Mesenchymal Stem Cells in Combination with Scaffolds for Bone Tissue Engineering
Abstract
:1. Introduction
Class | Description |
---|---|
1.1 Ceramic based | Includes calcium phosphate, calcium sulfate, and bio-glass, used alone or in combination |
1.2 Allograft based | Allograft bone, used alone or in combination with other materials |
1.3 Factor based | Natural and recombinant growth factors, used alone or in combination with other materials |
1.4 Polymer based | Both degradable and non-degradable polymers, used alone or in combination with other materials |
1.5 Cell based | Cells used to generate new tissue alone or seeded onto a support matrix |
1.1. Ceramic-Based Bone Graft Substitute
1.2. Allograft-Based Bone Graft Substitute
1.3. Factor-Based Bone Graft Substitute
1.4. Polymer-Based Bone Graft Substitute
1.5. Cell-Based Bone Graft Substitute
2. Approaches for Achieving the Goal of Tissue Engineering
2.1. Using Stem Cells and Their Lineage to Regenerate Tissue
2.2. Providing Sufficient Vascular Supply to Improve Oxygen and Nutrient Supply
2.3. Developing Innovative Physical/Chemical Stimuli to Induce Bone Formation
2.4. Developing the Proper Biomaterial to Carry the Cells
3. Conclusions
References
- Rigney, P.R. Implementation of Nucleic Acid Testing (NAT); AATB Bulletin No. 04-42. American Association of Tissue Banks: McLean, VA, USA, September 2004. Available online: http://www.aatb.org (accessed on 16 August 2011).
- Gocke, D.J. Tissue donor selection and safety. Clin. Orthop. Relat. Res. 2005, 435, 17–21. [Google Scholar] [CrossRef] [PubMed]
- Vangsness, C.T.; Dellamaggiora, R.D. Current safety sterilization and tissue banking issues for soft tissue allografts. Clin. Sports Med. 2009, 28, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Yao, F.; Seed, C.; Farrugia, A.D.; Morgan, S.; Cordner, D.; Wood, M.; Zheng, H. The risk of HIV, HBV, HCV and HTLV infection among musculoskeletal tissue donors in Australia. Am. J. Transplant. 2007, 7, 2723–2726. [Google Scholar] [CrossRef] [PubMed]
- Federal Register. Rules and regulations. The U.S. National Archives and Records Administration: Washington, DC, USA, May 2005; Volume 70, pp. 29949–29952. [Google Scholar]
- Tugwell, B.; Patel, P.; Williams, I. Transmission of hepatitis C virus to several organ and tissue recipients from an antibody-negative donor. Ann. Intern. Med. 2005, 143, 648–654. [Google Scholar] [CrossRef] [PubMed]
- Paul, L.C. Immunologic risk factors for chronic allograft dysfunction. Transplantation 1998, 71, SS17–SS23. [Google Scholar]
- Boyce, T.; Edwards, J.; Scarborough, N. Allograft bone. The influence of processing on safety and performance. Orthop. Clin. North Am. 1999, 30, 571–581. [Google Scholar] [CrossRef] [PubMed]
- Azuma, H.; Tilney, N. Chronic graft rejection. Curr. Opin. Immunol. 1994, 6, 770–776. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, A.; Konrad, L.; Hessmann, M.H.; Küchle, R.; Korner, J.; Rompe, J.D.; Rommens, P.M. The influence of bone allograft processing on osteoblast attachment and function. J. Orthop. Res. 2005, 23, 846–854. [Google Scholar] [CrossRef] [PubMed]
- Lavernia, C.; Malinin, T.; Temple, T.; Moreyra, C. Bone and tissue allograft use by orthopaedic surgeons. J. Arthroplast. 2004, 19, 430–435. [Google Scholar] [CrossRef]
- Laurencin, C.; Khan, Y.; El-Amin, S.F. Bone graft substitutes. Expert Rev. Med. Devices 2006, 1, 49–57. [Google Scholar] [CrossRef]
- David, J. The use of osteoconductive bone graft substitutes in orthopaedic trauma. J. Am. Acad. Orathop. Surg. 2007, 15, 525–536. [Google Scholar]
