Physicochemical Characterization of Functional Lignin–Silica Hybrid Fillers for Potential Application in Abrasive Tools
Abstract
:1. Introduction
2. Results
2.1. FT-IR Spectroscopy
2.2. 13C CP MAS NMR Spectroscopy
2.3. TG-MS Analysis
2.4. Dynamic-Mechanical Properties
3. Materials and Methods
3.1. Preparation of Lignin–SiO2 Hybrid Materials
3.2. Preparation of Abrasive Composites with Lignin–SiO2 Hybrids and with Lignin and SiO2
- -
- SiO2 means 3 wt. % resole + 80 wt. % white fused alumina + 12 wt. % novolac + 5 wt. % SiO2;
- -
- lignin means 3 wt. % resole + 80 wt. % white fused alumina + 12 wt. % novolac + 5 wt. % lignin;
- -
- lignin–SiO2 (8:1, wt./wt.) means 3 wt. % resole + 80 wt. % white fused alumina + 12 wt. % novolac + 5 wt. % lignin–silica;
- -
- lignin–SiO2 (8:2, wt./wt.) means 3 wt. % resole + 80 wt. % white fused alumina + 12 wt. % novolac + 5 wt. % lignin–silica;
- -
- lignin–SiO2 (8:4, wt./wt.) means 3 wt. % resole + 80 wt. % white fused alumina + 12 wt. % novolac + 5 wt. % lignin–silica;
- -
- lignin–SiO2 (8:6, wt./wt.) means 3 wt. % resole + 80 wt. % white fused alumina + 12 wt. % novolac + 5 wt. % lignin–silica.
3.3. Physicochemical Evaluation
3.3.1. FT-IR Spectroscopy
3.3.2. 13C CP MAS NMR Spectroscopy
3.3.3. TG-MS Analysis
3.4. Dynamic-Mechanical Properties
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Djouani, F.; Herbst, F.; Chehimi, M.M.; Benzarti, K. Synthesis, characterization and reinforcing properties of novel, reactive clay/poly(glycidyl methacrylate) nanocomposites. Constr. Build. Mater. 2011, 25, 424–431. [Google Scholar] [CrossRef]
- Solhia, L.; Ataia, M.; Nodehia, A.; Imania, M.; Ghaemib, A.; Khosravi, K. Poly(acrylic acid) grafted montmorillonite as novel fillers for dental adhesives: Synthesis, characterization and properties of the adhesive. Dental Mater. 2012, 28, 369–377. [Google Scholar] [CrossRef] [PubMed]
- Brostow, W.; Hagg Lobland, H.E.; Khoja, S. Brittleness and toughness of polymers and other materials. Matter. Lett. 2015, 159, 478–480. [Google Scholar] [CrossRef]
- Dang, A.; Ojha, S.; Hui, C.M.; Mahoney, C.; Matyjaszewski, K.; Bockstaller, M.R. High-transparency polymer nanocomposites enabled by polymer-graft modification of particle fillers. Langmuir 2014, 30, 14434–14442. [Google Scholar] [CrossRef] [PubMed]
- Brostow, W.; Datashvili, T.; Jiang, P.; Miller, H. Recycled HDPE reinforced with sol–gel silica modified wood sawdust. Eur. Polym. J. 2016, 76, 28–39. [Google Scholar] [CrossRef]
- Klapiszewski, L.; Bula, K.; Sobczak, M.; Jesionowski, T. Influence of processing conditions on the thermal stability and mechanical properties of PP/silica-lignin composites. Int. J. Polym. Sci. 2016, 2016, 1–12. [Google Scholar] [CrossRef]
- Strzemiecka, B.; Voelkel, A.; Hinz, M.; Rogozik, M. Application of inverse gas chromatography in physicochemical characterization of phenolic resin adhesives. J. Chromatogr. A 2014, 1368, 199–203. [Google Scholar] [CrossRef] [PubMed]
- Strzemiecka, B.; Voelkel, A.; Chmielewska, D.; Sterzyński, T. Influence of different fillers on phenolic resin abrasive composites. Comparison of inverse gas chromatographic and dynamic mechanical–thermal analysis characteristics. Int. J. Adhes. Adhes. 2014, 51, 81–86. [Google Scholar] [CrossRef]
