Fabrication of a GMA-co-EDMA Monolith in a 2.0 mm i.d. Polypropylene Housing
Abstract
:1. Introduction
2. Results and Discussion
2.1. Surface Attachment of Monolith to PP
2.2. ATR-IR Characterization of the Modified PP Surface
2.3. SEM Characterization and Stability of Polymer Monolith in the PP Housing
3. Materials and Methods
3.1. Materials
3.2. Instrumentation
3.3. Methods
3.3.1. Preparation of Polypropylene Housings
3.3.2. Immobilization of Benzophenone and EDMA
3.3.3. Polymerization of GMA-co-EDMA Monoliths in Polypropylene Housings
3.3.4. Stability Test
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Courtois, J.; Szumski, M.; Byström, E.; Iwasiewicz, A.; Shchukarev, A.; Irgum, K. A study of surface modification and anchoring techniques used in the preparation of monolithic microcolumns in fused silica capillaries. J. Sep. Sci. 2006, 29, 14–24. [Google Scholar] [CrossRef] [PubMed]
- Krenkova, J.; Foret, F. Nanoparticle-modified monolithic pipette tips for phosphopeptide enrichment. Anal. Bioanal. Chem. 2013, 405, 2175–2183. [Google Scholar] [CrossRef] [PubMed]
- Bagheri, H.; Es’haghi, A.; Es-haghib, A.; Mohammadkhani, E. High-throughput micro-solid phase extraction on 96-well plate using dodecyl methacrylate-ethylene glycol dimethacrylate monolithic copolymer. Anal. Chim. Acta 2013, 792, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Du, T.; Cheng, J.; Wu, M.; Wang, X.; Zhou, H.; Cheng, M. Pipette tip-based molecularly imprinted monolith for selective micro-solid-phase extraction of methomyl in environmental water. Anal. Methods 2014, 6, 6375–6380. [Google Scholar] [CrossRef]
- Alwael, H.; Connolly, D.; Clarke, P.; Thompson, R.; Twamley, B.; O’Connor, B.; Paull, B. Pipette-tip selective extraction of glycoproteins with lectin modified gold nano-particles on a polymer monolithic phase. Analyst 2011, 136, 2619–2628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skoglund, C.; Bassyouni, F.; Abdel-Rehim, M. Monolithic packed 96-tips set for high throughput sample preparation: determination of cyclophosphamide and busulfan in whole blood samples by monolithic packed 96-tips and LC-MS. Biomed. Chromatogr. 2013, 27, 714–719. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.W.; Li, K.; Liang, Z.X.; Wang, F.Y.; Lu, Q.W. Development of a monolithic polymer pipette for solid-phase extraction of liquiritigen in in rat plasma. Chin. Chem. Lett. 2012, 23, 723–726. [Google Scholar] [CrossRef]
- Hsu, J.L.; Chou, M.K.; Liang, S.S.; Huang, S.Y.; Wu, C.J.; Shi, F.K.; Chen, S.H. Photopolymerized microtips for sample preparation in proteomic analysis. Electrophoresis 2004, 25, 3840–3847. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Rehim, M.; Persson, C.; Altun, Z.; Blomberg, L. Evaluation of monolithic packed 96-tips and liquid chromatography–tandem mass spectrometry for extraction and quantification of pindolol and metoprolol in human plasma samples. J. Chromatogr. A 2008, 1196–1197, 23–27. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, H.C.; Sheu, C.; Shi, F.K.; Li, D.T. Development of a titanium dioxide nanoparticle pipette-tip for the selective enrichment of phosphorylated peptides. J. Chromatogr. A 2007, 1165, 128–135. [Google Scholar] [CrossRef] [PubMed]
- Liang, S.S.; Chen, S.H. Monolithic microextraction tips by emulsion photo-polymerization. J. Chromatogr. A 2009, 1216, 2282–2287. [Google Scholar] [CrossRef] [PubMed]
- Du, T.; Cheng, J.; Wu, M.; Wang, X.; Zhou, H.; Cheng, M. An in-situ immobilized pipette tip solid phase microextraction method based on molecularly imprinted polymer monolith for the selective determination of difenoconazole in tap water and grape juice. J. Chromatogr. B 2014, 951–952, 104–109. [Google Scholar] [CrossRef] [PubMed]
- Altun, Z.; Hjelmstrom, A.; Blomberg, L.G.; Abdel-Rehim, M. Evaluation of Monolithic Packed 96-Tips for Solid-Phase Extraction of Local Anesthetics from Human Plasma for Quantitation by Liquid Chromatography Tandem Mass Spectrometry. J. Liq. Chromatogr. Relat. Technol. 2008, 31, 743–751. [Google Scholar] [CrossRef]
- Altun, Z.; Blomberg, L.G.; Abdel-Rehim, M. Increasing sample preparation throughput using monolithic methacrylate polymer as packing material for 96-tip robotic device. J. Liq. Chromatogr. Relat. Technol. 2006, 29, 1477–1489. [Google Scholar] [CrossRef]
- Hua, L.; Li, D. Preparation of a pipette tip-based molecularly imprinted solid-phase microextraction monolith by epitope approach and its application for determination of enkephalins in human cerebrospinal fluid. J. Pharm. Biomed. Anal. 2015, 115, 330–338. [Google Scholar]
- Hahn, H.W.; Rainer, M.; Ringer, T.; Huck, C.W.; Günther, K.B. Ultrafast Microwave-Assisted In-Tip Digestion of Proteins. J. Proteome Res. 2009, 8, 4225–4230. [Google Scholar] [CrossRef] [PubMed]
