Google Scholar] [CrossRef]
- Associação Brasileira de Normas Técnicas. NBR 16916: Agregado Miúdo—Determinação da Densidade e da Absorção de Água; ABNT: Rio de Janeiro, Brazil, 2021. [Google Scholar]
- Associação Brasileira de Normas Técnicas. NBR 9939: Agregado Graúdo—Determinação do teor de Umidade Total—Método de Ensaio; ABNT: Rio de Janeiro, Brazil, 2011. [Google Scholar]
- da Gloria, M.Y.R.; Andreola, V.M.; dos Santos, D.O.J.; Pepe, M.; Filho, R.D.T. A comprehensive approach for designing workable bio-based cementitious composites. J. Build. Eng. 2021, 34, 101696. [Google Scholar] [CrossRef]
- Andreola, V.M.; de Lima Moura Paiva, R.; Lepine, B.P.; dos Santos, D.O.J.; Proença, K.; da Cunha Gomes, B.M.; Moraes, A.; Quinelato, S.; Hasparyk, N.P.; Filho, R.D.T. Biological Durability of Bamboo Bio-Concretes. In Bio-Based Building Materials, Proceedings of the International Conference on Bio-Based Building Materials, Vienna, Austria, 21–23 June 2023; Springer Nature: Cham, Switzerland, 2023; pp. 716–728. [Google Scholar]
- Andreola, V.M.; da Gloria, M.Y.R.; Filho, R.D.T. Durability of Bamboo Bio-Concretes Exposed to Natural Aging. Constr. Technol. Archit. 2022, 1, 834–841. [Google Scholar]
- Tinoco, M.P.; Gouvêa, L.; Martins, K.d.C.M.; Filho, R.D.T.; Reales, O.A.M. The use of rice husk particles to adjust the rheological properties of 3D printable cementitious composites through water sorption. Constr. Build. Mater. 2023, 365, 130046. [Google Scholar] [CrossRef]
- Associação Brasileira de Normas Técnicas. NBR 13276: ARGAMASSA Para Assentamento e Revestimento de Paredes e Tetos; ABNT: Rio de Janeiro, Brazil, 2016. [Google Scholar]
- Associação Brasileira de Normas Técnicas. NBR 16887: Concreto—Determinação do Teor de ar em Concreto Fresco—Método Pressométrico; ABNT: Rio de Janeiro, Brazil, 2020. [Google Scholar]
- Associação Brasileira de Normas Técnicas. NBR 5739: Concreto—Ensaio de Compressão de Corpos de Prova Cilíndricos; ABNT: Rio de Janeiro, Brazil, 2018. [Google Scholar]
- Associação Brasileira de Normas Técnicas. NBR 8522-1: Concreto Endurecido—Determinação dos Módulos de Elasticidade e de Deformação—Parte 1: Módulos Estáticos à Compressão; ABNT: Rio de Janeiro, Brazil, 2021. [Google Scholar]
- Chen, B.; Shao, H.; Li, B.; Li, Z. Influence of silane on hydration characteristics and mechanical properties of cement paste. Cem. Concr. Compos. 2020, 113, 103743. [Google Scholar] [CrossRef]
- Wang, Q.; Li, S.Y.; Pan, S.; Guo, Z.W. Synthesis and properties of a silane and copolymer-modified graphene oxide for use as a water-reducing agent in cement pastes. New Carbon Mater. 2018, 33, 131–139. [Google Scholar] [CrossRef]
- Yan, Z.; Li, L.; Chen, M.; Lu, L.; Zhao, P.; Cheng, X. The rheology of a cement paste and the frost resistance of a permeable concrete with an emulsified asphalt modified by a silane coupling agent. Ceram. Silikáty 2020, 64, 125–134. [Google Scholar] [CrossRef]
- Feng, H.; Le HT, N.; Wang, S.; Zhang, M.H. Effects of silanes and silane derivatives on cement hydration and mechanical properties of mortars. Constr. Build. Mater. 2016, 129, 48–60. [Google Scholar] [CrossRef]
- Scrivener, K.; Snellings, R.; Lothenbach, B. (Eds.) A Practical Guide to Microstructural Analysis of Cementitious Materials; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- de Oliveira, A.M.; Oliveira, A.P.; Vieira, J.D.; Junior, A.N.; Cascudo, O. Study of the development of hydration of ternary cement pastes using X-ray computed microtomography, XRD-Rietveld method, TG/DTG, DSC, calorimetry and FTIR techniques. J. Build. Eng. 2023, 64, 105616. [Google Scholar] [CrossRef]
