Conservation of Waterlogged Wood—Past, Present and Future Perspectives
Abstract
:1. Introduction
2. Degradation of Waterlogged Wood
2.1. Microbiological Attack
2.2. Waterlogged Wood, Sulphur and Iron
2.3. Waterlogged Wood in Saltwater
2.4. Chemical Degradation
2.5. Physical Degradation
3. Properties of Commonly Encountered Consolidants and Some Case-Studies from the Conservation Practice
4. Properties of Consolidated Wood
4.1. Drying of Consolidated Wood
4.2. Sorption Behaviour
4.3. Physical Properties
4.4. Degradation of Consolidated Wood
5. What Research Has Been Performed and Future Perspectives
5.1. Sugars and Sugar Alcohols
5.1.1. Sucrose
5.1.2. Sucralose
5.1.3. Trehalose
5.1.4. Lactitol
5.1.5. Mannitol and Sorbitol
5.1.6. Xylitol
5.2. Proteins
5.3. Cellulose and Its Derivatives
5.4. Lignin and Its Derivatives
5.5. Chitosan and Guar
5.6. Oligoamides
5.7. Other Natural Compounds
5.8. Halloysite Nanotubes
5.9. Organosilicon Compounds
5.10. Other Polymers
6. In Situ Preservation and Reburial
7. Discussion and Conclusions
“Blessed were the ancients, for they had not antiquities”—Italian saying [269].
Author Contributions
Funding
Conflicts of Interest
References
- Grattan, D.W. Waterlogged Wood. Conserv. Marine Archaeol. Objects 1987, 1, 55–67. [Google Scholar] [CrossRef]
- Björdal, C.G. Microbial Degradation of Waterlogged Archaeological Wood. J. Cult. Herit. 2012, 13, S118–S122. [Google Scholar] [CrossRef]
- Terberger, T.; Zhilin, M.; Savchenko, S. The Shigir Idol in the Context of Early Art in Eurasia. Quat. Int. 2021, 573, 14–29. [Google Scholar] [CrossRef]
- Schoch, W.H.; Bigga, G.; Böhner, U.; Richter, P.; Terberger, T. New Insights on the Wooden Weapons from the Paleolithic Site of Schöningen. J. Hum. Evol. 2015, 89, 214–225. [Google Scholar] [CrossRef] [PubMed]
- Mcqueen, C.M.A.; Tamburini, D.; Łucejko, J.J.; Braovac, S.; Gambineri, F.; Modugno, F.; Colombini, M.P.; Kutzke, H. New Insights into the Degradation Processes and Influence of the Conservation Treatment in Alum-Treated Wood from the Oseberg Collection. Microchem. J. 2017, 132, 119–129. [Google Scholar] [CrossRef] [Green Version]
- Macphail, R.; Bill, J.; Cannell, R.; Linderholm, J.; Rødsrud, C.L. Integrated Microstratigraphic Investigations of Coastal Archaeological Soils and Sediments in Norway: The Gokstad Ship Burial Mound and Its Environs Including the Viking Harbour Settlement of Heimdaljordet, Vestfold. Quat. Int. 2013, 315, 131–146. [Google Scholar] [CrossRef]
- Gregory, D.; Jensen, P.; Strætkvern, K. Conservation and in Situ Preservation of Wooden Shipwrecks from Marine Environments. J. Cult. Herit. 2012, 13, S139–S148. [Google Scholar] [CrossRef]
- Jordan, B.A. Site Characteristics Impacting the Survival of Historic Waterlogged Wood: A Review. Int. Biodeterior. Biodegrad. 2001, 47, 47–54. [Google Scholar] [CrossRef]
- Lillie, M.; Smith, R. The in Situ Preservation of Archaeological Remains: Using Lysimeters to Assess the Impacts of Saturation and Seasonality. J. Archaeol. Sci. 2007, 34, 1494–1504. [Google Scholar] [CrossRef]
- Lillie, M.; Smith, R.; Reed, J.; Inglis, R. Southwest Scottish Crannogs: Using in Situ Studies to Assess Preservation in Wetland Archaeological Contexts. J. Archaeol. Sci. 2008, 35, 1886–1900. [Google Scholar] [CrossRef]
- Caple, C. Reburial of Waterlogged Wood, the Problems and Potential of This Conservation Technique. Int. Biodeter. Biodegr. 1994, 34, 61–72. [Google Scholar] [CrossRef]
- Jones, S.P.P.; Slater, N.K.H.; Jones, M.; Ward, K.; Smith, A.D. Investigating the Processes Necessary for Satisfactory Freeze-Drying of Waterlogged Archaeological Wood. J. Archaeol. Sci. 2009, 36, 2177–2183. [Google Scholar] [CrossRef]
- Björdal, C.G.; Nilsson, T.; Daniel, G. Microbial Decay of Waterlogged Archaeological Wood Found in Sweden Applicable to Archaeology and Conservation. Int. Biodeter. Biodegr. 1999, 43, 63–73. [Google Scholar] [CrossRef]
- Blanchette, R.A.; Cease, K.R.; Abad, A.; Koestler, R.J.; Simpson, E.; Sams, G.K. An Evaluation of Different Forms of Deterioration Found in Archaeological Wood. Int. Biodeterior. 1991, 28, 3–22. [Google Scholar] [CrossRef]
- Han, L.; Tian, X.; Keplinger, T.; Zhou, H.; Li, R.; Svedstrom, K.; Burgert, I.; Yin, Y.; Guo, J. Even Visually Intact Cell Walls in Waterlogged Archaeological Wood Are Chemically Deteriorated and Mechanically Fragile: A Case of a 170 Year-Old Shipwreck. Molecules 2020, 25, 1113. [Google Scholar] [CrossRef] [Green Version]
- Pournou, A. Wood Deterioration by Aquatic Microorganisms. In Biodeterioration of Wooden Cultural Heritage: Organisms and Decay Mechanisms in Aquatic and Terrestrial Ecosystems; Pournou, A., Ed.; Springer International Publishing: Cham, Switzerland, 2020; pp. 177–260. ISBN 978-3-030-46504-9. [Google Scholar]
- Blanchette, R.A. A Review of Microbial Degradation Found in Archaeological Wood from Different Environments. Int. Biodeter. Biodegr. 2000, 46, 189–204. [Google Scholar] [CrossRef]
- Daniel, G.; Nilsson, T. Developments in the Study of Soft Rot and Bacterial Decay. In Forest Products Biotechnology; CRC Press: Boca Raton, FL, USA, 1998; ISBN 978-0-429-07945-0. [Google Scholar]
- Klaassen, R.K.W.M. Bacterial Decay in Wooden Foundation Piles-Patterns and Causes: A Study of Historical Pile Foundations in the Netherlands. Int. Biodeterior. Biodegrad. 2008, 61, 45–60. [Google Scholar] [CrossRef]
- Pedersen, N.B.; Björdal, C.G.; Jensen, P.; Felby, C. Bacterial Degradation of Archaeological Wood in Anoxic Waterlogged Environments. In Stability of Complex Carbohydrate Structures. Biofuel, Foods, Vaccines, and Shipwrecks; Harding, I.E., Ed.; The Royal Society of Chemistry: Cambridge, UK, 2013. [Google Scholar]
- Blanchette, R.A. Microbial Degradation of Wood from Aquatic and Terrestrial Environments. In Cultural Heritage Microbiology: Fundamental Studies in Conservation Science; ASM Press: Washington, DC, USA, 2010; pp. 179–190. [Google Scholar]
- Nilsson, T.; Björdal, C. The Use of Kapok Fibres for Enrichment Cultures of Lignocellulose-Degrading Bacteria. Int. Biodeterior. Biodegrad. 2008, 61, 11–16. [Google Scholar] [CrossRef]
- Lukowsky, D.; Keiser, U.; Gohla, A. Strength Properties of Scots Pine from Harbour Piles Degraded by Erosion Bacteria. Eur. J. Wood Prod. 2018, 76, 1187–1194. [Google Scholar] [CrossRef]
- Kim, Y.S.; Singh, A.P. Micromorphological Characteristics of Wood Biodegradation in Wet Environments: A Review. IAWA J. 2000, 21, 135–155. [Google Scholar] [CrossRef]
- Huisman, D.J.; Manders, M.R.; Kretschmar, E.I.; Klaassen, R.K.W.M.; Lamersdorf, N. Burial Conditions and Wood Degradation at Archaeological Sites in the Netherlands. Int. Biodeterior. Biodegrad. 2008, 61, 33–44. [Google Scholar] [CrossRef]
- Gelbrich, J.; Kretschmar, E.I.; Lamersdorf, N.; Militz, H. Laboratory Experiments as Support for Development of in Situ Conservation Methods. Conserv. Manag. Archaeol. Sites 2012, 14, 7–15. [Google Scholar] [CrossRef]
- Björdal, C.G.; Daniel, G.; Nilsson, T. Depth of Burial, an Important Factor in Controlling Bacterial Decay of Waterlogged Archaeological Poles. Int. Biodeterior. Biodegrad. 2000, 45, 15–26. [Google Scholar] [CrossRef]
- Lionetto, F.; Quarta, G.; Cataldi, A.; Cossa, A.; Auriemma, R.; Calcagnile, L.; Frigione, M. Characterization and Dating of Waterlogged Woods from an Ancient Harbor in Italy. J. Cult. Herit. 2014, 15, 213–217. [Google Scholar] [CrossRef]
- Blanchette, R.A.; Iiyama, K.; Abad, A.R.; Cease, K.R. Ultrastructure of Ancient Buried Wood from Japan. Holzforschung 1991, 45, 161–168. [Google Scholar] [CrossRef]
- Hoffmann, P.; Singh, A.; Kim, Y.S.; Wi, S.G.; Kim, I.-J.; Schmitt, U. The Bremen Cog of 1380–an Electron Microscopic Study of Its Degraded Wood before and after Stabilization with PEG. Holzforschung 2004, 58, 211–218. [Google Scholar] [CrossRef]