- Altun, Z.; Hjelmstrom, A.; Abdel-Rehim, M.; Blomberg, L.G. Surface modified polypropylene pipette tips packed with a monolithic plug of adsorbent for high throughput sample preparation. J. Sep. Sci. 2007, 30, 1964–1972. [Google Scholar] [CrossRef] [PubMed]
- Rainer, M.; Sonderegger, H.; Bakry, R.; Huck, C.W.; Morandell, S.; Huber, L.A.; Gjerde, D.T.; Bonn, G.K. Analysis of protein phosphorylation by monolithic extraction columns based on poly(divinylbenzene) containing embedded titanium dioxide and zirconium dioxide nano-powders. Proteomics 2008, 8, 4593–4602. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Chen, Z. Preparation of micropipette tip-based molecularly imprinted monolith for selective micro-solid phase extraction of berberine in plasma and urine samples. Talanta 2013, 103, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Reichelt, S.; Elsner, C.; Prager, A.; Naumov, S.; Kuballab, J.; Buchmeiser, M.R. Amino-functionalized monolithic spin-type columns for high-throughput lectin affinity chromatography of glycoproteins. Analyst 2012, 137, 2600–2607. [Google Scholar] [CrossRef] [PubMed]
- Blomberg, L.G. Two new techniques for sample preparation in bioanalysis: Microextraction in packed sorbent (MEPS) and use of a bonded monolith as sorbent for sample preparation in polypropylene tips for 96-well plates. Anal. Bioanal. Chem. 2009, 393, 797–807. [Google Scholar] [CrossRef] [PubMed]
- Altuna, Z.; Skoglundb, C.; Abdel-Rehim, M. Monolithic methacrylate packed 96-tips for high throughput bioanalysis. J. Chromatogr. B 2010, 1217, 2581–2588. [Google Scholar] [CrossRef] [PubMed]
- Lee, L.H. Relevance of the density-functional theory to acid-base interactions and adhesion in solids. J. Adhes. Sci. Technol. 1991, 5, 71–92. [Google Scholar] [CrossRef]
- Severini, F.; Di Landro, L.; Galfetti, L.; Meda, L.; Ricca, G.; Zenere, G. Flame surface modification of polyethylene sheets. Macromol. Symp. 2002, 181, 225–244. [Google Scholar] [CrossRef]
- Mühlan, C.; Nowack, H. Plasma pretreatment of polypropylene for improved adhesive bonding. Surf. Coat. Technol. 1998, 98, 1107–1111. [Google Scholar] [CrossRef]
- Kang, M.S.; Chun, B.; Kim, S.S. Surface modification of polypropylene membrane by low-temperature plasma treatment. J. Appl. Polym. Sci. 2001, 81, 1555–1565. [Google Scholar] [CrossRef]
- Denes, F. Synthesis and surface modification by macromolecular plasma chemistry. Trends Polym. Sci. 1997, 5, 23–31. [Google Scholar]
- Stachowiak, T.B.; Rohr, T.; Hilder, E.F.; Peterson, D.S.; Yi, M.; Svec, F.; Fréchet, J.M.J. Fabrication of porous polymer monoliths covalently attached to the walls of channels in plastic microdevices. Electrophoresis 2003, 24, 3689–3693. [Google Scholar] [CrossRef] [PubMed]
- B. Rånby, B.; W.T. Yang, W.T.; Tretinnikov, O. Surface photografting of polymer fibers, films and sheets. Nucl. Instrum. Methods Phys. Res., Sect. B 1999, 151, 301–305. [Google Scholar]
- Castell, P.; Wouters, M.; de With, G.; Fischer, H.; Huijs, F. Surface modification of poly(propylene) by photoinitiators: Improvement of adhesion and wettability. J. Appl. Polym. Sci. 2004, 92, 2341–2350. [Google Scholar] [CrossRef]
- Nesterenko, E.P.; Nesterenko, P.N.; Connolly, D.; Lacroix, F.; Paull, B. Micro-bore titanium housed polymer monoliths for reversed-phase liquid chromatography of small molecules. J. Chromatogr. A 2010, 1217, 2138–2146. [Google Scholar] [CrossRef] [PubMed]
- Svec, F.; Tennikova, T.B.; Deyl, Z. Monolithic Materials: Preparation, Properties, and Applications; Elsevier: Amsterdam, The Netherlands, 2003. [Google Scholar]
PP Monolith | Dimension |
---|---|
Outer housing diameter | 3.0 × 10−3 m |
Inner housing diameter | 2.0 × 10−3 m |
Monolith mass per tool length | 0.920 g/m |
Monolith surface per tool length | 480 m2/m a |
Inlet or outlet area of the monolith | 3.14 × 10−6 m2 |
Mass of anchoring system per tool length | 0.019 g/m |
Epoxy group content | 4.81 ×10−3 mol/m b |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iacono, M.; Connolly, D.; Heise, A. Fabrication of a GMA-co-EDMA Monolith in a 2.0 mm i.d. Polypropylene Housing. Materials 2016, 9, 263. https://doi.org/10.3390/ma9040263
Iacono M, Connolly D, Heise A. Fabrication of a GMA-co-EDMA Monolith in a 2.0 mm i.d. Polypropylene Housing. Materials. 2016; 9(4):263. https://doi.org/10.3390/ma9040263
Chicago/Turabian StyleIacono, Marcello, Damian Connolly, and Andreas Heise. 2016. "Fabrication of a GMA-co-EDMA Monolith in a 2.0 mm i.d. Polypropylene Housing" Materials 9, no. 4: 263. https://doi.org/10.3390/ma9040263
APA StyleIacono, M., Connolly, D., & Heise, A. (2016). Fabrication of a GMA-co-EDMA Monolith in a 2.0 mm i.d. Polypropylene Housing. Materials, 9(4), 263. https://doi.org/10.3390/ma9040263