Peanut Shell-Derived Carbon Solid Acid with Large Surface Area and Its Application for the Catalytic Hydrolysis of Cyclohexyl Acetate
Abstract
:1. Introduction
2. Results and Discussion
2.1. Catalyst Characterization
2.2. Hydrolysis of Cyclohexyl Acetate over the CSALA
2.2.1. Effect of Reaction Temperature
2.2.2. Effect of Reaction Time
2.2.3. Effect of Catalyst Loading
2.2.4. Catalyst Reusability
3. Materials and Methods
3.1. Preparation of Carbon Solid Acid with Large Surface Area
3.2. Catalyst Characterization
3.3. Catalytic Activity Test
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Li, J.; Yang, L.; Li, F.; Xue, W.; Wang, Y. Hydration of cyclohexene to cyclohexanol over SO3H-functionalized imidazole ionic liquids. React. Kinet. Mech. Catal. 2015, 114, 173–183. [Google Scholar] [CrossRef]
- Zhou, W.; Wischert, R.; Xue, K.; Zheng, Y.; Albela, B.; Bonneviot, L.; Clacens, J.; Campo, F.; Pera-Titus, M.; Wu, P. Highly selective liquid-phase oxidation of cyclohexane to KA oil over Ti-MWW catalyst: Evidence of formation of oxyl radicals. ACS Catal. 2014, 4, 53–62. [Google Scholar] [CrossRef]
- Nagahara, H.; Ono, M.; Konishi, M.; Fukuoka, Y. Partial hydrogenation of benzene to cyclohexene. Appl. Surf. Sci. 1997, 121, 448–451. [Google Scholar] [CrossRef]
- Imam, R.A.; Freund, H.; Guit, R.P.M.; Fellay, C.; Meier, R.J.; Sundmacher, K. Evaluation of different process concepts for the indirect hydration of cyclohexene to cyclohexanol. Org. Process. Res. Dev. 2013, 17, 343–358. [Google Scholar] [CrossRef]
- Steyer, F.; Sundmacher, K. Cyclohexanol production via esterification of cyclohexene with formic acid and subsequent hydration of the esters reaction kinetics. Ind. Eng. Chem. Res. 2007, 46, 1099–1104. [Google Scholar] [CrossRef]
- Katariya, A.; Freund, H.; Sundmacher, K. Two-step reactive distillation process for cyclohexanol production from cyclohexene. Ind. Eng. Chem. Res. 2009, 48, 9534–9545. [Google Scholar] [CrossRef]
- Du, W.; Xue, W.; Li, F.; Wang, Y. Study on the catalytic synthesis of cyclohexanol from cyclohexene via cyclohexyl formate. J. Hebei Univ. Technol. 2012, 41, 34–39. [Google Scholar]
- Yang, L. Hydration of Cyclohexene Catalyzed by Brönsted Acidic Ionic Liquid. Master’s Thesis, Hebei University of Technology, Tianjin, China, 10 June 2013. [Google Scholar]
- Kimura, M.; Nakato, T.; Okuhara, T. Water-tolerant solid acid catalysis of Cs2.5H0.5PW12O40 for hydrolysis of esters in the presence of excess water. Appl. Catal. A 1997, 165, 227–240. [Google Scholar] [CrossRef]
- Hara, M.; Yoshida, T.; Takagaki, A.; Takata, T.; Kondo, J.N.; Hayashi, S.; Domen, K. A Carbon Material as a Strong Protonic Acid. Angew. Chem. Int. Ed. 2004, 43, 2955–2958. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Kapoor, M.P.; Shirokura, N.; Ohashi, M.; Inagaki, S.; Kondo, J.N.; Domen, K. Ethane-bridged hybrid mesoporous functionalized organo-silicas with terminal sulfonic groups and their catalytic applications. J. Mater. Chem. 2005, 15, 666–673. [Google Scholar]