- Soballe, K.; Hansen, E.S.; Brockstedt-Rasmussen, H.; Bunger, C. Hydroxyapatite coating converts fibrous tissue to bone around loaded implants. J. Bone Jt. Surg. Br. 1993, 75, 270–278. [Google Scholar]
- Tisdel, C.L.; Goldberg, V.M.; Parr, J.A.; Bensusan, J.S.; Staikoff, L.S.; Stevenson, S. The influence of a hydroxyapatite and tricalcium phosphatae coating on bone growth into titanium fiber-metal implants. J. Bone Jt. Surg. Am. 1994, 76, 159–171. [Google Scholar]
- Detsch, R.; Mayr, H.; Ziegler, G. Formation of osteoclast-like cells on HA and TCP ceramics. Acta Biomater. 2008, 4, 139–148. [Google Scholar] [CrossRef] [PubMed]
- Bashoor-Zadeh, M.; Baroud, G.; Bohner, M. Simulation of the in vivo resorption rate of β tricalcium phosphate bone graft substitutes implanted in a sheep model. Biomaterials 2011, 32, 6362–6373. [Google Scholar] [CrossRef] [PubMed]
- Miao, X.; Tan, D.M.; Li, J.; Xiao, Y.; Crawford, R. Mechanical and biological properties of hydroxyapatite/tricalcium phosphate scaffolds coated with poly(lactic-co-glycolic acid). Acta Biomater. 2008, 4, 638–645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vitale-Brovarone, C.; Verné, E.; Robiglio, L.; Appendino, P.; Bassi, F.; Martinasso, G.; Muzio, G.; Canuto, R. Development of glass-ceramic scaffolds for bone tissue engineering: Characterisation, proliferation of human osteoblasts and nodule formation. Acta Biomater. 2007, 3, 199–208. [Google Scholar] [CrossRef] [PubMed]
- Urist, M.; Strates, B. Bone morphogenetic protein. J. Dent. Res. 1971, 50, 1392–1406. [Google Scholar] [CrossRef] [PubMed]
- El-Sabban, M.; El-Khoury, H.; Hamdan-Khalil, R.; Sindet-Pederson, P.; Bazerbashi, A. Xenogenic bone matrix extracts induce osteoblastic differentiation of human-derived bone-marrow mesenchymal stem cells. Regen. Med. 2007, 2, 383–390. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zou, X.; Woo, C.; Ding, M.; Lind, M.; Bünger, C. Experimental anterior lumbar interbody fusion with an osteoinductive bovine bone collagen extract. Spine 2005, 30, 890–896. [Google Scholar] [CrossRef] [PubMed]
- Joyce, M.E.; Jingushi, S.; Bolander, M.E. Transforming growth factor in the regulation of fracture repair. Orthop. Clin. North Am. 1990, 21, 199–200. [Google Scholar] [PubMed]
- Strassmair, M.; Mont, M.A.; Seyler, T.M.; Bosebeck, H.; Marker, D.R.; Laporte, D.M. The use of a type-I lyophilisate collagen as an osteoinductive factor in pseudarthroses of the forearm. Surg. Technol. Int. 2009, 18, 213–218. [Google Scholar] [PubMed]
- Bostrom, M.P.; Lane, J.M.; Berberian, W.S.; Missri, A.A.; Tomin, E.; Weiland, A.; Doty, S.B.; Glaser, D.; Rosen, V.M. Immunolocalization and expression of bone morphogenetic protein 2 and 4 in fracture healing. J. Orthop. Res. 1995, 13, 357–367. [Google Scholar] [CrossRef] [PubMed]
- Onishi, T.; Ishidou, Y.; Nagamine, T.; Yone, K.; Imamaru, T.; Kato, M.; Sampath, T.K.; Ten-Dijke, P.; Sakou, T. Distinct and overlapping patterns of localization of bone morpho-genetic protein (BMP) family members and a BMP type II receptor during fracture healing in rats. Bone 1998, 22, 605–612. [Google Scholar] [CrossRef] [PubMed]
- Sakou, T. Bone morphogenetic proteins: From basic studies to clinical approaches. Bone 1998, 22, 591–603. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, T.; Hara, Y.; Tagawa, M.; Tamura, M.; Yuge, T.; Fukuda, H.; Nigi, H. Recombinant human basic fibroblast growth factor accelerates fracture healing by enhancing callus remodeling in experimental dog tibial fracture. J. Bone Miner. Res. 1998, 13, 942–949. [Google Scholar] [CrossRef] [PubMed]