- Kim, Y.S. Chemical Characteristics of Waterlogged Archaeological Wood. Holzforschung 1990, 44, 169–172. [Google Scholar] [CrossRef]
- Kretschmar, E.I.; Gelbrich, J.; Militz, H.; Lamersdorf, N. Studying Bacterial Wood Decay under Low Oxygen Conditions—Results of Microcosm Experiments. Int. Biodeterior. Biodegrad. 2008, 61, 69–84. [Google Scholar] [CrossRef]
- Boutelje, J.; Goransson, B. Decay in Wood Constructions below the Ground Water Table. In Proceedings of the 2nd International Biodeterioration Symposium, Lunteren, The Netherlands, 13–18 September 1971; pp. 311–318. [Google Scholar]
- Kim, Y.S.; Singh, A.P. Micromorphological Characteristics of Compression Wood Degradation in Waterlogged Archaeological Pine Wood. Holzforschung 1999, 53, 381–385. [Google Scholar] [CrossRef]
- Broda, M.; Mazela, B.; Radka, K. Methyltrimethoxysilane as a Stabilising Agent for Archaeological Waterlogged Wood Differing in the Degree of Degradation. J. Cult. Herit. 2019, 35, 129–139. [Google Scholar] [CrossRef]
- Landy, E.T.; Mitchell, J.I.; Hotchkiss, S.; Eaton, R.A. Bacterial Diversity Associated with Archaeological Waterlogged Wood: Ribosomal RNA Clone Libraries and Denaturing Gradient Gel Electrophoresis (DGGE). Int. Biodeter. Biodegr. 2008, 61, 106–116. [Google Scholar] [CrossRef]
- Nilsson, T.; Björdal, C.; Fällman, E. Culturing Erosion Bacteria: Procedures for Obtaining Purer Cultures and Pure Strains. Int. Biodeterior. Biodegrad. 2008, 61, 17–23. [Google Scholar] [CrossRef]
- Antonelli, F.; Esposito, A.; Galotta, G.; Davidde Petriaggi, B.; Piazza, S.; Romagnoli, M.; Guerrieri, F. Microbiota in Waterlogged Archaeological Wood: Use of Next-Generation Sequencing to Evaluate the Risk of Biodegradation. Appl. Sci. 2020, 10, 4636. [Google Scholar] [CrossRef]
- Singh, A.P. A Review of Microbial Decay Types Found in Wooden Objects of Cultural Heritage Recovered from Buried and Waterlogged Environments. J. Cult. Herit. 2012, 13, S16–S20. [Google Scholar] [CrossRef]
- Nilsson, T.; Singh, A.P. Tunneling Bacteria and Tunneling of Wood Cell Walls. Access Sci. 2014, 7, 73. [Google Scholar] [CrossRef]
- Li, Q.; Cao, L.; Wang, W.; Tan, H.; Jin, T.; Wang, G.; Lin, G.; Xu, R. Analysis of the Bacterial Communities in the Waterlogged Wooden Cultural Relics of the Xiaobaijiao No. 1 Shipwreck via High-Throughput Sequencing Technology. Holzforschung 2018, 72, 609–619. [Google Scholar] [CrossRef]
- Spear, M.J.; Broda, M. Comparison of Contemporary Elm (Ulmus Spp.) and Degraded Archaeological Elm: The Use of Dynamic Mechanical Analysis Under Ambient Moisture Conditions. Materials 2020, 13, 5026. [Google Scholar] [CrossRef]
- Björdal, C.G.; Nilsson, T. Observations on Microbial Growth during Conservation Treatment of Waterlogged Archaeological Wood. Stud. Conserv. 2001, 46, 211–220. [Google Scholar] [CrossRef]
- Björdal, C.G.; Nilsson, T. Waterlogged Archaeological Wood—A Substrate for White Rot Fungi during Drainage of Wetlands. Int. Biodeter. Biodegr. 2002, 50, 17–23. [Google Scholar] [CrossRef]
- Gregory, D.; Jensen, P. The Importance of Analysing Waterlogged Wooden Artefacts and Environmental Conditions When Considering Their in Situ Preservation. J. Wetl. Archaeol. 2006, 6, 65–81. [Google Scholar] [CrossRef]
- Muyzer, G.; Stams, A.J.M. The Ecology and Biotechnology of Sulphate-Reducing Bacteria. Nat. Rev. Microbiol. 2008, 6, 441–454. [Google Scholar] [CrossRef]
- Monachon, M.; Albelda-Berenguer, M.; Pele, C.; Cornet, E.; Guilminot, E.; Remazeilles, C.; Joseph, E. Characterization of Model Samples Simulating Degradation Processes Induced by Iron and Sulfur Species on Waterlogged Wood. Microchem. J. 2020, 155, 104756. [Google Scholar] [CrossRef]
- Fors, Y.; Grudd, H.; Rindby, A.; Jalilehvand, F.; Sandstrom, M.; Cato, I.; Bornmalm, L. Sulfur and Iron Accumulation in Three Marine-Archaeological Shipwrecks in the Baltic Sea: The Ghost, the Crown and the Sword. Sci. Rep. 2014, 4, 4222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gibson, G.R. Physiology and Ecology of the Sulphate-Reducing Bacteria. J. Appl. Bacteriol. 1990, 69, 769–797. [Google Scholar] [CrossRef]
- Fors, Y.; Nilsson, T.; Risberg, E.D.; Sandstrom, M.; Torssander, P. Sulfur Accumulation in Pinewood (Pinus Sylvestris) Induced by Bacteria in a Simulated Seabed Environment: Implications for Marine Archaeological Wood and Fossil Fuels. Int. Biodeterior. Biodegrad. 2008, 62, 336–347. [Google Scholar] [CrossRef]
- Fagervold, S.K.; Galand, P.E.; Zbinden, M.; Gaill, F.; Lebaron, P.; Palacios, C. Sunken Woods on the Ocean Floor Provide Diverse Specialized Habitats for Microorganisms. FEMS Microbiol. Ecol. 2012, 82, 616–628. [Google Scholar] [CrossRef] [Green Version]
- Fors, Y.; Jalilehvand, F.; Damian Risberg, E.; Björdal, C.; Phillips, E.; Sandström, M. Sulfur and Iron Analyses of Marine Archaeological Wood in Shipwrecks from the Baltic Sea and Scandinavian Waters. J. Archaeol. Sci. 2012, 39, 2521–2532. [Google Scholar] [CrossRef]
- Mortensen, M.N.; Egsgaard, H.; Hvilsted, S.; Shashoua, Y.; Glastrup, J. Tetraethylene Glycol Thermooxidation and the Influence of Certain Compounds Relevant to Conserved Archaeological Wood. J. Archaeol. Sci. 2012, 39, 3341–3348. [Google Scholar] [CrossRef]
- Henrik-Klemens, Å.; Bengtsson, F.; Björdal, C.G. Raman Spectroscopic Investigation of Iron-Tannin Precipitates in Waterlogged Archaeological Oak. Stud. Conserv. 2021, 8, 1–11. [Google Scholar] [CrossRef]
- Fellowes, D.; Hagan, P. Pyrite Oxidation: The Conservation of Historic Shipwrecks and Geological and Palaeontological Specimens. Stud. Conserv. 2003, 48, 26–38. [Google Scholar] [CrossRef]
- Eriksen, A.M.; Gregory, D.J.; Matthiesen, H. The Importance of Cellulose Content and Wood Density for Attack of Waterlogged Archaeological Wood by the Shipworm, Teredo Navalis. J. Cult. Herit. 2017, 28, 75–81. [Google Scholar] [CrossRef]
- Eriksen, A.M.; Gregory, D.; Shashoua, Y. Selective Attack of Waterlogged Archaeological Wood by the Shipworm, Teredo Navalis and Its Implications for in-Situ Preservation. J. Archaeol. Sci. 2015, 55, 9–15. [Google Scholar] [CrossRef]
- Kaye, B. Conservation of Waterlogged Archaeological Wood. Chem. Soc. Rev. 1995, 24, 35–43. [Google Scholar] [CrossRef]
- Oron, A.; Liphschitz, N.; Held, B.W.; Galili, E.; Klein, M.; Linker, R.; Blanchette, R.A. Characterization of Archaeological Waterlogged Wooden Objects Exposed on the Hyper-Saline Dead Sea Shore. J. Archaeol. Sci. Rep. 2016, 9, 73–86. [Google Scholar] [CrossRef]
- Almkvist, G.; Persson, I. Analysis of Acids and Degradation Products Related to Iron and Sulfur in the Swedish Warship Vasa. Holzforschung 2008, 62, 694–703. [Google Scholar] [CrossRef]
- Almkvist, G.; Persson, I. Degradation of Polyethylene Glycol and Hemicellulose in the Vasa. Holzforschung 2008, 62, 64–70. [Google Scholar] [CrossRef]
- Pedersen, N.B.; Schmitt, U.; Koch, G.; Felby, C.; Thygesen, L.G. Lignin Distribution in Waterlogged Archaeological Picea Abies (L.) Karst Degraded by Erosion Bacteria. Holzforschung 2014, 68, 791–798. [Google Scholar] [CrossRef]
- Pedersen, N.B.; Gierlinger, N.; Thygesen, L.G. Bacterial and Abiotic Decay in Waterlogged Archaeological Picea Abies (L.) Karst Studied by Confocal Raman Imaging and ATR-FTIR Spectroscopy. Holzforschung 2015, 69, 103–112. [Google Scholar] [CrossRef]
- Salanti, A.; Zoia, L.; Tolppa, E.-L.; Giachi, G.; Orlandi, M. Characterization of Waterlogged Wood by NMR and GPC Techniques. Microchem. J. 2010, 95, 345–352. [Google Scholar] [CrossRef]
- Pinder, A.P.; Panter, I.; Abbott, G.D.; Keely, B.J. Deterioration of the Hanson Logboat: Chemical and Imaging Assessment with Removal of Polyethylene Glycol Conserving Agent. Sci. Rep. 2017, 7, 13697. [Google Scholar] [CrossRef]
