An Optimal Biparametric Multipoint Family and Its Self-Acceleration with Memory for Solving Nonlinear Equations
Abstract
:1. Introduction
2. A Steffensen-Type Family of Optimal Order without Memory
3. A Steffensen-Type Family of Super Convergence with Memory
4. Numerical Examples
Method | n | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|---|
NM | 0.12618e-1 | 0.39224e-4 | 0.38462e-9 | 0.36982e-19 | 0.34192e-39 | |
COC | 1.71685 | 2.08950 | 1.99746 | 2.00000 | 2.00000 | |
SM | 0.90483e-2 | 0.20376e-4 | 0.10379e-9 | 0.26931e-20 | 0.18132e-41 | |
COC | 1.92349 | 1.96916 | 1.99926 | 2.00000 | 2.00000 | |
SASM | 0.10005e-1 | 0.27820e-5 | 0.42758e-14 | 0.31858e-35 | 0.27123e-86 | |
COC | 1.86107 | 2.73351 | 2.47855 | 2.39725 | 2.41719 | |
DPM1(1) | 0.35098e-1 | 0.89701e-3 | 0.60310e-6 | 0.27280e-12 | 0.55816e-25 | |
COC | 1.08123 | 2.10714 | 1.99216 | 1.9999 | 2.00000 | |
DPM1(2) | 0.35098e-1 | 0.17051e-4 | 0.85716e-12 | 0.1044e-29 | 0.77854e-73 | |
COC | 1.08123 | 4.38445 | 2.2027 | 2.45446 | 2.40742 | |
DPM1(3) | 0.11379 | 0.58486e-4 | 0.45402e-15 | 0.14730e-44 | 0.49933e-136 | |
COC | 0.350412 | 13.4287 | 3.07383 | 3.01572 | 3.0001 | |
Equation (4) | 0.90483e-2 | 0.83467e-4 | 0.69659e-8 | 0.48524e-16 | 0.23546e-32 | |
COC | 1.92349 | 1.51366 | 2.00414 | 1.99999 | 2.00000 | |
Equation (16) | 0.90483e-2 | 0.12295e-5 | 0.11371e-14 | 0.13249e-36 | 0.16634e-89 | |
COC | 1.92349 | 2.87612 | 2.33626 | 2.42792 | 2.41188 | |
Equation (16) | 0.90483e-2 | 0.49807e-7 | 0.69167e-23 | 0.2069e-70 | 0.55353e-213 | |
COC | 1.92349 | 3.9118 | 3.01513 | 2.99697 | 3.0000 | |
DPM2(1) | 0.19766e-3 | 0.1919e-15 | 0.15768e-64 | 0.48294e-260 | 0.42497e-1042 | |
COC | 4.29934 | 4.0663 | 3.99998 | 4.0000 | 4.00000 | |
DPM2(2) | 0.19766e-3 | 0.37718e-18 | 0.16139e-85 | 0.64139e-393 | 0.34726e-1795 | |
COC | 4.29934 | 4.89812 | 4.57687 | 4.56296 | 4.56169 | |
DPM2(3) | 0.19766e-3 | 0.61235e-21 | 0.17871e-109 | 0.18862e-556 | 0.37821e-2814 | |
COC | 4.29934 | 5.82639 | 5.05656 | 5.04859 | 5.04881 | |
RWBM | 0.47770e-4 | 0.18986e-18 | 0.47372e-76 | 0.18361e-306 | 0.41433e-1228 | |
(Equation (5), ) | COC | 5.18173 | 3.97604 | 4.00000 | 4.00000 | 4.00000 |
RWBM | 0.11363e-3 | 0.14757e-16 | 0.41995e-68 | 0.27538e-274 | 0.50918e-1099 | |
(Equation (5), ) | COC | 4.64333 | 3.97050 | 4.00000 | 4.00000 | 4.00000 |
Equation (17) | 0.47770e-4 | 0.52156e-20 | 0.1841e-87 | 0.31207e-373 | 0.90942e-1584 | |
COC | 5.18173 | 4.40707 | 4.22584 | 4.23664 | 4.23604 | |
Equation (17) | 0.47770e-4 | 0.8438e-23 | 0.29043e-111 | 0.32054e-531 | 0.86331e-2524 | |
COC | 5.18172 | 5.17772 | 4.71725 | 4.74726 | 4.7447 |
SASM | Equation (16) | Equation (16) | DPM1(3) | Equation (17) | Equation (17) | DPM2(3) | |
---|---|---|---|---|---|---|---|
0.245e-40 | 0.784e-14 | 0.107e-28 | 0.164e-23 | 0.101e-195 | 0.727e-273 | 0.426e-231 | |
COC | 2.41353 | 2.45350 | 3.00734 | 2.98211 | 4.23599 | 4.74517 | 5.04588 |
0.396e-44 | 0.194e-17 | 0.177e-35 | 0.304e-29 | 0.524e-176 | 0.148e-254 | 0.188e-283 | |
COC | 2.41316 | 2.32334 | 3.01791 | 2.94762 | 4.23567 | 4.74606 | 5.04155 |
0.380e-49 | 0.346e-14 | 0.300e-38 | 0.172e-32 | 0.168e-168 | 0.689e-258 | 0.618e-265 | |
COC | 2.41295 | 2.51251 | 3.16594 | 3.12621 | 4.23622 | 4.74895 | 5.04542 |
0.344e-86 | 0.696e-37 | 0.112e-70 | 0.326e-60 | 0.111e-399 | 0.115e-560 | 0.437e-555 | |