- Strzemiecka, B.; Voelkel, A.; Donate-Robles, J.; Martín-Martínez, J.M. Estimation of polyurethane-carbon black interactions by means of inverse gas chromatography. J. Chromatogr. A 2013, 1314, 249–254. [Google Scholar] [CrossRef] [PubMed]
- Weissig, V.; Pettinger, T.K.; Murdock, N. Nanopharmaceuticals (Part 1): Products on the market. Int. J. Nanomed. 2014, 9, 4357–4373. [Google Scholar] [CrossRef] [PubMed]
- Such, G.K.; Johnston, A.P.R.; Liang, K.; Caruso, F. Synthesis and functionalization of nanoengineered materials using click chemistry. Prog. Polym. Sci. 2012, 37, 985–1003. [Google Scholar] [CrossRef]
- Wong, K.V.; Perilla, N.; Paddon, A. Nanoscience and nanotechnology in solar cells. J. Energy Resour. Technol. 2013, 136, 1–9. [Google Scholar] [CrossRef]
- Com, M.; Lligadas, G.; Ronda, J.C.; Gali, M.; Cadiz, V. Renewable benzoxazine monomers from “lignin-like” naturally occurring phenolic derivatives. J. Polym. Sci. 2013, 51, 4894–4903. [Google Scholar] [CrossRef]
- Tejado, A.; Kortaberria, G.; Pena, C.; Labidi, J.; Echeverría, J.M.; Mondragon, I. Lignins for phenol replacement in novolac-type phenolic formulations, Part I: Lignophenolic resins synthesis and characterization. J. Appl. Polym. Sci. 2007, 106, 2313–2319. [Google Scholar] [CrossRef]
- Basso, M.C.; Giovando, S.; Pizzi, A.; Celzard, A.; Fierro, V. Tannin/furanic foams without blowing agents and formaldehyde. Ind. Crop. Prod. 2013, 49, 17–22. [Google Scholar] [CrossRef]
- Li, X.; Pizzi, A.; Lacoste, C.; Fierro, V.; Celzard, A. Tannin-furan foams & blowing agent. Bioresources 2013, 8, 743–752. [Google Scholar]
- Klapiszewski, Ł.; Nowacka, M.; Milczarek, G.; Jesionowski, T. Physicochemical and electrokinetic properties of silica/lignin biocomposites. Carbohydr. Polym. 2013, 94, 345–355. [Google Scholar] [CrossRef] [PubMed]
- Bula, K.; Klapiszewski, Ł.; Jesionowski, T. A novel functional silica/lignin hybrid material as a potential bio-based polypropylene filler. Polym. Compos. 2015, 36, 913–922. [Google Scholar] [CrossRef]
- Grząbka-Zasadzińska, A.; Klapiszewski, Ł.; Bula, K.; Jesionowski, T.; Borysiak, S. Supermolecular structure and nucleation ability of polylactide-based composites with silica/lignin hybrid fillers. J. Therm. Anal. Calorim. 2016. [Google Scholar] [CrossRef]
- Al-Oweini, R.; El-Rassy, H. Synthesis and characterization by FTIR spectroscopy of silica aerogels prepared using several Si(OR)4 and R’’Si(OR’)3 precursors. J. Mol. Struct. 2009, 919, 140–145. [Google Scholar] [CrossRef]
- Strzemiecka, B.; Klapiszewski, Ł.; Matykiewicz, D.; Voelkel, A.; Jesionowski, T. Functional lignin-SiO2 hybrids as potential fillers for phenolic binders. J. Adhes. Sci. Technol. 2016, 30, 1031–1048. [Google Scholar] [CrossRef]
- Wen, J.; Sun, S.; Xue, B.; Sun, R. Recent advances in characterization of lignin polymer by solution-state nuclear magnetic resonance (NMR) methodology. Materials 2013, 6, 359–391. [Google Scholar] [CrossRef]
- Wysokowski, M.; Klapiszewski, Ł.; Moszyński, D.; Bartczak, P.; Szatkowski, T.; Majchrzak, I.; Siwińska-Stefańska, K.; Bezhenov, V.V.; Jesionowski, T. Modification of chitin with kraft lignin and development of new biosorbents for removal of cadmium(II) and nickel(II) ions. Mar. Drugs 2014, 12, 2245–2268. [Google Scholar] [CrossRef] [PubMed]
