Analysis of the Essential Oils of Chamaemelum fuscatum (Brot.) Vasc. from Spain as a Contribution to Reinforce Its Ethnobotanical Use
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bibliographic Prospection
2.2. Plant Material
2.3. Isolation of C. fuscatum Essential Oil
2.4. Gas Chromatography–Mass Spectrometry (GC–MS) Analysis
3. Results
3.1. Yield
3.2. Chemical Composition of C. fuscatum Essential Oils
3.3. Review of the Pharmacological Activities of C. fuscatum Essential Oil Compounds
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Blanca, G. Chamaemelum Mill. In Flora Vascular de Andalucía Oriental; Blanca, G., Cabezudo, B., Cueto, M., Fernández López, C., Morales Torres, C., Eds.; Consejería de Medio Ambiente, Junta de Andalucía: Sevilla, Spain, 2011; pp. 1655–1656. ISBN 978-84-92807-12-3. [Google Scholar]
- Blanco-Salas, J.; Ruiz-Téllez, T.; Vázquez-Pardo, F.M. Chamaemelum fuscatum (Brot.) Vasc. In Inventario Español de los Conocimientos Tradicionales Relativos a la Biodiversidad. Fase II (Tomo 1); Pardo de Santayama, M., Morales, R., Tardío, J., Molina, M., Eds.; Ministerio de Agricultura y Pesca, Alimentación y Medio Ambiente: Madrid, Spain, 2018; pp. 332–334. ISBN 978-84-491-1472-4. [Google Scholar]
- Tejerina, Á. Usos y Saberes Sobre las Plantas de Monfragüe; Itomonfragüe: Cáceres, Spain, 2010; ISBN 978-84-15820-10-9. [Google Scholar]
- Casado Ponce, D. Revisión de la Flora y Etnobotánica de la Campiña de Jaén (del Guadalbullón a la Cuenca del Salado de Porcuna). Doctoral Thesis, Universidad de Jaén, Jaén, Spain, 2003. [Google Scholar]
- Gregori, P. Medicina Popular en Valencia de Mombuey. Doctoral Thesis, Universidad de Extremadura, Badajoz, Spain, 2007. [Google Scholar]
- Vázquez, F.M.; Suarez, M.A.; Pérez, A. Medicinal plants used in the Barros Area, Badajoz Province (Spain). J. Ethnopharmacol. 1997, 55, 81–85. [Google Scholar] [CrossRef]
- Penco, A.D. Medicina Popular Veterinaria en la Comarca de Zafra. Doctoral Thesis, Universidad de Extremadura, Extremadura, Spain, 2005. [Google Scholar]
- De Pascual Teresa, J.; Caballero, E.; Caballero, C.; Anaya, J.; González, M.S. Four aliphatic esters of Chamaemelum fuscatum essential oil. Phytochemistry 1983, 22, 1757–1759. [Google Scholar] [CrossRef]
- De Pascual Teresa, J.; Caballero, E.; Anaya, J.; Caballero, C.; Gonzalez, M.S. Eudesmanolides from Chamaemelum fuscatum. Phytochemistry 1986, 25, 1365–1369. [Google Scholar] [CrossRef]
- De Pascual Teresa, J.; Anaya, T.J.; Caballero, E.; Caballero, M.C. Sesquiterpene lactones and aliphatic esters from Chamaemelum fuscatum. Phytochemistry 1988, 27, 855–860. [Google Scholar] [CrossRef]
- Aceituno-Mata, L.; Acosta, R.; Alcaraz, F.; Álvarez Escobar, A.; Amich, F.; Anllo Naveiras, J.; Barroso, E.; Benítez Cruz, G.; Blanco, E.; Blanco-Salas, J.; et al. Metodología para la elaboración del Inventario Español de los Conocimientos Tradicionales Relativos a la Biodiversidad. In Inventario Español de los Conocimientos Tradicionales Relativos a la Biodiversidad. Primera Fase: Introducción, Metodología y Fichas; Pardo de Santayana, M., Morales, R., Aceituno-Mata, L., Molina, M., Eds.; Ministerio de Agricultura, Alimentación y Medio Ambiente: Madrid, Spain, 2014; pp. 31–49. ISBN 978-84-491-1401-4. [Google Scholar]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. PRISMA Group Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Int. J. Surg. 2010. [Google Scholar] [CrossRef] [PubMed]