- Modugno, F.; Ribechini, E.; Calderisi, M.; Giachi, G.; Colombini, M.P. Analysis of Lignin from Archaeological Waterlogged Wood by Direct Exposure Mass Spectrometry (DE-MS) and PCA Evaluation of Mass Spectral Data. Microchem. J. 2008, 88, 186–193. [Google Scholar] [CrossRef]
- Zoia, L.; Tamburini, D.; Orlandi, M.; Lucejko, J.J.; Salanti, A.; Tolppa, E.-L.; Modugno, F.; Colombini, M.P. Chemical Characterisation of the Whole Plant Cell Wall of Archaeological Wood: An Integrated Approach. Anal. Bioanal. Chem. 2017, 409, 4233–4245. [Google Scholar] [CrossRef]
- Lucejko, J.J.; Modugno, F.; Ribechini, E.; Tamburini, D.; Colombini, M.P. Analytical Instrumental Techniques to Study Archaeological Wood Degradation. Appl. Spectrosc. Rev. 2015, 50, 584–625. [Google Scholar] [CrossRef]
- Lucejko, J.J.; Modugno, F.; Ribechini, E.; del Rio, J.C. Characterisation of Archaeological Waterlogged Wood by Pyrolytic and Mass Spectrometric Techniques. Anal. Chim. Acta 2009, 654, 26–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Traore, M.; Kaal, J.; Martinez Cortizas, A. Potential of Pyrolysis-GC-MS Molecular Fingerprint as a Proxy of Modern Age Iberian Shipwreck Wood Preservation. J. Anal. Appl. Pyrolysis 2017, 126, 1–13. [Google Scholar] [CrossRef]
- Tamburini, D.; Lucejko, J.J.; Ribechini, E.; Colombini, M.P. Snapshots of Lignin Oxidation and Depolymerization in Archaeological Wood: An EGA-MS Study. J. Mass Spectrom. 2015, 50, 1103–1113. [Google Scholar] [CrossRef] [PubMed]
- Tamburini, D.; Lucejko, J.J.; Ribechini, E.; Colombini, M.P. New Markers of Natural and Anthropogenic Chemical Alteration of Archaeological Lignin Revealed by in Situ Pyrolysis/Silylation-Gas Chromatography-Mass Spectrometry. J. Anal. Appl. Pyrolysis 2016, 118, 249–258. [Google Scholar] [CrossRef]
- Bardet, M.; Foray, M.F.; Maron, S.; Goncalves, P.; Tran, Q.K. Characterization of Wood Components of Portuguese Medieval Dugout Canoes with High-Resolution Solid-State NMR. Carbohydr. Polym. 2004, 57, 419–424. [Google Scholar] [CrossRef]
- Bardet, M.; Gerbaud, G.; Giffard, M.; Doan, C.; Hediger, S.; Le Pape, L. C-13 High-Resolution Solid-State NMR for Structural Elucidation of Archaeological Woods. Prog. Nucl. Magn. Reson. Spectrosc. 2009, 55, 199–214. [Google Scholar] [CrossRef]
- Zoia, L.; Salanti, A.; Orlandi, M. Chemical Characterization of Archaeological Wood: Softwood Vasa and Hardwood Riksapplet Case Studies. J. Cult. Herit. 2015, 16, 428–437. [Google Scholar] [CrossRef]
- Gelbrich, J.; Mai, C.; Militz, H. Evaluation of Bacterial Wood Degradation by Fourier Transform Infrared (FTIR) Measurements. J. Cult. Herit. 2012, 13, S135–S138. [Google Scholar] [CrossRef]
- Pizzo, B.; Pecoraro, E.; Alves, A.; Macchioni, N.; Rodrigues, J.C. Quantitative Evaluation by Attenuated Total Reflectance Infrared (ATR-FTIR) Spectroscopy of the Chemical Composition of Decayed Wood Preserved in Waterlogged Conditions. Talanta 2015, 131, 14–20. [Google Scholar] [CrossRef]
- Petrou, M.; Edwards, H.G.M.; Janaway, R.C.; Thompson, G.B.; Wilson, A.S. Fourier-Transform Raman Spectroscopic Study of a Neolithic Waterlogged Wood Assemblage. Anal. Bioanal. Chem. 2009, 395, 2131–2138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pecoraro, E.; Pizzo, B.; Alves, A.; Macchioni, N.; Rodrigues, J.C. Measuring the Chemical Composition of Waterlogged Decayed Wood by near Infrared Spectroscopy. Microchem. J. 2015, 122, 176–188. [Google Scholar] [CrossRef]
- Pappas, C.; Rodis, P.; Tarantilis, P.A.; Polissiou, M. Prediction of the PH in Wood by Diffuse Reflectance Infrared Fourier Transform Spectroscopy. Appl. Spectrosc. 1999, 53, 805–809. [Google Scholar] [CrossRef]
- Almkvist, G.; Norbakhsh, S.; Bjurhager, I.; Varmuza, K. Prediction of Tensile Strength in Iron-Contaminated Archaeological Wood by FT-IR Spectroscopy—A Study of Degradation in Recent Oak and Vasa Oak. Holzforschung 2016, 70, 855–865. [Google Scholar] [CrossRef]
- Remazeilles, C.; Tran, K.; Guilminot, E.; Conforto, E.; Refait, P. Study of Fe(II) Sulphides in Waterlogged Archaeological Wood. Stud. Conserv. 2013, 58, 297–307. [Google Scholar] [CrossRef]
- Triantafyllou, M.; Papachristodoulou, P.; Pournou, A. Wet Charred Wood: A Preliminary Study of the Material and Its Conservation Treatments. J. Archaeol. Sci. 2010, 37, 2277–2283. [Google Scholar] [CrossRef]
- Balaban-Ucar, M.; Gonultas, O. Volatile Compounds of Archaeological Wood from the Ancient Harbor Thedosius in Istanbul. Eur. J. Wood Wood Prod. 2019, 77, 475–481. [Google Scholar] [CrossRef]
- Bettazzi, F.; Giachi, G.; Staccioli, G.; Chimichi, S. Chemical Characterisation of Wood of Roman Ships Brought to Light in the Recently Discovered Ancient Harbour of Pisa (Tuscany, Italy). Holzforschung 2003, 57, 373–376. [Google Scholar] [CrossRef]
- Zisi, A.; Dix, J.K. Simulating Mass Loss of Decaying Waterlogged Wood: A Technique for Studying Ultrasound Propagation Velocity in Waterlogged Archaeological Wood. J. Cult. Herit. 2018, 33, 39–47. [Google Scholar] [CrossRef]
- Macchioni, N.; Pecoraro, E.; Pizzo, B. The Measurement of Maximum Water Content (MWC) on Waterlogged Archaeological Wood: A Comparison between Three Different Methodologies. J. Cult. Herit. 2018, 30, 51–56. [Google Scholar] [CrossRef]
- Jensen, P.; Gregory, D.J. Selected Physical Parameters to Characterize the State of Preservation of Waterlogged Archaeological Wood: A Practical Guide for Their Determination. J. Archaeol. Sci. 2006, 33, 551–559. [Google Scholar] [CrossRef]
- Pizzo, B.; Giachi, G.; Fiorentino, L. Evaluation of the Applicability of Conventional Methods for the Chemical Characterization of Waterlogged Archaeological Wood. Archaeometry 2010, 52, 656–667. [Google Scholar] [CrossRef]
- Broda, M.; Curling, S.F.; Frankowski, M. The Effect of the Drying Method on the Cell Wall Structure and Sorption Properties of Waterlogged Archaeological Wood. Wood Sci. Technol. 2021, 9, 1–19. [Google Scholar] [CrossRef]
- Broda, M.; Curling, S.F.; Spear, M.J.; Hill, C.A.S. Effect of Methyltrimethoxysilane Impregnation on the Cell Wall Porosity and Water Vapour Sorption of Archaeological Waterlogged Oak. Wood Sci. Technol. 2019, 53, 703–726. [Google Scholar] [CrossRef] [Green Version]
- Donato, I.D.; Lazzara, G. Porosity Determination with Helium Pycnometry as a Method to Characterize Waterlogged Woods and the Efficacy of the Conservation Treatments. Archaeometry 2012, 54, 906–915. [Google Scholar] [CrossRef] [Green Version]
- Pizzo, B.; Pecoraro, E.; Lazzeri, S. Dynamic Mechanical Analysis (DMA) of Waterlogged Archaeological Wood at Room Temperature. Holzforschung 2018, 72, 421–431. [Google Scholar] [CrossRef]
- Florian, M.-L.E. Scope and History of Archaeological Wood. In Archaeological Wood; Advances in Chemistry; American Chemical Society: Washington, DC, USA, 1989; Volume 225, pp. 3–32. ISBN 978-0-8412-1623-5. [Google Scholar]
- Braovac, S.; McQueen, C.M.A.; Sahlstedt, M.; Kutzke, H.; Lucejko, J.J.; Klokkernes, T. Navigating Conservation Strategies: Linking Material Research on Alum-Treated Wood from the Oseberg Collection to Conservation Decisions. Herit. Sci. 2018, 6, 77. [Google Scholar] [CrossRef]
- Braovac, S.; Kutzke, H. The Presence of Sulfuric Acid in Alum-Conserved Wood–Origin and Consequences. J. Cult. Herit. 2012, 13, S203–S208. [Google Scholar] [CrossRef]
- Morgós, A.; Imazu, S.; Ito, K. Sugar Conservation of Waterlogged Archaeological Finds in the Last 30 Years. In Proceedings of the 2015 Conservation and Digitalization Conference, Gdańsk, Poland, 19–22 May 2015; pp. 15–20. [Google Scholar]
- McQueen, C.M.A.; Tamburini, D.; Braovac, S. Identification of Inorganic Compounds in Composite Alum-Treated Wooden Artefacts from the Oseberg Collection. Sci. Rep. 2018, 8, 2901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Łucejko, J.J.; La Nasa, J.; Mcqueen, C.M.A.; Braovac, S.; Colombini, M.P.; Modugno, F. Protective Effect of Linseed Oil Varnish on Archaeological Wood Treated with Alum. Microchem. J. 2018, 139, 50–61. [Google Scholar] [CrossRef] [Green Version]