- Trippel, S.B. Potential role of insulinlike growth factors in fracture healing. Clin. Orthop. 1998, 355S, 301–313. [Google Scholar] [CrossRef]
- Nash, T.J.; Howlett, C.R.; Martin, C.; Steele, J.; Johnson, K.A.; Kicklin, D.J. Effect of platelet-derived growth factor on tibial osteotomies in rabbits. Bone 1994, 15, 203–208. [Google Scholar] [CrossRef] [PubMed]
- Sykaras, N.; Opperman, L.A. Bone morphogenetic proteins (BMPs): How do they function and can they offer the clinician? J. Oral. Sci. 2003, 45, 57–73. [Google Scholar] [CrossRef] [PubMed]
- Dohin, B.; Dahan-Oliel, N.; Fassier, F.; Hamdy, R. Enhancement of difficult nonunion in children with osteogenic protein-1 (OP-1): Early experience. Clin. Orthop. Relat. Res. 2009, 467, 3230–3238. [Google Scholar] [CrossRef] [PubMed]
- Cornell, C.N.; Lane, J.M.; Chapman, M.; Merkow, R.; Seligson, D.; Henry, S. Multicenter trial of Collagraft as bone graft substitute. J. Orthop. Trauma 1991, 5, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Chapman, M.W.; Bucholz, R.; Cornell, C.N. Treatment of acute fractures with a collagen-calcium phosphate graft material: A randomized clinical trial. J. Bone Jt. Surg. Am. 1997, 79, 495–502. [Google Scholar]
- Choi, Y.S.; Lee, S.B.; Hong, S.R.; Lee, Y.M.; Song, K.W.; Park, M.H. Studies on gelatin-based sponges. Part III: A comparative study of cross-linked gelatin/alginate, gelatin/hyaluronate and chitosan/hyaluronate sponges and their application as a wound dressing in full-thickness skin defect of rat. J. Mater. Sci. Mater. Med. 2001, 12, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Muzzarelli, R.A.A. Chitin; Pergamon: Oxford, UK, 1997; pp. 220–228. [Google Scholar]
- Domard, A.; Domard, M. Chitosan: Structure-properties relationship and biomedical applications. In Polymeric Biomaterials; Dumitriu, S., Ed.; Marcel Dekker: New York, NY, USA, 2002; pp. 187–212. [Google Scholar]
- Tomihata, K.; Ika, Y. In vitro and in vivo degradation of films of chitin and its deacetylated derivatives. Biomaterials 1997, 18, 567–575. [Google Scholar] [CrossRef] [PubMed]
- Marreco, P.R.; da LuzMoreira, P.; Genari, S.C.; Moraes, A.M. Effects of different sterilization methods on the morphology, mechanical properties, and cytotoxicity of chitosan membranes used as wound dressings. J. Biomed. Mater. Res. B Appl. Biomater. 2004, 71, 268–277. [Google Scholar] [CrossRef] [PubMed]
- Yalpani, M.; Hall, L.D. Some chemical and analytical aspects of polysaccharide modifications: Formation of branched-chain, soluble chitosan derivatives. Macromolecules 1984, 17, 272–281. [Google Scholar] [CrossRef]
- Varum, K.M.; Myhr, M.M.; Hjerde, R.J.N.; Smidsrod, O. In vitro degradation rates of partially N-acetylated chitosans in human serum. Carbohydr. Res. 1997, 299, 99–101. [Google Scholar] [CrossRef] [PubMed]
- Pangburn, S.H.; Trescony, P.V.; Heller, J. Lysozyme degradation of partially deacetylated chitin, its films and hydrogels. Biomaterials 1982, 3, 105–108. [Google Scholar] [CrossRef] [PubMed]
- Muzzarelli, R.A.; Mattioli-Belmonte, M.; Tietz, C.; Biagini, R.; Ferioli, G.; Brunelli, MA.; Fini, M.; Giardino, R.; Ilari, P.; Biagini, G. Stimulatory effect on bone formation exerted by a modified chitosan. Biomaterials 1994, 15, 1075–1081. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.Y.; Nam, S.H.; Im, S.Y.; Park, Y.J.; Lee, Y.M.; Seol, Y.J.; Chung, C.P.; Lee, S.J. Enhanced bone formation by controlled growth factor delivery from chitosan-based biomaterials. J. Control. Release 2002, 78, 187–197. [Google Scholar] [CrossRef] [PubMed]