- McLafferty, F.W.; Stauffer, D.B. The Wiley/NBS Registry of Mass Spectral Data, Volumes 1–7. J. Chem. Educ. 1989, 66, A256. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Quadrupole Mass Spectroscopy; Academic Press: New York, NY, USA, 2001; ISBN 0931710855. [Google Scholar]
- Shen, V.K.; Siderius, D.W.; Krekelberg, W.P.; Hatch, H.W. (Eds.) NIST Standard Reference Simulation Website, NIST Standard Reference Database Number 173; National Institute of Standards and Technology: Gaithersburg MD, USA, 2012. [Google Scholar]
- Rivas da Silva, A.C.; Lopes, P.M. Barros de Azevedo, M.M.; Costa, D.C.; Alviano, C.S.; Alviano, D.S. Biological activities of α-pinene and β-pinene enantiomers. Molecules 2012, 17, 6305–6316. [Google Scholar] [CrossRef]
- Menezes, I.A.C.; Barreto, C.M.N.; Antoniolli, Â.R.; Santos, M.R.V.; de Sousa, D.P. Hypotensive activity of terpenes found in essential oils. Zeitschrift für Naturforschung C 2010, 65, 562–566. [Google Scholar] [CrossRef]
- de Souza, M.C.; Vieira, A.J.; Beserra, F.P.; Pellizzon, C.H.; Nóbrega, R.H.; Rozza, A.L. Gastroprotective effect of limonene in rats: Influence on oxidative stress, inflammation and gene expression. Phytomedicine 2019, 53, 37–42. [Google Scholar] [CrossRef]
- Yu, L.; Yan, J.; Sun, Z. D-limonene exhibits anti-inflammatory and antioxidant properties in an ulcerative colitis rat model via regulation of iNOS, COX-2, PGE2 and ERK signaling pathways. Mol. Med. Rep. 2017, 15, 2339–2346. [Google Scholar] [CrossRef] [Green Version]
- Rancic, A.; Soković, M.; Van Griensven, L.; Vukojevic, J.; Brkic, D.; Ristic, M. Antimicrobial action of limonene. Lekovite Sirovine 2003, 23, 83–88. [Google Scholar]
- Caldas, G.F.R.; da Silva Oliveira, A.R.; Araújo, A.V.; Lafayette, S.S.L.; Albuquerque, G.S.; Silva-Neto, J.C.; Costa-Silva, J.H.; Ferreira, F.; da Costa, J.G.; Wanderley, A.G. Gastroprotective mechanisms of the monoterpene 1, 8-cineole (eucalyptol). PLoS ONE 2015, 10, 1–17. [Google Scholar] [CrossRef]
- Rocha, D.M.; Caldas, A.P.; Oliveira, L.L.; Bressan, J.; Hermsdorff, H.H. Saturated fatty acids trigger TLR4-mediated inflammatory response. Atherosclerosis 2016, 244, 211–215. [Google Scholar] [CrossRef] [PubMed]
- Foti, M.C.; Ingold, K.U. Mechanism of inhibition of lipid peroxidation by γ-terpinene, an unusual and potentially useful hydrocarbon antioxidant. J. Agric. Food Chem. 2003, 51, 2758–2765. [Google Scholar] [CrossRef] [PubMed]
- Carson, C.F.; Riley, T.V. Antimicrobial activity of the major components of the essential oil of Melaleuca alternifolia. J. Appl. Bacteriol. 1995, 78, 264–269. [Google Scholar] [CrossRef] [PubMed]
- Elaissi, A.; Rouis, Z.; Mabrouk, S.; Salah, K.B.; Aouni, M.; Khouja, M.L.; Farhat, F.; Chemli, R.; Harzallah-Skhiri, F. Correlation between chemical composition and antibacterial activity of essential oils from fifteen Eucalyptus species growing in the Korbous and Jbel Abderrahman arboreta (North East Tunisia). Molecules 2012, 17, 3044–3057. [Google Scholar] [CrossRef] [PubMed]