- Christensen, M.; Frosch, M.; Jensen, P.; Schnell, U.; Shashoua, Y.; Nielsen, O.F. Waterlogged Archaeological Wood—Chemical Changes by Conservation and Degradation. J. Raman Spectrosc. 2006, 37, 1171–1178. [Google Scholar] [CrossRef]
- Grattan, D.W. A Practical Comparative Study of Several Treatments for Waterlogged Wood. Stud. Conserv. 1982, 27, 124–136. [Google Scholar] [CrossRef]
- Hocker, E.; Almkvist, G.; Sahlstedt, M. The Vasa Experience with Polyethylene Glycol: A Conservator’s Perspective. J. Cult. Herit. 2012, 13, S175–S182. [Google Scholar] [CrossRef]
- Hoffmann, P. On the Stabilization of Waterlogged Oakwood with PEG. II. Designing a Two-Step Treatment for Multi-Quality Timbers. Stud. Conserv. 1986, 31, 103–113. [Google Scholar]
- Jensen, P.; Jensen, J.B. Dynamic Model for Vacuum Freeze-Drying of Waterlogged Archaeological Wooden Artefacts. J. Cult. Herit. 2006, 7, 156–165. [Google Scholar] [CrossRef]
- Purdy, B.A. Wet Site Archaeology; CRC Press: Boca Raton, FL, USA, 2018; ISBN 978-1-351-09465-8. [Google Scholar]
- Baird, J.A.; Olayo-Valles, R.; Rinaldi, C.; Taylor, L.S. Effect of Molecular Weight, Temperature, and Additives on the Moisture Sorption Properties of Polyethylene Glycol. J. Pharm. Sci. 2010, 99, 154–168. [Google Scholar] [CrossRef]
- Seborg, R.M.; Inverarity, R.B. Preservation of Old, Waterlogged Wood by Treatment with Polyethylene Glycol. Science 1962, 136, 649–650. [Google Scholar] [CrossRef]
- Stamm, A.J. Dimensional Stabilization of Wood with Carbowaxes. For. Prod. J. 1956, 6, 201–204. [Google Scholar]
- Stamm, A.J. Effect of Polyethylene Glycol on the Dimensional Stability of Wood. For. Prod. J. 1959, 9, 375–381. [Google Scholar]
- Stamm, A.J. Factors Affecting the Bulking and Dimensional Stabilization of Wood with Polyethylene Glycols. For. Prod. J. 1964, 14, 403–408. [Google Scholar]
- Thanh, N.D.; Wakiya, S.; Matsuda, K.; Ngoc, B.D.; Sugiyama, J.; Kohdzuma, Y. Diffusion of Chemicals into Archaeological Waterlogged Hardwoods Obtained from the Thang Long Imperial Citadel Site, Vietnam. J. Wood Sci. 2018, 64, 836–844. [Google Scholar] [CrossRef] [Green Version]
- Jones, A.M.; Rule, M.H. Preserving the Wreck of the Mary Rose. In Proceedings of the 4th ICOM-Group on Wet Organic Archaeological Materials Conference, Bremerhaven, Germany, 20–24 August 1990; pp. 25–48. [Google Scholar]
- Preston, J.; Smith, A.D.; Schofield, E.J.; Chadwick, A.V.; Jones, M.A.; Watts, J.E.M. The Effects of Mary Rose Conservation Treatment on Iron Oxidation Processes and Microbial Communities Contributing to Acid Production in Marine Archaeological Timbers. PLoS ONE 2014, 9, e84169. [Google Scholar] [CrossRef] [Green Version]
- Piva, E. Conservation of a Tudor Warship: Investigating the Timbers of the Mary Rose. Ph.D. Thesis, University of Portsmouth, Portsmouth, UK, 2017. [Google Scholar]
- Wachsmann, S.; Raveh, K.; Cohen, O. The Kinneret Boat Project Part I. The Excavation and Conservation of the Kinneret Boat. Int. J. Naut. Archaeol. 1987, 16, 233–245. [Google Scholar] [CrossRef]
- Hoffmann, P. To Be and to Continue Being a Cog: The Conservation of the Bremen Cog of 1380. Int. J. Naut. Archaeol. 2001, 30, 129–140. [Google Scholar] [CrossRef]
- Mortensen, M.N.; Egsgaard, H.; Hvilsted, S.; Shashoua, Y.; Glastrup, J. Characterisation of the Polyethylene Glycol Impregnation of the Swedish Warship Vasa and One of the Danish Skuldelev Viking Ships. J. Archaeol. Sci. 2007, 34, 1211–1218. [Google Scholar] [CrossRef]
- Hoffmann, P.; Choi, K.; Kim, Y. The 14th-Century Shinan Ship—Progress in Conservation. Int. J. Naut. Archaeol. 1991, 20, 59–64. [Google Scholar] [CrossRef]
- Ossowski, W. (Ed.) The Copper Ship: A Medieval Shipwreck and Its Cargo; Narodowe Muzeum Morskie: Warsaw, Poland, 2014. [Google Scholar]
- Millett, M.; McGrail, S.; Creighton, J.D.; Gregson, C.W.; Heal, S.V.E.; Hillam, J.; Holdridge, L.; Jordan, D.; Spencer, P.J.; Stallibrass, S. The Archaeology of the Hasholme Logboat. Archaeol. J. 1987, 144, 69–155. [Google Scholar] [CrossRef]
- Foxon, A.D. The Hasholme Iron Age Logboat: 17 Metres of Trouble! In Proceedings of the 6th ICOM Group on Wet Organic Archaeological Materials Conference, New York, NY, USA, 9–13 September 1996; pp. 547–553. [Google Scholar]
- Kocabaş, U. The Yenikapı Byzantine-Era Shipwrecks, Istanbul, Turkey: A Preliminary Report and Inventory of the 27 Wrecks Studied by Istanbul University. Int. J. Naut. Archaeol. 2015, 44, 5–38. [Google Scholar] [CrossRef]
- Fejfer, M.; Matloka, A.; Siepak, J. Spectrophotometric Determination of PEG in Waterlogged Archaeological Wood and Impregnation Solutions. Stud. Conserv. 2021, 66, 182–189. [Google Scholar] [CrossRef]
- Henrik-Klemens, A.; Abrahamsson, K.; Bjordal, C.; Walsh, A. An in Situ Raman Spectroscopic Method for Quantification of Polyethylene Glycol (PEG) in Waterlogged Archaeological Wood. Holzforschung 2020, 74, 1043–1051. [Google Scholar] [CrossRef] [Green Version]
- Kanazawa, Y.; Yamada, T.; Kido, A.; Fujimoto, K.; Takakura, K.; Hayashi, H.; Fushimi, Y.; Kozawa, S.; Koizumi, K.; Okuni, M.; et al. Visualization of Magnetization Transfer Effect in Polyethylene Glycol Impregnated Waterlogged Wood. Appl. Magn. Reson. 2017, 48, 125–134. [Google Scholar] [CrossRef]
- Graves, D.J. A Comparative Study of Consolidants for Waterlogged Wood: Polyethylene Glycol, Sucrose and Silicon Oil. SSCR J. News Mag. Scott. Soc. Conserv. Restor. 2004, 15, 13–17. [Google Scholar]
- Unger, A.; Schniewind, A.; Unger, W. Conservation of Wood Artifacts: A Handbook; Springer Science & Business Media: Berlin, Germany, 2001. [Google Scholar]
- Giachi, G.; Capretti, C.; Donato, I.D.; Macchioni, N.; Pizzo, B. New Trials in the Consolidation of Waterlogged Archaeological Wood with Different Acetone-Carried Products. J. Archaeol. Sci. 2011, 38, 2957–2967. [Google Scholar] [CrossRef]
- Jiachang, C.; Donglang, C.; Jingen, Z.; Xia, H.; Shenglong, C. Shape Recovery of Collapsed Archaeological Wood Ware with Active Alkali-Urea Treatment. J. Archaeol. Sci. 2009, 36, 434–440. [Google Scholar] [CrossRef]
- Meints, T.; Hansmann, C.; Gindl-Altmutter, W. Suitability of Different Variants of Polyethylene Glycol Impregnation for the Dimensional Stabilization of Oak Wood. Polymers 2018, 10, 81. [Google Scholar] [CrossRef] [Green Version]
- Babinski, L. Dimensional Changes of Waterlogged Archaeological Hardwoods Pre-Treated with Aqueous Mixtures of Lactitol/Trehalose and Mannitol/Trehalose before Freeze-Drying. J. Cult. Herit. 2015, 16, 876–882. [Google Scholar] [CrossRef]
- Babinski, L. Research on Dimensional Stability in Waterlogged Archaeological Wood Dried in a Non-Cooled Vacuum Chamber Connected to a Laboratory Freeze-Dryer. Drewno 2012, 55, 5–19. [Google Scholar]
- Schnell, U.; Jensen, P. Determination of Maximum Freeze Drying Temperature for PEG-Impregnated Archaeological Wood. Stud. Conserv. 2007, 52, 50–58. [Google Scholar] [CrossRef]
- Kaye, B.; Cole-Hamilton, D.J.; Morphet, K. Supercritical Drying: A New Method for Conserving Waterlogged Archaeological Materials. Stud. Conserv. 2000, 45, 233–252. [Google Scholar] [CrossRef]
- Strachan, D.; Skinner, T.; Hall, M.A. The Carpow Bronze Age Logboat: Excavation, Conservation and Display: NOTES. Int. J. Naut. Archaeol. 2012, 41, 390–397. [Google Scholar] [CrossRef]
- Ljungdahl, J.; Berglund, L.A. Transverse Mechanical Behaviour and Moisture Absorption of Waterlogged Archaeological Wood from the Vasa Ship. Holzforschung 2007, 61, 279–284. [Google Scholar] [CrossRef]