- Klapiszewski, Ł.; Królak, M.; Jesionowski, T. Silica synthesis by the sol-gel method and its use in the preparation of multifunctional biocomposites. Cent. Eur. J. Chem. 2014, 12, 173–184. [Google Scholar] [CrossRef]
- Kijima, M.; Hirukawa, T.; Hanawa, F.; Hata, T. Thermal conversion of alkaline lignin and its structured derivatives to porous carbonized materials. Bioresour. Technol. 2011, 102, 6279–6285. [Google Scholar] [CrossRef] [PubMed]
- Brebu, M.; Cazacu, G.; Chirila, O. Pyrolysis of lignin—A potential method for obtaining chemicals and/or fuels. Cellulose Chem. Technol. 2011, 45, 43–50. [Google Scholar]
- Brebu, M.; Vasile, C. Thermal degradation of lignin—A review. Cellulose Chem. Technol. 2010, 44, 353–363. [Google Scholar]
- Brebu, M.; Tamminen, T.; Spiridon, I. Thermal degradation of various lignins by TG-MS/FTIR and Py-GC-MS. J. Anal. Appl. Pyrol. 2013, 104, 531–539. [Google Scholar] [CrossRef]
- Menard, K.P. Thermal transitions and their measurement. In Performance of Plastics; Brostow, W., Ed.; Hanser: Munich, Germany, 2000; pp. 147–184. [Google Scholar]
- Candan, Z.; Gardner, D.J.; Shaler, S.M. Dynamic mechanical thermal analysis (DMTA) of cellulose nanofibril/nanoclay/pMDI nanocomposites. Compos. B Eng. 2016, 90, 126–132. [Google Scholar] [CrossRef]
- Chandran, M.S.; Sanil, K.; Sunithaa, K.; Mathewa, D.; Raoa, V.L.; Naira, C.P.R. Alder-ene polymers derived from allyl aralkyl phenolic resin and bismaleimides: Carbon fiber composites properties. Polym. Adv. Technol. 2016. [Google Scholar] [CrossRef]
- Eesaee, M.; Shojaei, A. Effect of nanoclays on the mechanical properties and durability of novolac phenolic resin/woven glass fiber composite at various chemical environments. Compos. Part A 2014, 63, 149–158. [Google Scholar] [CrossRef]
- Sawpan, M.A.; Holdsworth, P.G.; Renshaw, P. Glass transitions of hygrothermal aged pultruded glass fibre reinforced polymer rebar by dynamic mechanical thermal analysis. Mater. Des. 2012, 42, 272–278. [Google Scholar] [CrossRef]
- Chiang, C.L.; Ma, C.C.M. Synthesis, characterization, thermal properties and flame retardance of novel phenolic resin/silica nanocomposites. Polym. Degrad. Stabil. 2004, 83, 207–214. [Google Scholar] [CrossRef]
- Tejado, A.; Peña, C.; Labidi, J.; Echeverria, J.M.; Mondragon, I. Physico-chemical characterization of lignins from different sources for use in phenol–formaldehyde resin synthesis. Bioresour. Technol. 2007, 98, 1655–1663. [Google Scholar] [CrossRef] [PubMed]
- Benyahya, S.; Aouf, C.; Caillol, S.; Boutevin, B.; Pascault, J.P.; Fulcrand, H. Functionalized green tea tannins as phenolic prepolymers for bio-based epoxy resins. Ind. Crop. Prod. 2014, 53, 296–307. [Google Scholar] [CrossRef]
- Park, B.D.; Wang, X.M. Thermokinetic behavior of powdered phenol-formaldehyde (PPF) resins. Thermochim. Acta 2005, 433, 88–92. [Google Scholar] [CrossRef]
- Kelley, S.S.; Rials, T.G.; Glasser, W.G. Relaxation behaviour of the amorphous components of wood. J. Mater. Sci. 1987, 22, 617–624. [Google Scholar] [CrossRef]