- Ghori, S.S.; Ahmed, M.I.; Arifuddin, M.; Khateeb, M.S. Evaluation of analgesic and anti-inflammatory activities of formulation containing camphor, menthol and thymol. Int. J. Pharm. Pharm. Sci. 2016, 8, 271–274. [Google Scholar]
- Gil Silva, R.O.; Salvadori, M.S.; Sousa, F.B.M.; Santos, M.S.; Carvalho, N.S.; Sousa, D.P.; Gomes, B.S.; Oliveira, F.A.; Barbosa, A.L.R.; Freitas, R.M.; et al. Evaluation of the anti-inflammatory and antinociceptive effects of myrtenol, a plant-derived monoterpene alcohol, in mice. Flavour Fragr. J. 2014, 29, 184–192. [Google Scholar] [CrossRef]
- Pongprayoon, U.; Baeckström, P.; Jacobsson, U.; Lindström, M.; Bohlin, L. Antispasmodic activity of β-damascenone and E-phytol isolated from Ipomoea pes-caprae. Planta Med. 1992, 58, 19–21. [Google Scholar] [CrossRef]
- Veiga, V.F.; Rosas, E.C.; Carvalho, M.V.; Henriques, M.G.M.O.; Pinto, A.C. Chemical composition and anti-inflammatory activity of copaiba oils from Copaifera cearensis Huber ex Ducke, Copaifera reticulata Ducke and Copaifera multijuga Hayne-A comparative study. J. Ethnopharmacol. 2007, 112, 248–254. [Google Scholar] [CrossRef]
- Yamahara, J.; Hatakeyama, S.; Taniguchi, K.; Kawamura, M.; Yoshikawa, M. Stomachic principles in ginger. II. Pungent and anti-ulcer effects of low polar constituents isolated from ginger, the dried rhizoma of Zingiber officinale Roscoe cultivated in Taiwan. The absolute stereostructure of a new diarylheptanoid. Yakugaku Zasshi 1992, 112, 645–655. [Google Scholar] [CrossRef] [PubMed]
- Pulla Reddy, A.C.; Lokesh, B.R. Effect of dietary turmeric (Curcuma longa) on iron-induced lipid peroxidation in the rat liver. Food Chem. Toxicol. 1994, 32, 279–283. [Google Scholar] [CrossRef]
- González, A.M.; Tracanna, M.I.; Amani, S.M.; Schuff, C.; Poch, M.J.; Bach, H.; Catalán, C.A.N. Chemical composition, antimicrobial and antioxidant properties of the volatile oil and methanol extract of Xenophyllum poposum. Nat. Prod. Commun. 2012, 7, 1663–1666. [Google Scholar] [CrossRef] [PubMed]
- Chan, W.K.; Tan, L.T.H.; Chan, K.G.; Lee, L.H.; Goh, B.H. Nerolidol: A sesquiterpene alcohol with multi-faceted pharmacological and biological activities. Molecules 2016, 21, 529. [Google Scholar] [CrossRef] [PubMed]
- Goel, R.; Kaur, D.; Pahwa, P. Assessment of anxiolytic effect of nerolidol in mice. Indian J. Pharmacol. 2016, 48, 450–452. [Google Scholar] [CrossRef] [PubMed]
- do Nascimento, K.F.; Moreira, F.M.F.; Alencar Santos, J.; Kassuya, C.A.L.; Croda, J.H.R.; Cardoso, C.A.L.; do, C.; Vieira, M.; Góis Ruiz, A.L.T.; Ann Foglio, M.; et al. Antioxidant, anti-inflammatory, antiproliferative and antimycobacterial activities of the essential oil of Psidium guineense Sw. and spathulenol. J. Ethnopharmacol. 2018, 210, 351–358. [Google Scholar] [CrossRef] [PubMed]
- Maurya, A.; Singh, M.; Dubey, V.; Srivastava, S.; Luqman, S.; Bawankule, D. (−)-bisabolol reduces pro-inflammatory cytokine production and ameliorates skin inflammation. Curr. Pharm. Biotechnol. 2014, 15, 173–181. [Google Scholar] [CrossRef] [PubMed]