- Majka, J.; Zborowska, M.; Fejfer, M.; Waliszewska, B.; Olek, W. Dimensional Stability and Hygroscopic Properties of PEG Treated Irregularly Degraded Waterlogged Scots Pine Wood. J. Cult. Herit. 2018, 31, 133–140. [Google Scholar] [CrossRef]
- Olek, W.; Majka, J.; Stempin, A.; Sikora, M.; Zborowska, M. Hygroscopic Properties of PEG Treated Archaeological Wood from the Rampart of the 10th Century Stronghold as Exposed in the Archaeological Reserve Genius Loci in Poznań (Poland). J. Cult. Herit. 2016, 18, 299–305. [Google Scholar] [CrossRef]
- Chan, K.L.A.; Kazarian, S.G. Visualisation of the Heterogeneous Water Sorption in a Pharmaceutical Formulation under Controlled Humidity via FT-IR Imaging. Vib. Spectrosc. 2004, 35, 45–49. [Google Scholar] [CrossRef]
- Vorobyev, A.; van Dijk, N.P.; Kristofer Gamstedt, E. Orthotropic Creep in Polyethylene Glycol Impregnated Archaeological Oak from the Vasa Ship: Results of Creep Experiments in a Museum-like Climate. Mech. Time-Depend Mater. 2019, 23, 35–52. [Google Scholar] [CrossRef] [Green Version]
- Esteban, L.G.; de Palacios, P.; Garcia Fernandez, F.; Garcia-Amorena, I. Effects of Burial of Quercus Spp. Wood Aged 5910 +/- 250 BP on Sorption and Thermodynamic Properties. Int. Biodeterior. Biodegrad. 2010, 64, 371–377. [Google Scholar] [CrossRef]
- Majka, J.; Babinski, L.; Olek, W. Sorption Isotherms of Waterlogged Subfossil Scots Pine Wood Impregnated with a Lactitol and Trehalose Mixture. Holzforschung 2017, 71, 813–819. [Google Scholar] [CrossRef]
- Keating, B.A.; Hill, C.A.S.; Sun, D.; English, R.; Davies, P.; McCue, C. The Water Vapor Sorption Behavior of a Galactomannan Cellulose Nanocomposite Film Analyzed Using Parallel Exponential Kinetics and the Kelvin-Voigt Viscoelastic Model. J. Appl. Polym. Sci. 2013, 129, 2352–2359. [Google Scholar] [CrossRef] [Green Version]
- Hill, C.A.S.; Keating, B.A.; Jalaludin, Z.; Mahrdt, E. A Rheological Description of the Water Vapour Sorption Kinetics Behaviour of Wood Invoking a Model Using a Canonical Assembly of Kelvin-Voigt Elements and a Possible Link with Sorption Hysteresis. Holzforschung 2012, 66, 35–47. [Google Scholar] [CrossRef]
- Thybring, E.E.; Digaitis, R.; Nord-Larsen, T.; Beck, G.; Fredriksson, M. How Much Water Can Wood Cell Walls Hold? A Triangulation Approach to Determine the Maximum Cell Wall Moisture Content. PLoS ONE 2020, 15, e0238319. [Google Scholar] [CrossRef]
- Gurnev, P.A.; Stanley, C.B.; Aksoyoglu, M.A.; Hong, K.; Parsegian, V.A.; Bezrukov, S.M. Poly(Ethylene Glycol)s in Semidilute Regime: Radius of Gyration in the Bulk and Partitioning into a Nanopore. Macromolecules 2017, 50, 2477–2483. [Google Scholar] [CrossRef] [Green Version]
- Bardet, M.; Gerbaud, G.; Doan, C.; Giffard, M.; Hediger, S.; De Paepe, G.; Tran, Q.-K. Dynamics Property Recovery of Archaeological-Wood Fibers Treated with Polyethylene Glycol Demonstrated by High-Resolution Solid-State NMR. Cellulose 2012, 19, 1537–1545. [Google Scholar] [CrossRef]
- Bardet, M.; Gerbaud, G.; Trân, Q.-K.; Hediger, S. Study of Interactions between Polyethylene Glycol and Archaeological Wood Components by 13C High-Resolution Solid-State CP-MAS NMR. J. Archaeol. Sci. 2007, 34, 1670–1676. [Google Scholar] [CrossRef]
- Vorobyev, A.; Almkvist, G.; van Dijk, N.P.; Gamstedt, E.K. Relations of Density, Polyethylene Glycol Treatment and Moisture Content with Stiffness Properties of Vasa Oak Samples. Holzforschung 2017, 71, 327–335. [Google Scholar] [CrossRef]
- Norimoto, M.; Gril, J.; Rowell, R.M. Rheological Properties of Chemically Modified Wood: Relationship between Dimensional and Creep Stability. Wood Fiber Sci. 1992, 24, 25–35. [Google Scholar]
- Afshar, R.; Cheylan, M.; Almkvist, G.; Ahlgren, A.; Gamstedt, E.K. Creep in Oak Material from the Vasa Ship: Verification of Linear Viscoelasticity and Identification of Stress Thresholds. Eur. J. Wood Prod. 2020, 78, 1095–1103. [Google Scholar] [CrossRef]
- Hoffmann, P. On the Long-Term Visco-Elastic Behaviour of Polyethylene Glycol (PEG) Impregnated Archaeological Oak Wood. Holzforschung 2010, 64, 22. [Google Scholar] [CrossRef]
- Vorobyev, A.; Arnould, O.; Laux, D.; Longo, R.; van Dijk, N.P.; Gamstedt, E.K. Characterisation of Cubic Oak Specimens from the Vasa Ship and Recent Wood by Means of Quasi-Static Loading and Resonance Ultrasound Spectroscopy (RUS). Holzforschung 2016, 70, 457–465. [Google Scholar] [CrossRef]
- Wagner, L.; Almkvist, G.; Bader, T.K.; Bjurhager, I.; Rautkari, L.; Gamstedt, E.K. The Influence of Chemical Degradation and Polyethylene Glycol on Moisture-Dependent Cell Wall Properties of Archeological Wooden Objects: A Case Study of the Vasa Shipwreck. Wood Sci. Technol. 2016, 50, 1103–1123. [Google Scholar] [CrossRef]
- Hill, C.; Altgen, M.; Rautkari, L. Thermal Modification of Wood—a Review: Chemical Changes and Hygroscopicity. J. Mater. Sci. 2021, 56, 6581–6614. [Google Scholar] [CrossRef]
- Bjurhager, I.; Ljungdahl, J.; Wallstrom, L.; Gamstedt, E.K.; Berglund, L.A. Towards Improved Understanding of PEG-Impregnated Waterlogged Archaeological Wood: A Model Study on Recent Oak. Holzforschung 2010, 64, 243–250. [Google Scholar] [CrossRef]
- Mortensen, M.N.; Matthiesen, H. Oxygen Consumption by Conserved Archaeological Wood. Anal. Bioanal. Chem. 2013, 405, 6373–6377. [Google Scholar] [CrossRef] [PubMed]
- McQueen, C.M.A.; Mortensen, M.N.; Caruso, F.; Mantellato, S.; Braovac, S. Oxidative Degradation of Archaeological Wood and the Effect of Alum, Iron and Calcium Salts. Herit. Sci. 2020, 8, 32. [Google Scholar] [CrossRef]
- Almkvist, G.; Persson, I. Extraction of Iron Compounds from Wood from the Vasa. Holzforschung 2006, 60, 678–684. [Google Scholar] [CrossRef]
- Bjurhager, I.; Halonen, H.; Lindfors, E.-L.; Iversen, T.; Almkvist, G.; Gamstedt, E.K.; Berglund, L.A. State of Degradation in Archeological Oak from the 17th Century Vasa Ship: Substantial Strength Loss Correlates with Reduction in (Holo)Cellulose Molecular Weight. Biomacromolecules 2012, 13, 2521–2527. [Google Scholar] [CrossRef] [PubMed]
- Almkvist, G.; Persson, I. Fenton-Induced Degradation of Polyethylene Glycol and Oak Holocellulose. A Model Experiment in Comparison to Changes Observed in Conserved Waterlogged Wood. Holzforschung 2008, 62, 704–708. [Google Scholar] [CrossRef]
- Lindfors, E.-L.; Lindstrom, M.; Iversen, T. Polysaccharide Degradation in Waterlogged Oak Wood from the Ancient Warship Vasa. Holzforschung 2008, 62, 57–63. [Google Scholar] [CrossRef]
- Almkvist, G.; Persson, I. Distribution of Iron and Sulfur and Their Speciation in Relation to Degradation Processes in Wood from the Swedish Warship Vasa. N. J. Chem. 2011, 35, 1491. [Google Scholar] [CrossRef]
- Norbakhsh, S.; Bjurhager, I.; Almkvist, G. Impact of Iron(II) and Oxygen on Degradation of Oak—Modeling of the Vasa Wood. Holzforschung 2014, 68, 649–655. [Google Scholar] [CrossRef]
- Fors, Y.; Richards, V. The Effects of the Ammonia Neutralizing Treatment on Marine Archaeological Vasa Wood. Stud. Conserv. 2010, 55, 41–54. [Google Scholar] [CrossRef] [Green Version]
- Fors, Y.; Sandström, M. Sulfur and Iron in Shipwrecks Cause Conservation Concerns. Chem. Soc. Rev. 2006, 35, 399. [Google Scholar] [CrossRef] [PubMed]
- Giorgi, R.; Chelazzi, D.; Baglioni, P. Conservation of Acid Waterlogged Shipwrecks: Nanotechnologies for de-Acidification. Appl. Phys. A 2006, 83, 567–571. [Google Scholar] [CrossRef]
- Poggi, G.; Toccafondi, N.; Chelazzi, D.; Canton, P.; Giorgi, R.; Baglioni, P. Calcium Hydroxide Nanoparticles from Solvothermal Reaction for the Deacidification of Degraded Waterlogged Wood. J. Colloid Interface Sci. 2016, 473, 1–8. [Google Scholar] [CrossRef]
- Schofield, E.J.; Sarangi, R.; Mehta, A.; Jones, A.M.; Smith, A.; Mosselmans, J.F.W.; Chadwick, A.V. Strontium Carbonate Nanoparticles for the Surface Treatment of Problematic Sulfur and Iron in Waterlogged Archaeological Wood. J. Cult. Herit. 2016, 18, 306–312. [Google Scholar] [CrossRef] [Green Version]