- Wang, J.; Laborie, M.P.G.; Wolcott, M.P. Kinetic analysis of phenol–formaldehyde bonded wood joints with dynamical mechanical analysis. Thermochim. Acta 2009, 491, 58–62. [Google Scholar] [CrossRef]
- Santhosh Kumar, K.S.; Reghunadhan Nair, C.P.; Ninan, K.N. Silica fiber–polybenzoxazine–syntactic foams; Processing and properties. J. Appl. Polym. Sci. 2008, 107, 1091–1099. [Google Scholar] [CrossRef]
- Alonso, M.V.; Oliet, M.; García, J.; Rodríguez, F.; Echeverría, J. Master curve and time–temperature–transformation cure diagram of lignin–phenolic and phenolic resol resins. J. Appl. Polym. Sci. 2007, 103, 3362–3369. [Google Scholar] [CrossRef]
- Mauro, M.; Acocella, M.R.; Corcione, C.E.; Maffezzoli, A.; Guerra, G. Catalytic activity of graphite-based nanofillers on cure reaction of epoxy resins. Polymer 2014, 55, 5612–5615. [Google Scholar] [CrossRef]
- Giuri, A.; Rella, S.; Malitesta, C.; Colella, S.; Listorti, A.; Gigli, G.; Rizzo, A.; Cozzoli, P.D.; Acocella, M.R.; Guerra, G.; et al. Synthesis of reduced graphite oxide by a novel green process based on UV light irradiation. Sci. Adv. Mater. 2015, 7, 2445–2451. [Google Scholar] [CrossRef]
- Rella, S.; Giuri, A.; Corcione, C.E.; Acocella, M.R.; Colella, S.; Guerra, G.; Listorti, A.; Rizzo, A.; Malitesta, C. X-ray photoelectron spectroscopy of reduced graphene oxide prepared by a novel green method. Vacuum 2015, 119, 159–162. [Google Scholar] [CrossRef]
Kraft Lignin (cm−1) | Silica (cm−1) | Lignin–Silica Hybrid Filler (cm−1) | Vibrational Assignment |
---|---|---|---|
3426 | 3142 | 3434 | O−H stretching |
2940 | – | 2940 | CHx stretching |
1637 | – | 1637 | C=O stretching |
– | 1602 | 1601 | H2O (physically adsorbed water) |
1600 | – | 1600 | C−C, C=C (aromatic skeleton), stretching |
1509 | – | 1508 | |
1465 | – | 1467 | C−H (CH3 + CH2), bending |
1421 | – | 1424 | C−C, C=C (aromatic skeleton), stretching |
1271 | – | 1271 | C−O (guaiacyl unit) stretching |
1219 | – | 1222 | C−OH (phenolic OH) stretching |
1143 | – | 1142 | Aromatic C−H (guaiacyl unit), stretching |
– | 1107 | 1110 | Si−O−Si stretching |
1080 | – | 1085 | C−O stretching |
1045 | – | 1044 | C−OH + C−O−C (aliphatic OH + ether) stretching |
856 | – | – | Aromatic C−H (guaiacyl unit), bending |
– | 845 | 845 | Si−O asymmetric stretching |
– | 812 | 809 | Si−O symmetric stretching |
744 | – | 746 | Aromatic C−H (guaiacyl unit), bending |
536 | – | 531 | CHx bending |
– | 473 | 476 | Si−O bending |
Kraft Lignin (ppm) | Lignin–Silica Hybrid Filler (ppm) | Assignment |
---|---|---|
14.2 | 14.3 | γ–CH3 in n-propyl side chain |
35.3 | 34.0 | CH3 group, ketones (conj.) or in aliphatic |
54.0 | 55.2 | C–β in β–β and β–5 units |
55.6 | 56.0 | C in Ar–OCH3 |
62.0 | 62.0 | C–γ in G type β–1 and β–5 units |
64.3 | – | C–γ in G type β–O–4 units with α–C=O |
71.1 | 71.0 | C–α in G type β–O–4 units (threo) |
72.0 | 72.0 | C–α in G type β–O–4 units (erythro) |
72.5 | – | C–γ in β–β; C–γ, β–aryl ether |
83.0 | 82.9 | C–β in guaiacyl type β–O–4 units (erythro) |
85.1 | – | C–β in guaiacyl type β–O–4 units (threo) |
110.5 | 111.0 | C–2 in guaiacyl units |
112.0 | – | C–2 in G units |
115.1 | – | C–5 in G units |
118.7 | 119.0 | C–6 in G units |
122.0 | – | C–1 and C–6 in Ar–C(=O)C–C units |