- Yamada, Y.; Nanba, K.; Ito, K. Effects of occlusiveness of a titanium cap on bone generation beyond the skeletal envelope in the rabbit calvarium. Clin. Oral. Implant. Res. 2003, 14, 455–463. [Google Scholar] [CrossRef]
- Zhao, F.; Yin, Y.J.; Lu, W.W.; Leong, J.C.; Zhang, W.J.; Zhang, J.Y.; Zhang, M.F.; Yao, K.D. Preparation and histological evaluation of biomimetic three-dimensional hydroxyapatite/chitosan-gelatin network composite scaffolds. Biomaterials 2002, 23, 3227–3234. [Google Scholar] [CrossRef] [PubMed]
- Vacanti, C.A.; Langer, R.; Schloo, B.; Vacanti, J.P. Synthetic polymers seeded with chondrocytes provide a template for new cartilage formation. Plast. Reconstr. Surg. 1991, 5, 753–759. [Google Scholar] [CrossRef]
- Bruder, S.P.; Caplan, A.I. Bone regeneration through cellular engineering. In Principles of Tissue Engineering; Lanza, R.P., Langer, R., Vacanti, J., Eds.; Academic Press: San Diego, CA, USA, 2000; pp. 683–696. [Google Scholar]
- Mikos, A.G.; Sarakinos, G.; Leite, S.M.; Vacanti, J.P.; Langer, R. Laminated three-dimensional biodegradable foams for use in tissue engineering. Biomaterials 1993, 14, 323–330. [Google Scholar] [CrossRef] [PubMed]
- Nettles, D.L.; Elder, S.H.; Gilbert, J.A. Potential use of chitosan as a cell scaffold material for cartilage tissue engineering. Tissue Eng. 2002, 8, 1009–1016. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, M.Q. Calcium phosphate/chitosan composite scaffolds for controlled in vitro antibiotic drug release. J. Biomed. Mater. Res. 2002, 62, 378–386. [Google Scholar] [CrossRef] [PubMed]
- Seol, Y.; Lee, J.; Park, Y.; Lee, Y; Young-Ku; Rhyu, I.; Lee, S; Han, S.; Chung, C. Constructs Chitosan sponges as tissue engineering scaffolds for bone formation. Biotechnol. Lett. 2004, 26, 1037–1041. [Google Scholar] [CrossRef] [PubMed]
- Muzzarelli, R.A.; Mattioli-Belmonte, M.; Tietz, C.; Biagini, R.; Ferioli, G.; Brunelli, M.A.; Fini, M.; Giardino, R.; Ilari, P.; Biagini, G. Stimulatory elect on bone formation exerted by a modified chitosan. Biomaterials 1994, 15, 1075–8101. [Google Scholar] [CrossRef] [PubMed]
- Friedenstein, A.J.; Latzinik, N.W.; Grosheva, A.G.; Gorskaya, U.F. Marrow microenvironment transfer by heterotopic transplantation of freshly isolated and cultured cells in porous sponges. Exp. Hematol. 1982, 10, 217–227. [Google Scholar] [PubMed]
- Friedenstein, A.J. Stromal mechanisms of bone marrow: Cloning in vitro and retransplantation in vivo. Haematol. Blood Transfus. 1980, 25, 19–29. [Google Scholar] [PubMed]
- James, J.; Steijn-Myagkaya, G.L. Death of osteocytes. Electron microscopy after in vitro ischaemia. J. Bone Jt. Surg. Br. 1986, 68, 620–624. [Google Scholar]
- Levenberg, S.; Rouwkema, J.; Macdonald, M.; Garfein, E.S.; Kohane, D.S.; Darlang, D.C.; Marini, R.; van Blitterswijk, C.A.; Mulligan, R.C.; D’Amore, P.A. Engineering vascularized skeletal muscle tissue. Nat. Biotechnol. 2005, 23, 879–884. [Google Scholar] [CrossRef] [PubMed]
- Horner, H.A.; Urban, J.P. Effect of nutrient supply on the viability of cells from the nucleus pulposus of the intervertebral disc. Spine 2001, 26, 2543–2549. [Google Scholar] [CrossRef] [PubMed]
- Warnke, P.H.; Springer, I.N.; Wiltfang, J.; Acil, Y.; Eufinger, H.; Wehmöller, M.; Russo, P.A.; Bolte, H.; Sherry, E.; Behrens, E.; Terheyden, H. Growth and transplantation of a custom vascularised bone graft in a man. Lancet 2004, 364, 766–770. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.M. The cellular cascades of wound healing. In Bone Engineering; Davies, J.E., Ed.; EM squared: Toronto, ON, Canada, 2000; pp. 81–93. [Google Scholar]