- Fors, Y.; Jalilehvand, F.; Sandström, M. Analytical Aspects of Waterlogged Wood in Historical Shipwrecks. Anal. Sci. 2011, 27, 785. [Google Scholar] [CrossRef] [Green Version]
- Emery, J.A.; Schroeder, H.A. Iron-Catalyzed Oxidation of Wood Carbohydrates. Wood Sci. Technol. 1974, 8, 123–137. [Google Scholar] [CrossRef]
- Giachi, G.; Bettazzi, F.; Chimichi, S.; Staccioli, G. Chemical Characterisation of Degraded Wood in Ships Discovered in a Recent Excavation of the Etruscan and Roman Harbour of Pisa. J. Cult. Herit. 2003, 4, 75–83. [Google Scholar] [CrossRef]
- Wetherall, K.M.; Moss, R.M.; Jones, A.M.; Smith, A.D.; Skinner, T.; Pickup, D.M.; Goatham, S.W.; Chadwick, A.V.; Newport, R.J. Sulfur and Iron Speciation in Recently Recovered Timbers of the Mary Rose Revealed via X-Ray Absorption Spectroscopy. J. Archaeol. Sci. 2008, 35, 1317–1328. [Google Scholar] [CrossRef]
- Lowson, R.T. Aqueous Oxidation of Pyrite by Molecular Oxygen. Chem. Rev. 1982, 82, 461–497. [Google Scholar] [CrossRef]
- Fengel, D.; Wegener, G. Wood Chemistry, Ultrastructure, Reactions; De Gruyter: Berlin, Germany; New York, NY, USA, 1983; ISBN 978-3-11-008481-8. [Google Scholar]
- Dedic, D.; Iversen, T.; Ek, M. Cellulose Degradation in the Vasa: The Role of Acids and Rust. Stud. Conserv. 2013, 58, 308–313. [Google Scholar] [CrossRef]
- Arantes, V.; Milagres, A.M.F.; Filley, T.R.; Goodell, B. Lignocellulosic Polysaccharides and Lignin Degradation by Wood Decay Fungi: The Relevance of Nonenzymatic Fenton-Based Reactions. J. Ind. Microbiol. Biotechnol. 2011, 38, 541–555. [Google Scholar] [CrossRef] [PubMed]
- Contreras, D.; Freer, J.; Rodríguez, J. Veratryl Alcohol Degradation by a Catechol-Driven Fenton Reaction as Lignin Oxidation by Brown-Rot Fungi Model. Int. Biodeterior. Biodegrad. 2006, 57, 63–68. [Google Scholar] [CrossRef]
- Zeng, J.; Yoo, C.G.; Wang, F.; Pan, X.; Vermerris, W.; Tong, Z. Biomimetic Fenton-Catalyzed Lignin Depolymerization to High-Value Aromatics and Dicarboxylic Acids. ChemSusChem 2015, 8, 861–871. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, I. Oxidation of Inorganic Sulfur Compounds: Chemical and Enzymatic Reactions. Can. J. Microbiol. 1999, 45, 97–105. [Google Scholar] [CrossRef]
- Albelda Berenguer, M.; Monachon, M.; Jacquet, C.; Junier, P.; Rémazeilles, C.; Schofield, E.J.; Joseph, E. Biological Oxidation of Sulfur Compounds in Artificially Degraded Wood. Int. Biodeterior. Biodegrad. 2019, 141, 62–70. [Google Scholar] [CrossRef]
- Kawai, F.; Kimura, T.; Fukaya, M.; Tani, Y.; Ogata, K.; Ueno, T.; Fukami, H. Bacterial Oxidation of Polyethylene Glycol. Appl Environ. Microbiol 1978, 35, 679–684. [Google Scholar] [CrossRef] [Green Version]
- Pele, C.; Guilminot, E.; Labroche, S.; Lemoine, G.; Baron, G. Iron Removal from Waterlogged Wood: Extraction by Electrophoresis and Chemical Treatments. Stud. Conserv. 2015, 60, 155–171. [Google Scholar] [CrossRef]
- Monachon, M.; Albelda-Berenguer, M.; Joseph, E. Biological oxidation of iron sulfides. Adv. Appl. Microbiol. 2019, 107, 1–27. [Google Scholar]
- Remazeilles, C.; Meunier, L.; Leveque, F.; Plasson, N.; Conforto, E.; Crouzet, M.; Refait, P.; Caillat, L. Post-Treatment Study of Iron/Sulfur-Containing Compounds in the Wreck of Lyon Saint-Georges 4 (Second Century ACE). Stud. Coserv. 2020, 65, 28–36. [Google Scholar] [CrossRef] [Green Version]
- Sandström, M.; Jalilehvand, F.; Persson, I.; Gelius, U.; Frank, P.; Hall-Roth, I. Deterioration of the Seventeenth-Century Warship Vasa by Internal Formation of Sulphuric Acid. Nature 2002, 415, 893–897. [Google Scholar] [CrossRef]
- Björdal, C.G.; Fors, Y. Correlation between Sulfur Accumulation and Microbial Wood Degradation on Shipwreck Timbers. Int. Biodeterior. Biodegrad. 2019, 140, 37–42. [Google Scholar] [CrossRef]
- Dedic, D.; Sandberg, T.; Iversen, T.; Larsson, T.; Monica, E.K. Analysis of Lignin and Extractives in the Oak Wood of the 17th Century Warship Vasa. Holzforschung 2014, 68, 419–425. [Google Scholar] [CrossRef]
- Arygyropoulos, V.; Degrigny, C.; Guilminot, E. Monitoring Treatments of Waterlogged Iron-Wood Composite Artifacts Using Hostacor IT-PEG 400 Solutions. Stud. Conserv. 2000, 45, 253–264. [Google Scholar] [CrossRef]
- Li, B.; Liu, A.-H.; He, L.-N.; Yang, Z.-Z.; Gao, J.; Chen, K.-H. Iron-Catalyzed Selective Oxidation of Sulfides to Sulfoxides with the Polyethylene Glycol/O 2 System. Green Chem. 2012, 14, 130–135. [Google Scholar] [CrossRef]
- Hemenway, J.N.; Carvalho, T.C.; Rao, V.M.; Wu, Y.; Levons, J.K.; Narang, A.S.; Paruchuri, S.R.; Stamato, H.J.; Varia, S.A. Formation of Reactive Impurities in Aqueous and Neat Polyethylene Glycol 400 and Effects of Antioxidants and Oxidation Inducers. J. Pharm. Sci. 2012, 101, 3305–3318. [Google Scholar] [CrossRef]
- García-Jimeno, S.; Estelrich, J. Ferrofluid Based on Polyethylene Glycol-Coated Iron Oxide Nanoparticles: Characterization and Properties. Colloids Surf. A Physicochem. Eng. Asp. 2013, 420, 74–81. [Google Scholar] [CrossRef]
- Tamburini, D.; Lucejko, J.J.; Modugno, F.; Colombini, M.P. Combined Pyrolysis-Based Techniques to Evaluate the State of Preservation of Archaeological Wood in the Presence of Consolidating Agents. J. Anal. Appl. Pyrolysis 2016, 122, 429–441. [Google Scholar] [CrossRef]
- Stamm, A.J. Treatment with Sucrose and Invert Sugar. Ind. Eng. Chem. 1937, 29, 833–835. [Google Scholar] [CrossRef]
- Parrent, J.M. The Conservation of Waterlogged Wood Using Sucrose. Stud. Conserv. 1985, 30, 63–72. [Google Scholar] [CrossRef]
- Hoffmann, P. Sucrose for Waterlogged Wood: Not so Simple at All. In Proceedings of the ICOM Committee for Conservation, Edinburgh, Scotland, 1–6 September 1996; pp. 657–662. [Google Scholar]
- Kennedy, A.; Pennington, E.R. Conservation of Chemically Degraded Waterlogged Wood with Sugars. Stud. Conserv. 2014, 59, 194–201. [Google Scholar] [CrossRef]
- Nguyen, T.D.; Kohdzuma, Y.; Endo, R.; Sugiyama, J. Evaluation of Chemical Treatments on Dimensional Stabilization of Archeological Waterlogged Hardwoods Obtained from the Thang Long Imperial Citadel Site, Vietnam. J. Wood Sci. 2018, 64, 436–443. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Zhang, L.; Zhang, B.; Hu, Y. A Comparative Study of Reinforcement Materials for Waterlogged Wood Relics in Laboratory. J. Cult. Herit. 2019, 36, 94–102. [Google Scholar] [CrossRef]
- Tahira, A.; Howard, W.; Pennington, E.R.; Kennedy, A. Mechanical Strength Studies on Degraded Waterlogged Wood Treated with Sugars. Stud. Conserv. 2017, 62, 223–228. [Google Scholar] [CrossRef]
- Babiński, L.; Fabisiak, E.; Dąbrowski, H.P.; Kittel, P. Study on Dimensional Stabilization of 12,500-Year-Old Waterlogged Subfossil Scots Pine Wood from the Koźmin Las Site, Poland. J. Cult. Herit. 2017, 23, 119–127. [Google Scholar] [CrossRef]
- Pecoraro, E.; Pizzo, B.; Salvini, A.; Macchioni, N. Dynamic Mechanical Analysis (DMA) at Room Temperature of Archaeological Wood Treated with Various Consolidants. Holzforschung 2019, 73, 757–772. [Google Scholar] [CrossRef]
- Endo, R.; Kamei, K.; Iida, I.; Kawahara, Y. Dimensional Stability of Waterlogged Wood Treated with Hydrolyzed Feather Keratin. J. Archaeol. Sci. 2008, 35, 1240–1246. [Google Scholar] [CrossRef]
- Kawahara, Y.; ENDO, P.; Kimura, T. Conservation Treatment for Archaeological Waterlogged Woods Using Keratin from Waste Down. J. Text. Eng. 2002, 48, 107–110. [Google Scholar] [CrossRef]
- Jensen, P.; Christensen, K.V.; Bak, D.; Schnell, U. Keratin as a Bulking and Stabilization Agent for Collapsible Waterlogged Archaeological Wood. In Proceedings of the 11th ICOM-CC Group on Wet Organic Archaeological Materials Conference, Greenville, NC, USA, 20 April 2010; pp. 227–241. [Google Scholar]
