Antibacterial Modification of Kirschner Wires with Polyluteolin toward Methicillin-Resistant Staphylococcus aureus (MRSA)
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of PL-Coated K-Wires
2.2. Characterization of In Vitro Antibacterial Activity of PL-Coated K-Wires
2.3. Antibacterial Stability
3. Experimental Section
3.1. Modification of K-Wires with PL Coatings
3.2. Characterization of the PL-Coated K-Wires
3.3. In Vitro Antimicrobial Activity
3.4. Antibacterial Stability Test
4. Conclusions
Author Contributions
Conflicts of Interest
References
- Widmer, A.F. New developments in diagnosis and treatment of infection in orthopaedic implants. Clin. Infect. Dis. 2001, 33, 94–106. [Google Scholar] [CrossRef] [PubMed]
- Goodman, S.B.; Yao, Z.; Keeney, M.; Yang, F. The future of biologic coatings for orthopaedic implants. Biomaterials 2013, 34, 3174–3183. [Google Scholar] [CrossRef] [PubMed]
- McMillan, D.J.; Lutton, C.; Rosenzweig, N.; Sriprakash, K.S.; Goss, B.; Stemberger, M.; Schuetz, M.A.; Steck, R. Prevention of Staphylococcus aureus biofilm formation on metallic surgical implants via controlled release of gentamicin. J. Biomed. Sci. Eng. 2011, 4, 535–542. [Google Scholar] [CrossRef]
- Montanaro, L.; Speziale, P.; Campoccia, D.; Ravaioli, S.; Cangini, I.; Pietrocola, G.; Sandro Giannini, S.; Arciola, C.R. Scenery of Staphylococcus implant infections in orthopedics. Future Microbiol. 2011, 6, 1329–1349. [Google Scholar] [CrossRef] [PubMed]
- Arciola, C.R.; An, Y.H.; Campoccia, D.; Donati, M.E.; Montanaro, L. Etiology of implant orthopedic infections: A survey on 1027 clinical isolates. Int. J. Artif. Organs. 2005, 28, 1091–1100. [Google Scholar] [PubMed]
- Von Eiff, C.; Arciola, C.R.; Montanaro, L.; Becker, K.; Campoccia, D. Emerging Staphylococcus species as new pathogens in implant infections. Int. J. Artif. Organs. 2006, 29, 360–367. [Google Scholar]
- Campoccia, D.; Montanaro, L.; Arciola, C.R. The significance of infection related to orthopedic devices and issues of antibiotic resistance. Biomaterials 2006, 27, 2331–2339. [Google Scholar] [CrossRef] [PubMed]
- Franssen, B.B.G.M.; Schuurman, A.H.; Van Der Molen, A.M.; Kon, M. One century of Kirschner wires and Kirschner wire insertion techniques: A historical review. Acta Orthop. Belg. 2010, 76, 1–6. [Google Scholar] [PubMed]
- Cushnie, T.P.T.; Lamb, A.J. Recent advances in understanding the antibacterial properties of flavonoids. Int. J. Antimicrob. Agents 2011, 38, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Abreu, A.C.; McBain, A.J.; Simoes, M. Plants as sources of new antimicrobials and resistance-modifying agents. Nat. Prod. Rep. 2012, 29, 1007–1021. [Google Scholar] [CrossRef] [PubMed]
- Cushnie, T.P.T.; Lamb, A.J. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents 2005, 26, 343–356. [Google Scholar] [CrossRef] [PubMed]
- Lv, P.C.; Li, H.Q.; Xue, J.Y.; Shi, L.; Zhu, H.L. Synthesis and biological evaluation of novel luteolin derivatives as antibacterial agents. Eur. J. Med. Chem. 2009, 44, 908–914. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, H.; Ogawa, T. Antimicrobial activity of perilla seed polyphenols against oral pathogenic bacteria. Biosci. Biotechnol. Biochem. 2002, 66, 921–924. [Google Scholar] [CrossRef] [PubMed]