- Yang, F.; Xue, W.; Zhang, D.; Li, F.; Wang, Y. Hydrolyis of cyclohexyl acetate to cyclohexanol with high selectivity over SO3H-functionalized ionic liquids. React. Kinet. Mech. Catal. 2016, 117, 329–339. [Google Scholar] [CrossRef]
- Toda, M.; Takagaki, A.; Okamura, M.; Kondo, N.J.; Hayashi, S.; Domen, K.; Hara, M. Biodiesel made with sugar catalyst. Nature 2005, 438, 178. [Google Scholar] [CrossRef] [PubMed]
- Okamura, M.; Takagaki, A.; Toda, M.; Kondo, J.N.; Domen, K.; Tatsumi, T.; Hara, M.; Hayashi, S. Acid-catalyzed reactions on flexible polycyclic aromatic carbon in amorphous carbon. Chem. Mater. 2006, 18, 3039–3045. [Google Scholar] [CrossRef]
- Nakajima, K.; Hara, M. Amorphous carbon with SO3H groups as a solid Brønsted acid catalyst. ACS Catal. 2012, 2, 1296–1304. [Google Scholar] [CrossRef]
- Geng, L.; Yu, G.; Wang, Y.; Zhu, Y. Ph-SO3H-modified mesoporous carbon as an efficient catalyst for the esterification of oleic acid. Appl. Catal. A 2012, 427, 137–144. [Google Scholar] [CrossRef]
- Liu, W.; Tian, K.; Jiang, H.; Yu, H. Facile synthesis of highly efficient and recyclable magnetic solid acid from biomass waste. Sci. Rep. 2013, 3, 2419. [Google Scholar] [CrossRef] [PubMed]
- Deshmane, C.A.; Wright, M.W.; Lachgar, A.; Rohlfing, M.; Liu, Z.; Le, J.; Hanson, B.E. A comparative study of solid carbon acid catalysts for the esterification of free fatty acids for biodiesel production. Evidence for the leaching of colloidal carbon. Bioresour. Technol. 2013, 147, 597–604. [Google Scholar] [CrossRef] [PubMed]
- Thombal, S.R.; Jadhava, R.A.; Jadhav, H.V. Biomass derived β-cyclodextrin-SO3H as a solid acid catalyst for esterification of carboxylic acids with alcohols. RSC Adv. 2015, 5, 12981–12986. [Google Scholar] [CrossRef]
- Dehkhoda, A.M.; West, A.H.; Ellis, N. Biochar based solid acid catalyst for biodiesel production. Appl. Catal. A 2010, 382, 197–204. [Google Scholar] [CrossRef]
- Kitano, M.; Yamaguchi, D.; Suganuma, S.; Nakajima, K.; Kato, H.; Hayashi, S.; Hara, M. Adsorption-enhanced hydrolysis of β-1,4-Glucan on graphene-based amorphous carbon bearing SO3H, COOH, and OH groups. Langmuir 2009, 25, 5068–5075. [Google Scholar] [CrossRef] [PubMed]
- Suganuma, S.; Nakajima, K.; Kitano, M.; Yamaguchi, D.; Kato, H.; Hayashi, S.; Hara, M. Hydrolysis of cellulose by amorphous carbon bearing SO3H, COOH, and OH groups. J. Am. Chem. Soc. 2008, 130, 12787–12793. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Xu, W.; Ren, J.; Liu, X.; Lu, G.; Wang, Y. Efficient catalytic conversion of fructose into hydroxymethylfurfural by a novel carbon-based solid acid. Green Chem. 2011, 13, 2678–2681. [Google Scholar] [CrossRef]
- Xue, W.; Zhao, H.; Yao, J.; Li, F.; Wang, Y. Esterification of cyclohexene with formic acid over a peanut shell-derived carbon solid acid catalyst. Chin. J. Catal. 2016, 37, 769–777. [Google Scholar] [CrossRef]
- Shen, S.; Cai, B.; Wang, C.; Li, H.; Dai, G.; Qin, H. Preparation of a novel carbon-based solid acid from cocarbonized starch and polyvinyl chloride for cellulose hydrolysis. Appl. Catal. A 2014, 473, 70–74. [Google Scholar] [CrossRef]