- Fejfer, M.; Pietrzak, I.; Zborowska, M. Dimensional Stabilization of Oak and Pine Waterlogged Wood with Keratin Aqueous Solutions. In Proceeding of the CONDITION 2015 Conservation and Digitalization Conference, Gdańska, Poland, 19–22 May 2015. [Google Scholar]
- Endo, R.; Kamei, K.; Iida, I.; Yokoyama, M.; Kawahara, Y. Physical and Mechanical Properties of Waterlogged Wood Treated with Hydrolyzed Feather Keratin. J. Archaeol. Sci. 2010, 37, 1311–1316. [Google Scholar] [CrossRef]
- Endo, R.; Sugiyama, J. Evaluation of Cell Wall Reinforcement in Feather Keratin-Treated Waterlogged Wood as Imaged by Synchrotron X-Ray Microtomography (ΜXRT) and TEM. Holzforschung 2013, 67, 795–803. [Google Scholar] [CrossRef]
- Endo, R.; Hattori, T.; Tomii, M.; Sugiyama, J. Identification and Conservation of a Neolithic Polypore. J. Cult. Herit. 2015, 16, 869–875. [Google Scholar] [CrossRef]
- Antonelli, F.; Galotta, G.; Sidoti, G.; Zikeli, F.; Nisi, R.; Davidde Petriaggi, B.; Romagnoli, M. Cellulose and Lignin Nano-Scale Consolidants for Waterlogged Archaeological Wood. Front. Chem. 2020, 8, 32. [Google Scholar] [CrossRef]
- Christensen, M.; Kutzke, H.; Hansen, F.K. New Materials Used for the Consolidation of Archaeological Wood–Past Attempts, Present Struggles, and Future Requirements. J. Cult. Herit. 2012, 13, S183–S190. [Google Scholar] [CrossRef]
- Cipriani, G.; Salvini, A.; Baglioni, P.; Bucciarelli, E. Cellulose as a Renewable Resource for the Synthesis of Wood Consolidants. J. Appl. Polym. Sci. 2010, 118, 2939–2950. [Google Scholar] [CrossRef]
- Broda, M.; Kryg, P.; Ormondroyd, G.A. Gap-Fillers for Wooden Artefacts Exposed Outdoors—A Review. Forests 2021, 12, 606. [Google Scholar] [CrossRef]
- Giachi, G.; Capretti, C.; Macchioni, N.; Pizzo, B.; Donato, I.D. A Methodological Approach in the Evaluation of the Efficacy of Treatments for the Dimensional Stabilisation of Waterlogged Archaeological Wood. J. Cult. Herit. 2010, 11, 91–101. [Google Scholar] [CrossRef]
- Wakefield, J.M.; Hampe, R.; Gillis, R.B.; Sitterli, A.; Adams, G.G.; Kutzke, H.; Heinze, T.; Harding, S.E. Aminoethyl Substitution Enhances the Self-Assembly Properties of an Aminocellulose as a Potential Archaeological Wood Consolidant. Eur. Biophys. J. 2020, 49, 791–798. [Google Scholar] [CrossRef] [PubMed]
- Kataoka, T.; Kurimoto, Y.; Kohdzuma, Y. Conservation of Archaeological Waterlogged Wood Using Lignophenol (II) Adsorption Characteristics of Lignophenol to Hardwood Degraded in Various Degrees, and Suface Hardness and Adsorption/Desorption of Moisture in the Treated Hardwood. Mokuzai Hozon 2007, 33, 63–72. [Google Scholar] [CrossRef] [Green Version]
- McHale, E.; Braovac, S.; Steindal, C.C.; Gillis, R.B.; Adams, G.G.; Harding, S.E.; Benneche, T.; Kutzke, H. Synthesis and Characterisation of Lignin-like Oligomers as a Bio-Inspired Consolidant for Waterlogged Archaeological Wood. Pure Appl. Chem. 2016, 88, 969–977. [Google Scholar] [CrossRef] [Green Version]
- McHale, E.; Steindal, C.C.; Kutzke, H.; Benneche, T.; Harding, S.E. In Situ Polymerisation of Isoeugenol as a Green Consolidation Method for Waterlogged Archaeological Wood. Sci. Rep. 2017, 7, 46481. [Google Scholar] [CrossRef] [Green Version]
- Salanti, A.; Zoia, L.; Zanini, S.; Orlandi, M. Synthesis and Characterization of Lignin–Silicone Hybrid Polymers as Possible Consolidants for Decayed Wood. Wood Sci. Technol. 2016, 50, 117–134. [Google Scholar] [CrossRef]
- Christensen, M.; Larnøy, E.; Kutzke, H.; Hansen, F.K. Treatment of Waterlogged Archaeological Wood Using Chitosan-and Modified Chitosan Solutions. Part 1: Chemical Compatibility and Microstructure. J. Am. Inst. Conserv. 2015, 54, 3–13. [Google Scholar] [CrossRef]
- Walsh, Z.; Janeček, E.-R.; Jones, M.; Scherman, O.A. Natural Polymers as Alternative Consolidants for the Preservation of Waterlogged Archaeological Wood. Stud. Conserv. 2017, 62, 173–183. [Google Scholar] [CrossRef] [Green Version]
- El-Gamal, R.; Nikolaivits, E.; Zervakis, G.I.; Abdel-Maksoud, G.; Topakas, E.; Christakopoulos, P. The Use of Chitosan in Protecting Wooden Artifacts from Damage by Mold Fungi. Electron. J. Biotechnol. 2016, 24, 70–78. [Google Scholar] [CrossRef] [Green Version]
- Broda, M. Natural Compounds for Wood Protection against Fungi—A Review. Molecules 2020, 25, 3538. [Google Scholar] [CrossRef] [PubMed]
- Wakefield, J.M.K.; Gillis, R.B.; Adams, G.G.; McQueen, C.M.A.; Harding, S.E. Controlled Depolymerisation Assessed by Analytical Ultracentrifugation of Low Molecular Weight Chitosan for Use in Archaeological Conservation. Eur. Biophys. J. 2018, 47, 769–775. [Google Scholar] [CrossRef] [Green Version]
- Wakefield, J.M.; Braovac, S.; Kutzke, H.; Stockman, R.A.; Harding, S.E. Tert-Butyldimethylsilyl Chitosan Synthesis and Characterization by Analytical Ultracentrifugation, for Archaeological Wood Conservation. Eur. Biophys. J. 2020, 49, 781–789. [Google Scholar] [CrossRef]
- Walsh, Z.; Janeček, E.-R.; Hodgkinson, J.T.; Sedlmair, J.; Koutsioubas, A.; Spring, D.R.; Welch, M.; Hirschmugl, C.J.; Toprakcioglu, C.; Nitschke, J.R.; et al. Multifunctional Supramolecular Polymer Networks as Next-Generation Consolidants for Archaeological Wood Conservation. Proc. Natl. Acad. Sci. USA 2014, 111, 17743–17748. [Google Scholar] [CrossRef] [Green Version]
- Cipriani, G.; Salvini, A.; Fioravanti, M.; Di Giulio, G.; Malavolti, M. Synthesis of Hydroxylated Oligoamides for Their Use in Wood Conservation. J. Appl. Polym. Sci. 2013, 127, 420–431. [Google Scholar] [CrossRef]
- Papacchini, A.; Dominici, S.; Di Giulio, G.; Fioravanti, M.; Salvini, A. Bio-Based Consolidants for Waterlogged Archaeological Wood: Assessment of the Performance and Optimization of the Diagnostic Protocol. J. Cult. Herit. 2019, 40, 49–58. [Google Scholar] [CrossRef]
- McKerrell, H.; Roger, E.; Varsanyi, A. The Acetone/Rosin Method for Conservation of Waterlogged Wood. Stud. Conserv. 1972, 17, 111–125. [Google Scholar] [CrossRef]
- Donato, D.; Lazzara, G.; Milioto, S. Thermogravimetric Analysis: A Tool to Evaluate the Ability of Mixtures in Consolidating Waterlogged Archaeological Woods. J. Therm. Anal. Calorim. 2010, 101, 1085–1091. [Google Scholar] [CrossRef]
- Bugani, S.; Modugno, F.; Lucejko, J.J.; Giachi, G.; Cagno, S.; Cloetens, P.; Janssens, K.; Morselli, L. Study on the Impregnation of Archaeological Waterlogged Wood with Consolidation Treatments Using Synchrotron Radiation Microtomography. Anal. Bioanal. Chem. 2009, 395, 1977–1985. [Google Scholar] [CrossRef]
- Cutajar, M.; Andriulo, F.; Thomsett, M.R.; Moore, J.C.; Couturaud, B.; Howdle, S.M.; Stockman, R.A.; Harding, S.E. Terpene Polyacrylate TPA5 Shows Favorable Molecular Hydrodynamic Properties as a Potential Bioinspired Archaeological Wood Consolidant. Sci. Rep. 2021, 11, 1–12. [Google Scholar] [CrossRef]
- Lazzara, G.; Cavallaro, G.; Panchal, A.; Fakhrullin, R.; Stavitskaya, A.; Vinokurov, V.; Lvov, Y. An Assembly of Organic-Inorganic Composites Using Halloysite Clay Nanotubes. Curr. Opin. Colloid Interface Sci. 2018, 35, 42–50. [Google Scholar] [CrossRef]
- Cavallaro, G.; Milioto, S.; Lazzara, G. Halloysite Nanotubes: Interfacial Properties and Applications in Cultural Heritage. Langmuir 2020, 36, 3677–3689. [Google Scholar] [CrossRef] [PubMed]
- Cavallaro, G.; Lazzara, G.; Parisi, F.; Riela, S.; Milioto, S. Chapter 8—Nanoclays for Conservation. In Nanotechnologies and Nanomaterials for Diagnostic, Conservation and Restoration of Cultural Heritage; Lazzara, G., Fakhrullin, R., Eds.; Advanced Nanomaterials; Elsevier: Amsterdam, The Netherlands, 2019; pp. 149–170. ISBN 978-0-12-813910-3. [Google Scholar]
- Cavallaro, G.; Lazzara, G.; Milioto, S.; Parisi, F.; Sparacino, V. Thermal and Dynamic Mechanical Properties of Beeswax-Halloysite Nanocomposites for Consolidating Waterlogged Archaeological Woods. Polym. Degr. Stabil. 2015, 120, 220–225. [Google Scholar] [CrossRef]
