Separation of Hydrogen from Carbon Dioxide through Porous Ceramics
Abstract
:1. Introduction
2. Experimental
2.1. Fabrication of Porous Ceramics
2.2. Gas Permeation in Porous Ceramics
3. Results and Discussion
3.1. Microstructures of Porous Ceramics
3.2. Permeation of H2 and CO2 Gases through Porous Ceramics
3.3. Permeation of H2–CO2 Mixed Gas in Porous Ceramics
3.4. Separation Model
4. Reliability of Experiment
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- David, O.C.; Gorri, D.; Urtiaga, A.; Ortiz, I. Mixed gas separation study for the hydrogen recovery from H2/CO/N2/CO2 post combustion mixtures using a Matrimid membrane. J. Membr. Sci. 2011, 378, 359–368. [Google Scholar] [CrossRef]
- Guzmán-Lucero, D.; Palomeque-Santiago, J.F.; Camacho-Zúñiga, C.; Ruiz-Treviño, F.A.; Guzmán, J.; Galicia-Aguilar, A.; Aguilar-Lugo, C. Gas permeation properties of soluble aromatic polyimides based on 4-fluoro-4,4’-diaminotriphenylmethane. Materials 2015, 8, 1951–1965. [Google Scholar] [CrossRef]
- Wang, N.; Mundstock, A.; Liu, Y.; Huang, A.; Caro, J. Amine-modified Mg-MOF-74/CPO-27-Mg membrane with enhanced H2/CO2 separation. Chem. Eng. Sci. 2015, 124, 27–36. [Google Scholar] [CrossRef]
- Friebe, S.; Mundstock, A.; Unruh, D.; Renz, F.; Caro, J. NH2-MIL-125 as membrane for carbon dioxide sequestration: Thin supported MOF layers contra Mixed-Matrix-Membranes. J. Membr. Sci. 2016, 516, 185–193. [Google Scholar] [CrossRef]
- Lewis, A.E.; Kershner, D.C.; Paglieri, S.N.; Slepicka, M.J.; Way, J.D. Pd–Pt/YSZ composite membranes for hydrogen separation from synthetic water-gas shift streams. J. Membr. Sci. 2013, 437, 257–264. [Google Scholar] [CrossRef]
- De Vos, R.M.; Verweij, H. High-selectivity, high-flux silica membranes for gas separation. Science 1998, 279, 1710–1711. [Google Scholar] [CrossRef] [PubMed]
- Basile, A.; Gallucci, F.; Tosti, S. Synthesis, characterisation, and application of palladium membranes. Membr. Sci. Technol. 2008, 13, 255–323. [Google Scholar]
- Nayebossadri, S.; Fletcher, S.; Speight, J.D.; Book, D. Hydrogen permeation through porous stainless steel for palladium-based composite porous membranes. J. Membr. Sci. 2016, 515, 22–28. [Google Scholar] [CrossRef]
- Kroke, E.; Li, Y.-L.; Konetschny, C.; Lecomte, E.; Fasel, C.; Riedel, R. Silazane derived ceramics and related materials. Mater. Sci. Eng. R 2000, 26, 97–199. [Google Scholar] [CrossRef]
- Konegger, T.; Tsai, C.-C.; Peterlik, H.; Creager, S.E.; Bordia, R.K. Asymmetric polysilazane-derived ceramic structures with multiscalar porosity for membrane applications. Microporous Mesoporous Mater. 2016, 232, 196–204. [Google Scholar] [CrossRef]
- Bazarjani, M.S.; Kleebe, H.-J.; Müller, M.M.; Fasel, C.; Baghaie Yazdi, M.; Gurlo, A.; Riedel, R. Nanoporous silicon oxycarbonitride ceramics derived from polysilazanes in situ modified with nickel nanoparticles. Chem. Mater. 2011, 23, 4112–4123. [Google Scholar] [CrossRef]