- Moura Rocha, N.F.; Venâncio, E.T.; Moura, B.A.; Gomes Silva, M.I.; Aquino Neto, M.R.; Vasconcelos Rios, E.R.; De Sousa, D.P.; Mendes Vasconcelos, S.M.; De França Fonteles, M.M.; De Sousa, F.C.F. Gastroprotection of (−)-α-bisabolol on acute gastric mucosal lesions in mice: The possible involved pharmacological mechanisms. Fundam. Clin. Pharmacol. 2010, 24, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Mann, C.; Staba, E.J. The chemistry, pharmacology, and commercial formulation of chamomile. In Herbs, Spices, and Medicinal Plants: Recent Advances in Botany, Horticulture, and Pharmacology; Craker, L., Simon, J., Eds.; Food Products Press: New York, NY, USA, 1992; Volume 1, pp. 235–281. ISBN 9781560220435. [Google Scholar]
- Radulović, N.S.; Blagojević, P.D.; Zlatković, B.K.; Palić, R.M. Chemotaxonomically important volatiles of the genus Anthemis L.—A detailed GC and GC/MS analysis of Anthemis segetalis Ten. from Montenegro. J. Chin. Chem. Soc. 2009, 56, 642–652. [Google Scholar] [CrossRef]
- Tschiggerl, C.; Bucar, F. Guaianolides and volatile compounds in Chamomile tea. Plant Foods Hum. Nutr. 2012, 67, 129–135. [Google Scholar] [CrossRef] [PubMed]
Uses Upon IECTB 1 | Reference | Location | Part Used | Formulation | Preparation | Popular Uses |
---|---|---|---|---|---|---|
HUMAN CONSUMPTION | ||||||
Non-alcoholic beverage | [3] | Cáceres | Inflorescence | Infusion | Drink | |
ANIMAL FEEDING | ||||||
Fodder | [4] | Jaén | Inflorescence | Birdseed | ||
MEDICINAL USE | ||||||
Digestive system | [5] | Badajoz | Inflorescence | Decoction | Mouthwash | Swollen gums |
Digestive system | [3,5] | Cáceres Badajoz | Inflorescence | Infusion | Drink (sweetened with honey or sugar) | Digestive problems |
Digestive system | [3] | Cáceres | Inflorescence | Infusion | Drink (mixed with olive oil) | Indigestion |
Digestive system | [3] | Cáceres | Inflorescence | Infusion | Drink (mixed with olive oil) | Colic pains |
Digestive system | [3,5] | Cáceres Badajoz | Inflorescence | Infusion | Drink | Laxative |
Genito-urinary system | [5] | Badajoz | Inflorescence | Decoction | Washing of affected area | Relieve vaginal itching |
Respiratory system | [3] | Cáceres | Inflorescence | Decoction | Syrup (mixed with lemon and honey) | |
Musculature and skeleton | [6] | Badajoz | Inflorescence | Decoction | Drink | Antirheumatic |
Nervous system and mental illness | [3,6] | Cáceres Badajoz | Inflorescence | Infusion | Drink (in cáceres sweetened with honey or sugar) | Sedative |
Sense organs | [3,5] | Cáceres Badajoz | Inflorescence | Infusion (Cáceres); decoction (Badajoz) | Eye drops | Eye irritation, conjunctivitis |
Other infectious and parasitic diseases | [5] | Badajoz | Inflorescence | Infusion | Drenching of affected area | Herpes (“feve”) |
VETERINARY USE | ||||||
Digestive system | [7] | Cáceres | Inflorescence | Infusion | Drink (mixed with olive oil, brandy or bicarbonate) | Digestive problems, lack of rumination, accumulation of gases |
Musculature and skeleton | [7] | Badajoz | Green parts and leaves | Decoction | Rubbing | Lameness and inflammation |
Skin and subcutaneous tissue | [7] | Badajoz | Green parts and leaves | Decoction | Rubbing | Wounds |