- Bolander, M.E. Regulation of fracture repair by growth factors. Proc. Soc. Exp. Biol. Med. 1992, 200, 165–170. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H.; van Blitterswijk, C.A.; de Groot, K.; de Bruijn, J.D. A comparison of bone formation in biphasic calcium phosphate (BCP) and hydroxyapatite (HA) implanted in muscle and bone of dogs at different time periods. J. Biomed. Mater. Res. 2006, 78, 139–147. [Google Scholar] [CrossRef]
- Boyne, P.J.; Marx, R.E.; Nevins, M.; Triplett, G.; Lazaro, E.; Lilly, L.C.; Alder, M.; Nummikoski, P. A feasibility study evaluating rhBMP-2/absorbable collagen sponge for maxillary sinus floor augmentation. Int. J. Periodontics Restor. Dent. 1997, 17, 11–25. [Google Scholar]
- John, S.; Giuffre, J.M.; Giuffre, Z.; Timlin, M. Anterior lumbar interbody fusion with titanium mesh cages, coralline hydroxyapatite, and demineralized bone matrix as part of a circumferential fusion. Spine J. 2002, 2, 63–69. [Google Scholar] [PubMed]
- Kuboki, Y.; Takita, H.; Kobayashi, D.; Tsuruga, E.; Inoue, M.; Murata, M.; Nagai, N.; Dohi, Y.; Ogushi, H. BMP induced osteogenesis on the surface of hydroxyapatite with geometrically feasible and nonfeasible structures: Topology of osteogenesis. J. Biomed. Mater. Res. 1998, 39, 190–199. [Google Scholar] [CrossRef] [PubMed]
- Blokhuis, T.J.; Termaat, M.F.; den Boer, F.C.; Patka, P.; Bakker, F.C.; Haarman, H.J. Properties of calcium phosphate ceramics in relation to their in vivo behavior. J. Trauma 2000, 48, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Zeltinger, J.; Sherwood, J.K.; Graham, D.A.; Mueller, R.; Griffith, L.G. Effect of pore size and void fraction of cellular adhesion, proliferation, and matrix deposition. Tissue Eng. 2001, 7, 557–572. [Google Scholar] [CrossRef] [PubMed]
- Le Huec, J.; Schavereke, T.; Clement, D.; Faber, J.; de Rebeller, A. Influence of porosity on the mechanical properties of coralline hydroxyapatite ceramics under compressive stress. Biomaterials 1995, 16, 113–132. [Google Scholar] [CrossRef] [PubMed]
- Gauthier, O.; Bouler, J.M.; Aguado, E.; Pilet, P.; Daculsi, G. Macroporous biphasic calcium phosphate ceramics, influence of macropore diameter and macroporosity percentage on bone ingrowth. Biomaterials 1998, 19, 133–139. [Google Scholar] [CrossRef] [PubMed]
- White, E.; Shors, E.C. Biomaterial aspects of Interpore-200 porous hydroxyapatite. Dent. Clin. North Am. 1986, 3, 49–67. [Google Scholar]
- Peyton, S.R.; Kalcioglu, Z.I.; Cohen, J.C.; Runkle, A.P.; van Vliet, K.J.; Lauffenburger, D.A.; Griffith, L.G. Marrow-derived stem cell motility in 3D synthetic scaffold is governed by geometry along with adhesivity and stiffness. Biotechnol. Bioeng. 2011, 108, 1181–1193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Nassif, L.; El Sabban, M. Mesenchymal Stem Cells in Combination with Scaffolds for Bone Tissue Engineering. Materials 2011, 4, 1793-1804. https://doi.org/10.3390/ma4101793
Nassif L, El Sabban M. Mesenchymal Stem Cells in Combination with Scaffolds for Bone Tissue Engineering. Materials. 2011; 4(10):1793-1804. https://doi.org/10.3390/ma4101793
Chicago/Turabian StyleNassif, Laeticia, and Marwan El Sabban. 2011. "Mesenchymal Stem Cells in Combination with Scaffolds for Bone Tissue Engineering" Materials 4, no. 10: 1793-1804. https://doi.org/10.3390/ma4101793
APA StyleNassif, L., & El Sabban, M. (2011). Mesenchymal Stem Cells in Combination with Scaffolds for Bone Tissue Engineering. Materials, 4(10), 1793-1804. https://doi.org/10.3390/ma4101793