COC | 2.41721 | 2.43146 | 3.00078 | 2.99954 | 4.24283 | 4.7598 | 5.04856 |
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Ortega, J.M.; Rheinboldt, W.G. Iterative Solution of Nonlinear Equations in Several Variables; Academic Press: New York, NY, USA, 1970. [Google Scholar]
- Kung, H.T.; Traub, J.F. Optimal order of one-point and multipoint iteration. J. Assoc. Comput. Math. 1974, 21, 634–651. [Google Scholar] [CrossRef]
- Traub, J.F. Iterative Methods for the Solution of Equations. In Iterative Methods for the Solution of Equations; Prentice-Hall: Englewood Cliffs, NJ, USA, 1964; pp. 142–149. [Google Scholar]
- Zheng, Q.; Wang, J.; Zhao, P.; Zhang, L. A Steffensen-like method and its higher-order variants. Appl. Math. Comput. 2009, 214, 10–16. [Google Scholar] [CrossRef]
- Zheng, Q.; Zhao, P.; Zhang, L.; Ma, W. Variants of Steffensen-secant method and applications. Appl. Math. Comput. 2010, 216, 3486–3496. [Google Scholar] [CrossRef]
- Alarcón, V.; Amat, S.; Busquier, S.; López, D.J. A Steffensen’s type method in Banach spaces with applications on boundary-value problems. J. Comput. Appl. Math. 2008, 216, 142–149. [Google Scholar] [CrossRef]
- Džunić, J.; Petković, M.S. On generalized biparametric multipoint root finding methods with memory. J. Comput. Appl. Math. 2014, 255, 362–375. [Google Scholar] [CrossRef]
- Ren, H.; Wu, Q.; Bi, W. A class of two-step Steffensen type methods with fourth-order convergence. Appl. Math. Comput. 2009, 209, 206–210. [Google Scholar] [CrossRef]
- Zheng, Q.; Li, J.; Huang, F. An optimal Steffensen-type family for solving nonlinear equations. Appl. Math. Comput. 2011, 217, 9592–9597. [Google Scholar] [CrossRef]
- Džunić, J.; Petković, M.S. On generalized multipoint root-solvers with memory. J. Comput. Appl. Math. 2012, 236, 2909–2920. [Google Scholar] [CrossRef]
- Zheng, Q.; Huang, F.; Guo, X.; Feng, X. Doubly-accelerated Steffensen’s methods with memory and their applications on solving nonlinear ODEs. J. Comput. Anal. Appl. 2013, 15, 886–891. [Google Scholar]
- Liu, Z.; Zheng, Q. A one-step Steffensen-type method with super-cubic convergence for solving nonlinear equations. Procedia Comput. Sci. 2014, 29, 1870–1875. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, T. Efficient n-point iterative methods with memory for solving nonlinear equations. Numer. Algorithms 2015, 70, 357–375. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, Q.; Zhao, X.; Liu, Y. An Optimal Biparametric Multipoint Family and Its Self-Acceleration with Memory for Solving Nonlinear Equations. Algorithms 2015, 8, 1111-1120. https://doi.org/10.3390/a8041111
Zheng Q, Zhao X, Liu Y. An Optimal Biparametric Multipoint Family and Its Self-Acceleration with Memory for Solving Nonlinear Equations. Algorithms. 2015; 8(4):1111-1120. https://doi.org/10.3390/a8041111
Chicago/Turabian StyleZheng, Quan, Xin Zhao, and Yufeng Liu. 2015. "An Optimal Biparametric Multipoint Family and Its Self-Acceleration with Memory for Solving Nonlinear Equations" Algorithms 8, no. 4: 1111-1120. https://doi.org/10.3390/a8041111
APA StyleZheng, Q., Zhao, X., & Liu, Y. (2015). An Optimal Biparametric Multipoint Family and Its Self-Acceleration with Memory for Solving Nonlinear Equations. Algorithms, 8(4), 1111-1120. https://doi.org/10.3390/a8041111