INDUSTRY AND CRAFTS | ||||||
Cosmetics, perfumes and cleaning products | [3] | Cáceres | Whole plant | Decoction | Dyed blond hair | |
Clothing and personal adornment | [3] | Cáceres | Inflorescence | Personal adornment |
Percent Composition (%) | ||||||
---|---|---|---|---|---|---|
Peak | Compound | IT (exp.) | IT (lit.) e | F | WP | GP |
1 | 2-methylpropyl isobutyrate a | 895 | 892 | 1.54 | 0.54 | - |
2 | 2-methylallyl isobutyrate a | 927 | - | 9.79 | 7.51 | - |
3 | α-pinene b | 939 | 932 | 0.71 | 1.11 | - |
4 | isobutyl methacrylate a | 960 | - | 2.38 | 2.14 | - |
5 | isobutyl 2-methylbutyrate a | 1004 | 1002 * | 0.20 | 0.16 | - |
6 | 2-methylbutyl isobutyrate a | 1015 | 1014 * | 2.03 | 1.66 | - |
7 | limonene b | 1031 | 1031 | 0.34 | 0.10 | - |
8 | 1,8-cineol b | 1033 | 1032 | 0.50 | 0.30 | - |
9 | γ-terpinene b | 1060 | 1054 | 0.10 | 0.40 | - |
10 | isoamyl butyrate a | 1060 | 1060 | 3.60 | 1.64 | - |
11 | (E)-2-methyl-2-butenyl methacrylate a | 1087 | - | 27.57 | 18.53 | 0.73 |
12 | 3-methylbutyl-2-methyl-butyrate a | 1100 | 1100 | 0.27 | 0.15 | - |
13 | 2-methylbutyl-2-methyl-butyrate a | 1106 | 1103 | 0.30 | 0.17 | - |
14 | 3-methyl-3-butenyl isovalerate a | 1118 | 1116 * | 1.22 | 1.10 | - |
15 | α-canfolenal b | 1119 | 1122 | 0.33 | 0.15 | - |
16 | trans-pinocarveol b | 1139 | 1135 | 5.14 | 2.90 | 0.20 |
17 | camphor b | 1143 | 1141 | 0.20 | 0.25 | - |
18 | pinocarvone b | 1162 | 1160 | 4.39 | 2.62 | 0.45 |
19 | 3-pinanone b | 1173 | 1172 | 0.43 | 0.28 | - |
20 | terpinen-4-ol b | 1179 | 1174 | 0.20 | 0.20 | - |
21 | myrtenol b | 1194 | 1194 | 1.17 | 0.89 | - |
22 | amyl tiglate a | 1229 | 1126 * | 0.82 | 0.44 | - |
23 | (-)-carvone b | 1242 | 1239 | 0.53 | 0.35 | - |
24 | nonanoic acid d | 1280 | 1267 | 0.16 | 0.10 | - |
25 | cis-myrtenal b | 1289 | 1295 | 0.19 | 0.15 | - |
26 | geranyl formate b | 1300 | 1298 | 0.35 | - | - |
27 | (E,E)-2,4-decadienald | 1318 | 1316 | 0.38 | - | - |
28 | myrtenyl acetate b | 1326 | 1326 | 0.20 | 0.20 | - |
29 | benzyl methacrylate a | 1357 | - | 0.39 | 0.10 | - |
30 | decanoic acid d | 1369 | 1364 | 0.56 | 0.76 | - |
31 | (E)-β-damascenone b | 1380 | 1384 | 0.19 | 0.49 | - |
32 | phenylethyl isobutyrate a | 1396 | 1396 * | 0.35 | 0.19 | - |
33 | trans-caryophyllene c | 1404 | 1408 | 0.33 | 0.32 | - |
34 | α-bergamotene c | 1438 | 1412 | 5.08 | 4.94 | 2.18 |
35 | α-curcumene c | 1483 | 1480 | 9.21 | 8.06 | 4.69 |
36 | α-muurolene c | 1499 | 1500 | 0.23 | 0.27 | 0.62 |
37 | (E,E)-α-farnesene c | 1509 | 1505 | 0.15 | - | - |
38 | γ-cadinene c | 1513 | 1513 | 0.50 | 0.86 | 0.31 |
39 | (Z)-γ-bisabolene c | 1515 | 1515 | 0.28 | 0.36 | - |
40 | δ-cadinene c | 1524 | 1523 | 1.39 | 1.73 | 1.30 |
41 | cadina-1,4-diene c | 1532 | 1534 | 0.39 | 0.20 | - |
42 | (Z)-nerolidol c | 1534 | 1532 | 0.60 | 0.43 | 0.30 |
43 | α-cadinene c | 1538 | 1538 | 0.38 | 0.20 | - |
44 | neryl isovalerate c | 1576 | 1583 | 1.32 | 2.98 | 6.80 |
45 | spathulenol c | 1578 | 1578 | 0.84 | 0.64 | 0.83 |
46 | caryophyllene oxide c | 1581 | 1578 | 0.10 | 0.27 | - |
47 | guaiol c | 1595 | 1600 | 0.77 | 0.76 | 0.89 |
48 | isoamyl nerolate c | 1601 | 1602 | 0.69 | 0.23 | 1.11 |