- Koohestani, B. Effect of saline admixtures on mechanical and microstructural properties of cementitious matrices containing tailings. Constr. Build. Mater. 2017, 156, 1019–1027. [Google Scholar] [CrossRef]
- Magniont, C.; Escadeillas, G. Chemical Composition of Bio-Aggregates and Their Interactions with Mineral Binders. In Bio-Aggregates Based Building Materials: State-of-the-Art Report of the RILEM Technical Committee 236-BBM; Springer: Dordrecht, The Netherlands, 2017; pp. 1–37. [Google Scholar]
- Pérez, S. Structure et morphologie de la cellulose. In Initiation à la Science des Polymers; Centre de Recherches sur les Macromolécules Végétales—CNRS–Associé à l’Université Joseph Fourier: Grenoble, France, 2000; pp. 1–43. [Google Scholar]
BA | PC | RHA | FA | Wh | Wc | CC | |
---|---|---|---|---|---|---|---|
WBC | 238.50 | 302.41 | 168.01 | 201.61 | 268.81 | 166.95 | 13.44 |
Pastes | PC | RHA | FA | Wh | Silane |
---|---|---|---|---|---|
REF | 549.83 | 305.46 | 366.56 | 476.52 | - |
SIL | 549.83 | 305.46 | 366.56 | 464.12 | 12.22 |
Pastes | (Pa) | (Pa) | (Pa.s) | R2 |
---|---|---|---|---|
REF | 992.96 (16.4%) | 371.84 (1.3%) | 1.15 (8.4%) | 0.994 |
SIL | 1479.04 (12.2%) | 402.95 (3.5%) | 1.61 (6.9%) | 0.996 |
Wood Bio-Concretes | Consistency Index (mm) | Entrained Air Content (%) |
---|---|---|
WBC-REF | 185 (5.4%) | 11.5 (1.2%) |
WBC-SIL | 170 (2.9%) | 5.6 (3.6%) |
Wood Bio-Concretes | Compressive Strength (MPa) | Modulus of Elasticity (GPa) |
---|---|---|
WBC-REF | 7.54 (3.84%) | 0.85 (6.79%) |
WBC-EC | 7.51 (4.37%) | 0.88 (10.94%) |
WBC-SIL | 9.35 (4.15%) | 1.65 (14.42%) |
WBC-SIL+EC | 9.27 (3.45%) | 1.53 (14.54%) |
Time | WBC-REF | WBC-EC | WBC-SIL | WBC-SIL+EC |
---|---|---|---|---|
1 min | 1.15 (29.0%) | 0.06 (12.9%) | 0.09 (26.7%) | 0.06 (49.4%) |
3 min | 1.88 (24.7%) | 0.11 (8.2%) | 0.14 (27.5%) | 0.08 (28.1%) |
5 min | 2.41 (21.9%) | 0.18 (7.4%) | 0.17 (26.5%) | 0.09 (27.6%) |
10 min | 3.22 (19.6%) | 0.29 (37.0%) | 0.23 (21.5%) | 0.14 (17.8%) |
15 min | 3.89 (18.5%) | 0.40 (43.8%) | 0.25 (25.8%) | 0.15 (19.7%) |
30 min | 5.28 (17.0%) | 0.69 (49.0%) | 0.34 (23.5%) | 0.22 (14.8%) |
1 h | 7.27 (15.8%) | 1.19 (48.2%) | 0.42 (24.2%) | 0.29 (11.4%) |
2 h | 10.20 (16.3%) | 2.28 (46.0%) | 0.57 (22.1%) | 0.41 (13.3%) |
3 h | 12.54 (17.1%) | 3.62 (37.7%) | 0.68 (20.5%) | 0.55 (10.8%) |
4 h | 14.59 (18.1%) | 5.23 (29.2%) | 0.77 (19.2%) | 0.64 (12.5%) |
5 h | 16.34 (18.4%) | 6.76 (24.4%) | 0.80 (18.9%) | 0.68 (12.9%) |
6 h | 17.99 (18.4%) | 8.25 (21.8%) | 0.89 (17.4%) | 0.76 (14.2%) |
24 h | 31.87 (9.9%) | 27.55 (15.8%) | 1.61 (11.1%) | 1.49 (9.9%) |
48 h | 34.25 (3.2%) | 32.67 (8.6%) | 2.25 (8.3%) | 2.14 (7.4%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Aguiar, A.L.D.; da Silva, N.A.; Gomes, B.M.C.; da Gloria, M.Y.R.; Hasparyk, N.P.; Toledo Filho, R.D. Assessment of Wood Bio-Concrete Properties Modified with Silane–Siloxane. Materials 2023, 16, 6105. https://doi.org/10.3390/ma16186105
de Aguiar ALD, da Silva NA, Gomes BMC, da Gloria MYR, Hasparyk NP, Toledo Filho RD. Assessment of Wood Bio-Concrete Properties Modified with Silane–Siloxane. Materials. 2023; 16(18):6105. https://doi.org/10.3390/ma16186105
Chicago/Turabian Stylede Aguiar, Amanda L. D., Nathalia A. da Silva, Bruno M. C. Gomes, M’hamed Y. R. da Gloria, Nicole P. Hasparyk, and Romildo D. Toledo Filho. 2023. "Assessment of Wood Bio-Concrete Properties Modified with Silane–Siloxane" Materials 16, no. 18: 6105. https://doi.org/10.3390/ma16186105