125.2 | 125.0 | C–5, non-etherified 5–5 |
128.0 | – | C–2/C–6, in H units |
131.2 | – | C–1, non-etherified 5–5 |
132.3 | – | C–5, etherified 5–5 |
133.2 | 133.0 | C–1 in non-etherified G and S units |
138.1 | 137.5 | C–4, syringyl etherified |
148.2 | 148.8 | C–3, guaiacyl units |
151.2 | 150.5 | C–3/C–5, etherified S units |
169.5 | – | C=O in φ–COOH, ester C=O in φ–C(=O)OR and R–C(=O)OCH3 |
Compound | Lignin–SiO2 (8:1, wt./wt.) | Lignin–SiO2 (8:2, wt./wt.) | Lignin–SiO2 (8:4, wt./wt.) | Lignin–SiO2 (8:6, wt./wt.) | Lignin |
---|---|---|---|---|---|
Carbon dioxide | + | + | + | + | + |
Sulfur dioxide | + | + | + | + | + |
Methanethiol | + | + | + | + | + |
Acetone | + | + | + | + | + |
Dimethyl sulfide | + | + | + | + | + |
Acetic acid | + | + | + | + | + |
Furan, 3-methyl | + | + | + | − | − |
1,3-cyclohexadiene | + | + | + | − | − |
2-propanone, 1-hydroxy | + | + | + | + | + |
Benzene | + | + | + | + | - |
Phenol | + | + | + | + | + |
Phenol, 2-methyl | + | + | + | + | + |
P-cresol | + | + | + | + | + |
Phenol, 2-methoxy | + | + | + | + | + |
Benzene, 1,2-dimethoxy | + | + | + | + | + |
Phenol, 2,4-dimethyl | + | + | + | + | + |
Phenol, 2,3-dimethyl | + | + | + | + | + |
Phenol, 4-ethyl | + | + | + | + | + |
Cresol | + | + | + | + | + |
Benzene, 1-ethyl-2-methoxy | + | − | − | − | − |
Benzene, 4-ethyl-2-methoxy | + | + | + | − | + |
2-methoxy-4-vinylphenol | + | − | − | − | + |
Vanillin | + | + | + | − | + |
Sample | G’ 25 °C (GPa) | G’ 50 °C (GPa) | G’ 300 °C (GPa) | tan δmax | Tg (°C) |
---|---|---|---|---|---|
Lignin–SiO2 (8:1, wt./wt.) | 1.80 | 1.74 | 0.82 | 0.0654 | 252 |
Lignin–SiO2 (8:2, wt./wt.) | 2.21 | 2.16 | 0.88 | 0.0718 | 250 |
Lignin–SiO2 (8:4, wt./wt.) | 1.43 | 1.39 | 0.52 | 0.0708 | 220 |
Lignin–SiO2 (8:6, wt./wt.) | 1.66 | 1.62 | 0.73 | 0.0748 | 230 |
Lignin | 2.00 | 1.95 | 0.88 | 0.0859 | 206 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Strzemiecka, B.; Klapiszewski, Ł.; Jamrozik, A.; Szalaty, T.J.; Matykiewicz, D.; Sterzyński, T.; Voelkel, A.; Jesionowski, T. Physicochemical Characterization of Functional Lignin–Silica Hybrid Fillers for Potential Application in Abrasive Tools. Materials 2016, 9, 517. https://doi.org/10.3390/ma9070517
Strzemiecka B, Klapiszewski Ł, Jamrozik A, Szalaty TJ, Matykiewicz D, Sterzyński T, Voelkel A, Jesionowski T. Physicochemical Characterization of Functional Lignin–Silica Hybrid Fillers for Potential Application in Abrasive Tools. Materials. 2016; 9(7):517. https://doi.org/10.3390/ma9070517
Chicago/Turabian StyleStrzemiecka, Beata, Łukasz Klapiszewski, Artur Jamrozik, Tadeusz J. Szalaty, Danuta Matykiewicz, Tomasz Sterzyński, Adam Voelkel, and Teofil Jesionowski. 2016. "Physicochemical Characterization of Functional Lignin–Silica Hybrid Fillers for Potential Application in Abrasive Tools" Materials 9, no. 7: 517. https://doi.org/10.3390/ma9070517
APA StyleStrzemiecka, B., Klapiszewski, Ł., Jamrozik, A., Szalaty, T. J., Matykiewicz, D., Sterzyński, T., Voelkel, A., & Jesionowski, T. (2016). Physicochemical Characterization of Functional Lignin–Silica Hybrid Fillers for Potential Application in Abrasive Tools. Materials, 9(7), 517. https://doi.org/10.3390/ma9070517