- Yao, J.; Zhang, Q.; Min, J.; He, J.; Yu, Z. Novel enoyl—ACP reductase (FabI) potential inhibitors of Escherichia coli from Chinese medicine monomers. Bioorg. Med. Chem. Lett. 2010, 20, 56–59. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Ma, L.; Wen, Y.; Wang, H.; Zhang, S. Studies of the in vitro antibacterial activities of several polyphenols against clinical isolates of methicillin-resistant Staphylococcus aureus. Molecules 2014, 19, 12630–12639. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.W.; Ahn, J.Y.; Hasegawa, S.; Cha, B.Y.; Yonezawa, T.; Nagai, K.; Seo, H.J.; Jeon, W.B.; Woo, J.T. Inhibitory effect of luteolin on osteoclast differentiation and function. Cytotechnology 2009, 61, 125–134. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.Y.; Guan, M.; Zhu, J.L.; Wang, C.T.; Su, L.; Zhang, X.J. Facile and material-independent fabrication of poly(luteolin) coatings and their unimpaired antibacterial activity against Staphylococcus aureus after steam sterilization treatments. Polym. Chem. 2014, 5, 4211–4214. [Google Scholar] [CrossRef]
- Vestergaard, M.; Kerman, K.; Tamiya, E. An electrochemical approach for detecting copper-chelating properties of flavonoids using disposable pencil graphite electrodes: Possible implications in copper-mediated illnesses. Anal. Chim. Acta 2005, 538, 273–281. [Google Scholar] [CrossRef]
- Brett, A.M.O.; Ghica, M.E. Electrochemical oxidation of quercetin. Electroanalysis 2003, 15, 1745–1750. [Google Scholar] [CrossRef]
- Janeiro, P.; Brett, A.M.O. Catechin electrochemical oxidation mechanisms. Anal. Chim. Acta 2004, 518, 109–115. [Google Scholar] [CrossRef]
- Marreco, P.R.; da Luz Moreira, P.; Genari, S.C.; Moraes, A.M.J. Effects of different sterilization methods on the morphology, mechanical properties, and cytotoxicity of chitosan membranes used as wound dressings. Biomed. Mater. Res. Part B 2004, 71, 268–277. [Google Scholar] [CrossRef] [PubMed]
- Rao, S.B.; Sharma, C.P. Sterilization of Chitosan: Implications. J. Biomater. Appl. 1995, 10, 136–143. [Google Scholar] [PubMed]
- Liu, Y.; Zheng, Z.; Zara, J.N.; Hsu, C.; Soofer, D.E.; Lee, K.S.; Siu, R.K.; Miller, L.S.; Zhang, X.; Carpenter, D.; et al. The antimicrobial and osteoinductive properties of silver nanoparticle/poly (DL-lactic-co-glycolic acid)-coatedstainless steel. Biomaterials 2012, 33, 8745–8756. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, J.; Zhao, Y.; Yang, L.; Hou, S.; Su, Y.; Yang, R. Antibacterial Modification of Kirschner Wires with Polyluteolin toward Methicillin-Resistant Staphylococcus aureus (MRSA). Materials 2015, 8, 4876-4883. https://doi.org/10.3390/ma8084876
Zhu J, Zhao Y, Yang L, Hou S, Su Y, Yang R. Antibacterial Modification of Kirschner Wires with Polyluteolin toward Methicillin-Resistant Staphylococcus aureus (MRSA). Materials. 2015; 8(8):4876-4883. https://doi.org/10.3390/ma8084876
Chicago/Turabian StyleZhu, Jialiang, Yantao Zhao, Lin Yang, Shuxun Hou, Yanli Su, and Rungong Yang. 2015. "Antibacterial Modification of Kirschner Wires with Polyluteolin toward Methicillin-Resistant Staphylococcus aureus (MRSA)" Materials 8, no. 8: 4876-4883. https://doi.org/10.3390/ma8084876
APA StyleZhu, J., Zhao, Y., Yang, L., Hou, S., Su, Y., & Yang, R. (2015). Antibacterial Modification of Kirschner Wires with Polyluteolin toward Methicillin-Resistant Staphylococcus aureus (MRSA). Materials, 8(8), 4876-4883. https://doi.org/10.3390/ma8084876