- Kitano, M.; Arai, K.; Kodama, A.; Kousaka, T.; Nakajima, K.; Hayashi, S.; Hara, M. Preparation of a sulfonated porous carbon catalyst with high specific surface area. Catal. Lett. 2009, 131, 242–249. [Google Scholar] [CrossRef]
- Guo, Y.; Rockstraw, A.D. Physicochemical properties of carbons prepared from pecan shell by phosphoric acid activation. Bioresour. Technol. 2007, 98, 1513–1521. [Google Scholar] [CrossRef] [PubMed]
- Shen, S.; Wang, C.; Cai, B.; Li, H.; Han, Y.; Wang, T.; Qin, H. Heterogeneous hydrolysis of cellulose into glucose over phenolic residue-derived solid acid. Fuel 2013, 113, 644–649. [Google Scholar] [CrossRef]
- Melero, J.A.; Van Grieken, R.; Morales, G.; Nuno, V. Friedel Crafts acylation of aromatic compounds over arenesulfonic containing mesostructured SBA-15 materials. Catal. Commun. 2004, 5, 131–136. [Google Scholar] [CrossRef]
- Geng, L.; Wang, Y.; Yu, G.; Zhu, Y. Efficient carbon-based solid acid catalysts for the esterification of oleic acid. Catal. Commun. 2011, 13, 26–30. [Google Scholar] [CrossRef]
- Mar, W.W.; Somsook, E. Sulfonic-functionalized carbon catalyst for esterification of high free fatty acid. Procedia Eng. 2012, 32, 212–218. [Google Scholar] [CrossRef]
- Mo, X.; López, D.E.; Suwannakarn, K.; Liu, Y.; Lotero, E., Jr.; Goodwin, J.G.; Lu, C. Activation and deactivation characteristics of sulfonated carbon catalysts. J. Catal. 2008, 254, 332–338. [Google Scholar] [CrossRef]
- Li, S.; Gu, Z.; Bjornson, B.E.; Muthukumarappan, A. Biochar based solid acid catalyst hydrolyze biomass. J. Environ. Chem. Eng. 2013, 1, 1174–1181. [Google Scholar] [CrossRef]
Catalyst | SBETa (m2/g) | Acid Density (mmol/g) | Cyclohexyl Acetate Conversion (%) | Cyclohexanol Selectivity (%) | |||
---|---|---|---|---|---|---|---|
SO3H | COOH | OH | Total | ||||
pre-CSA | 11.0 | – | 0.01 | 0.01 | 0.02 | 1.6 | 81.0 |
CSA | 10.1 | 0.56 | 0.44 | 0.12 | 1.12 | 25.0 | 99.4 |
Pre-CSALA | 977.3 | – | 1.08 | 0.06 | 1.14 | 31.4 | 97.9 |
CSALA | 387.4 | 0.46 | 1.11 | 0.39 | 1.96 | 81.1 | 95.7 |
HZSM-5 b | 416.1 | – | – | – | 1.70 c | 63.4 | 26.9 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, W.; Sun, L.; Yang, F.; Wang, Z.; Li, F. Peanut Shell-Derived Carbon Solid Acid with Large Surface Area and Its Application for the Catalytic Hydrolysis of Cyclohexyl Acetate. Materials 2016, 9, 833. https://doi.org/10.3390/ma9100833
Xue W, Sun L, Yang F, Wang Z, Li F. Peanut Shell-Derived Carbon Solid Acid with Large Surface Area and Its Application for the Catalytic Hydrolysis of Cyclohexyl Acetate. Materials. 2016; 9(10):833. https://doi.org/10.3390/ma9100833
Chicago/Turabian StyleXue, Wei, Lijun Sun, Fang Yang, Zhimiao Wang, and Fang Li. 2016. "Peanut Shell-Derived Carbon Solid Acid with Large Surface Area and Its Application for the Catalytic Hydrolysis of Cyclohexyl Acetate" Materials 9, no. 10: 833. https://doi.org/10.3390/ma9100833
APA StyleXue, W., Sun, L., Yang, F., Wang, Z., & Li, F. (2016). Peanut Shell-Derived Carbon Solid Acid with Large Surface Area and Its Application for the Catalytic Hydrolysis of Cyclohexyl Acetate. Materials, 9(10), 833. https://doi.org/10.3390/ma9100833