49 | 1,10-di-epi-cubenolc | 1614 | 1619 | 0.33 | 0.28 | 0.72 |
50 | γ-eudesmol c | 1630 | 1632 | 0.10 | 0.44 | 1.77 |
51 | himachalol c | 1647 | 1653 | 0.10 | 0.38 | 0.96 |
52 | α-cadinol c | 1652 | 1654 | 0.10 | 0.28 | 0.26 |
53 | β-eudesmol c | 1659 | 1650 | 0.10 | 0.10 | - |
54 | α-bisabolol c | 1682 | 1685 | 0.39 | 0.71 | 0.72 |
55 | xanthorrhizol c | 1751 | 1753 | - | - | 0.21 |
56 | pentadecanol c | 1778 | 1774 | - | - | 0.75 |
57 | β-bisabolenol c | 1786 | 1789 | 0.39 | 0.28 | 0.75 |
58 | 1-octadecene d | 1793 | 1790 | 0.52 | 0.41 | 1.06 |
59 | hexadecanol d | 1879 | 1875 | - | 0.20 | 1.24 |
60 | hexadecanoic acid d | 1972 | 1960 | 2.49 | 10.74 | 23.89 |
61 | octadecanoic acid d | 2180 | 2180 | 0.75 | 8.65 | 18.68 |
Aliphatic esters (a) | 50.46 | 34.33 | 0.73 | |||
Monoterpenoids (b) | 14.97 | 10.39 | 0.65 | |||
Sesquiterpenoids (c) | 23.77 | 24.72 | 24.42 | |||
Others (d) | 4.86 | 20.86 | 45.62 | |||
% identified | 94.06 | 90.30 | 71.42 |
Compound | Reported Pharmacological Activities | References |
---|---|---|
α-Pinene | Antibacterial, antifungal Hypotensive | [16] [17] |
Limonene | Gastroprotective Anti-inflammatory, antioxidant Antimicrobial | [18] [19] [20] |
1,8-Cineole | Gastroprotective Anti-inflammatory | [21] [22] |
γ-Terpinene | Antioxidant Antibacterial | [23] [24] |
Trans-pinocarveol | Antibacterial | [25] |
Camphor | Analgesic, anti-inflammatory | [26] |
Myrtenol | Anti-inflammatory, antinociceptive | [27] |
(E)-β-Damascenone | Antispasmodic | [28] |
α-Bergamotene | Anti-inflammatory | [29] |
α-Curcumene | Stomachic, antinociceptive, anti-ulcer Anti-inflammatory | [30] [31] |
δ-Cadinene | Anti-inflammatory Antibacterial, antioxidant | [29] [32] |
(Z)-Nerolidol | Antinociceptive | [33] |
Sedative | [34] | |
Spathulenol | Anti-inflammatory, antinociceptive, anticarcinogen | [35] |
α-Bisabolol | Anti-inflammatory Digestive | [36] [37] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernández-Cervantes, M.; Pérez-Alonso, M.J.; Blanco-Salas, J.; Soria, A.C.; Ruiz-Téllez, T. Analysis of the Essential Oils of Chamaemelum fuscatum (Brot.) Vasc. from Spain as a Contribution to Reinforce Its Ethnobotanical Use. Forests 2019, 10, 539. https://doi.org/10.3390/f10070539
Fernández-Cervantes M, Pérez-Alonso MJ, Blanco-Salas J, Soria AC, Ruiz-Téllez T. Analysis of the Essential Oils of Chamaemelum fuscatum (Brot.) Vasc. from Spain as a Contribution to Reinforce Its Ethnobotanical Use. Forests. 2019; 10(7):539. https://doi.org/10.3390/f10070539
Chicago/Turabian StyleFernández-Cervantes, Marcos, María José Pérez-Alonso, José Blanco-Salas, Ana Cristina Soria, and Trinidad Ruiz-Téllez. 2019. "Analysis of the Essential Oils of Chamaemelum fuscatum (Brot.) Vasc. from Spain as a Contribution to Reinforce Its Ethnobotanical Use" Forests 10, no. 7: 539. https://doi.org/10.3390/f10070539
APA StyleFernández-Cervantes, M., Pérez-Alonso, M. J., Blanco-Salas, J., Soria, A. C., & Ruiz-Téllez, T. (2019). Analysis of the Essential Oils of Chamaemelum fuscatum (Brot.) Vasc. from Spain as a Contribution to Reinforce Its Ethnobotanical Use. Forests, 10(7), 539. https://doi.org/10.3390/f10070539