- Sato, H. Chemical Handbook, Basic Region II; Maruzen Co.: Tokyo, Japan, 1984; pp. II38–II39. [Google Scholar]
- Maxwell, J.C. Illustrations of the dynamical theory of gases. Philos. Mag. 1860, 19, 19–32. [Google Scholar]
- Isobe, T.; Shimizu, M.; Matsushita, S.; Nakajima, A. Preparation and gas permeability of the surface-modified porous Al2O3 ceramic filter for CO2 gas separation. J. Asian Ceram. Soc. 2013, 1, 65–70. [Google Scholar] [CrossRef]
- Takahashi, T.; Tanimoto, R.; Isobe, T.; Matsushita, S.; Nakajima, A. Surface modification of porous alumina filters for CO2 separation using silane coupling agents. J. Membr. Sci. 2016, 497, 216–220. [Google Scholar] [CrossRef]
- Shirasaka, H.; Shimonosono, T.; Hirata, Y.; Sameshima, S. Analysis of gas permeability of porous alumina powder compacts. J. Asian Ceram. Soc. 2013, 1, 368–373. [Google Scholar] [CrossRef]
- Maeda, H.; Hirata, Y.; Sameshima, S.; Shimonosono, T. Analysis of gas permeability for liquid phase-sintered porous SiC compact. J. Porous Med. 2014, 17, 705–713. [Google Scholar] [CrossRef]
- Abrams, H. Grain size measurement by the intercept method. Metallography 1971, 4, 59–78. [Google Scholar] [CrossRef]
- Hensler, J.H. The relation between grain section and grain size. J. Inst. Met. 1968, 96, 190–192. [Google Scholar]
Gas | Sample | Knudsen Number | Permeability Coefficient (10−9 mol·m/(m2·s·Pa)) | ||
---|---|---|---|---|---|
Measured | Calculated | ||||
Knudsen | Poiseuille | ||||
H2 | Al2O3 | 3.62–4.57 | 3.71–3.97 | 3.96 | 0.13–0.16 |
YSZ | 1.65–1.91 | 13.6–13.7 | 11.3 | 0.87–1.01 | |
SiC, 1400 °C | 1.80–2.11 | 7.26–15.0 | 9.75 | 0.68–0.80 | |
SiC, 1500 °C | 1.78–2.03 | 2.12–3.75 | 7.72 | 0.56–0.64 | |
SiC, 1700 °C | 1.22–1.44 | 2.38–15.4 | 7.08 | 0.73–0.86 | |
CO2 | Al2O3 | 1.30–1.41 | 1.35–1.48 | 0.85 | 0.09–0.10 |
YSZ | 0.59–0.62 | 2.88–3.47 | 2.42 | 0.06 | |
SiC, 1400 °C | 0.56–0.72 | 0.18–0.48 | 2.09 | 0.42–0.54 | |
SiC, 1500 °C | 0.50–0.64 | 0.43–1.82 | 1.65 | 0.38–0.49 | |
SiC, 1700 °C | 0.41–0.49 | 0.87–2.82 | 1.52 | 0.45–0.55 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shimonosono, T.; Imada, H.; Maeda, H.; Hirata, Y. Separation of Hydrogen from Carbon Dioxide through Porous Ceramics. Materials 2016, 9, 930. https://doi.org/10.3390/ma9110930
Shimonosono T, Imada H, Maeda H, Hirata Y. Separation of Hydrogen from Carbon Dioxide through Porous Ceramics. Materials. 2016; 9(11):930. https://doi.org/10.3390/ma9110930
Chicago/Turabian StyleShimonosono, Taro, Hikari Imada, Hikaru Maeda, and Yoshihiro Hirata. 2016. "Separation of Hydrogen from Carbon Dioxide through Porous Ceramics" Materials 9, no. 11: 930. https://doi.org/10.3390/ma9110930
APA StyleShimonosono, T., Imada, H., Maeda, H., & Hirata, Y. (2016). Separation of Hydrogen from Carbon Dioxide through Porous Ceramics. Materials, 9(11), 930. https://doi.org/10.3390/ma9110930