- Lisuzzo, L.; Hueckel, T.; Cavallaro, G.; Sacanna, S.; Lazzara, G. Pickering Emulsions Based on Wax and Halloysite Nanotubes: An Ecofriendly Protocol for the Treatment of Archeological Woods. ACS Appl. Mater. Interfaces 2021, 13, 1651–1661. [Google Scholar] [CrossRef] [PubMed]
- Cavallaro, G.; Lazzara, G.; Milioto, S.; Parisi, F.; Ruisi, F. Nanocomposites Based on Esterified Colophony and Halloysite Clay Nanotubes as Consolidants for Waterlogged Archaeological Woods. Cellulose 2017, 24, 3367–3376. [Google Scholar] [CrossRef]
- Parisi, F.; Bernardini, F.; Cavallaro, G.; Mancini, L.; Milioto, S.; Prokop, D.; Lazzara, G. Halloysite Nanotubes/Pluronic Nanocomposites for Waterlogged Archeological Wood: Thermal Stability and X-Ray Microtomography. J. Therm. Anal. Calorim. 2020, 141, 981–989. [Google Scholar] [CrossRef]
- Cavallaro, G.; Milioto, S.; Parisi, F.; Lazzara, G. Halloysite Nanotubes Loaded with Calcium Hydroxide: Alkaline Fillers for the Deacidification of Waterlogged Archeological Woods. ACS Appl. Mater. Interfaces 2018, 10, 27355–27364. [Google Scholar] [CrossRef]
- Brook, M.A. Silicon in Organic, Organometallic, and Polymer Chemistry; Brook, M.A., Ed.; John Wiley & Sons: New York, NY, USA, 2000. [Google Scholar]
- Hill, C.A.; Farahani, M.M.; Hale, M.D. The Use of Organo Alkoxysilane Coupling Agents for Wood Preservation. Holzforschung 2004, 58, 316–325. [Google Scholar] [CrossRef]
- Mai, C.; Militz, H. Modification of Wood with Silicon Compounds. Inorganic Silicon Compounds and Sol-Gel Systems: A Review. Wood Sci. Technol. 2004, 37, 339–348. [Google Scholar] [CrossRef]
- Hamilton, D.L. Basic Methods of Conserving Underwater Archaeological Material Culture; US Department of Defense, Legacy Resource Management Program: Washington, DC, USA, 1996. [Google Scholar]
- Kavvouras, P.K.; Kostarelou, C.; Zisi, A.; Petrou, M.; Moraitou, G. Use of Silanol-Terminated Polydimethylsiloxane in the Conservation of Waterlogged Archaeological Wood. Stud. Conserv. 2009, 54, 65–76. [Google Scholar] [CrossRef]
- Broda, M.; Mazela, B. Application of Methyltrimethoxysilane to Increase Dimensional Stability of Waterlogged Wood. J. Cult. Herit. 2017, 25, 149–156. [Google Scholar] [CrossRef]
- Broda, M.; Dąbek, I.; Dutkiewicz, A.; Dutkiewicz, M.; Popescu, C.-M.; Mazela, B.; Maciejewski, H. Organosilicons of Different Molecular Size and Chemical Structure as Consolidants for Waterlogged Archaeological Wood–a New Reversible and Retreatable Method. Sci. Rep. 2020, 10, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Broda, M.; Mazela, B.; Dutkiewicz, A. Organosilicon Compounds with Various Active Groups as Consolidants for the Preservation of Waterlogged Archaeological Wood. J. Cult. Herit. 2019, 35, 123–128. [Google Scholar] [CrossRef]
- Popescu, C.-M.; Broda, M. Interactions Between Different Organosilicons and Archaeological Waterlogged Wood Evaluated by Infrared Spectroscopy. Forests 2021, 12, 268. [Google Scholar] [CrossRef]
- Broda, M.; Majka, J.; Olek, W.; Mazela, B. Dimensional Stability and Hygroscopic Properties of Waterlogged Archaeological Wood Treated with Alkoxysilanes. Int. Biodeter. Biodegr. 2018, 133, 34–41. [Google Scholar] [CrossRef]
- Broda, M. Biological Effectiveness of Archaeological Oak Wood Treated with Methyltrimethoxysilane and PEG against Brown-Rot Fungi and Moulds. Int. Biodeter. Biodegr. 2018, 134, 110–116. [Google Scholar] [CrossRef]
- Smith, C.W.; Wayne, C. Re-Treatment of PEG Treated Composite Artifact|Polyethylene Glycol|Archaeology. Available online: https://www.scribd.com/document/50291915/Wayne-C-Re-Treatment-of-PEG-Treated-Composite-Artifact (accessed on 8 June 2021).
- Andriulo, F.; Giorgi, R.; Steindal, C.C.; Kutzke, H.; Braovac, S.; Baglioni, P. Hybrid Nanocomposites Made of Diol-Modified Silanes and Nanostructured Calcium Hydroxide. Applications to Alum-Treated Wood. Pure Appl. Chem. 2017, 89, 29–39. [Google Scholar] [CrossRef]
- Qiu, J.; Min, R.; Kuo, M. Microscopic Study of Waterlogged Archeological Wood Found in Southwestern China and Method of Conservation Treatment. Wood Fiber Sci. 2013, 45, 396–404. [Google Scholar]
- Christensen, M.; Hansen, F.K.; Kutzke, H. Phenol Formaldehyde Revisited—Novolac Resins for the Treatment of Degraded Archaeological Wood. Archaeometry 2015, 57, 536–559. [Google Scholar] [CrossRef]
- Kiliç, N.; Kiliç, A.G. An Attenuated Total Reflection Fourier Transform Infrared (ATR-FTIR) Spectroscopic Study of Waterlogged Woods Treated with Melamine Formaldehyde. Vib. Spectrosc. 2019, 105, 102985. [Google Scholar] [CrossRef]
- Hoffmann, P.; Wittköpper, M. The Kauramin Method for Stabilizing Waterlogged Wood. In Proceedings of the 7th ICOM-CC Working Group on Wet Organic Archaeological Materials Conference, Grenoble, France, 19–23 October 1998; pp. 163–166. [Google Scholar]
- Cesar, T.; Danevčič, T.; Kavkler, K.; Stopar, D. Melamine Polymerization in Organic Solutions and Waterlogged Archaeological Wood Studied by FTIR Spectroscopy. J. Cult. Herit. 2017, 23, 106–110. [Google Scholar] [CrossRef]
- Collis, S. Revisiting Conservation Treatment Methodologies for Waterlogged Archaeological Wood: An Australian Study. AICCM Bull. 2015, 36, 88–96. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, K.; Hu, D. High Retreatability and Dimensional Stability of Polymer Grafted Waterlogged Archaeological Wood Achieved by ARGET ATRP. Sci. Rep. 2019, 9, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Wang, K.; Hu, D. An Aqueous Approach to Functionalize Waterlogged Archaeological Wood Followed by Improved Surface-Initiated ARGET ATRP for Maintaining Dimensional Stability. Cellulose 2021, 28, 2433–2443. [Google Scholar] [CrossRef]
- Björdal, C.G.; Nilsson, T. Reburial of Shipwrecks in Marine Sediments: A Long-Term Study on Wood Degradation. J. Archaeol. Sci. 2008, 35, 862–872. [Google Scholar] [CrossRef]
- Convention for the Protection of the Archaeological Heritage of Europe (Revised) (Valletta, 1992). Available online: https://www.coe.int/en/web/culture-and-heritage/valletta-convention (accessed on 24 June 2021).
- UNESCO Convention on the Protection of the Underwater Cultural Heritage. Available online: http://www.unesco.org/new/en/culture/themes/underwater-cultural-heritage/2001-convention/ (accessed on 24 June 2021).
- Pournou, A. Assessing the Long-Term Efficacy of Geotextiles in Preserving Archaeological Wooden Shipwrecks in the Marine Environment. J. Archaeol. Sci. 2018, 13, 1–14. [Google Scholar] [CrossRef]
- Amendas, G.; McConnachie, G.; Pournou, A. Selective Reburial: A Potential Approach for the in Situ Preservation of Waterlogged Archaeological Wood in Wetland Excavations. J. Arch. Sci. 2013, 40, 99–108. [Google Scholar] [CrossRef]
- Gregory, D.; Matthiesen, H. Nydam Mose: In Situ Preservation at Work. Conserv. Manag. Archaeol. Sites 2012, 14, 479–486. [Google Scholar] [CrossRef]
- Malim, T.; Morgan, D.; Panter, I. Suspended Preservation: Particular Preservation Conditions within the Must Farm—Flag Fen Bronze Age Landscape. Quat. Int. 2015, 368, 19–30. [Google Scholar] [CrossRef]
- Ciferri, O. The Role of Microorganisms in the Degradation of Cultural Heritage. Stud. Conserv. 2002, 47, 35–45. [Google Scholar] [CrossRef]
Consolidant | Exemplary Conservation Methods | Comments |
---|---|---|
Inorganic compounds | ||
Aluminum sulfate | Parts of the Oseberg find were boiled in aluminium sulfate in 1913 by Gustafson, dried and then impregnated with linseed oil. | Good dimensional stabilisation, wood sensitive to moisture changes, deposits on wood surface; no longer in use. |
Aluminum potassium sulfate (alum) | The method first described by C.F. Herbst (and Speerschneider) in 1861—boiling an object in supersaturated alum solution, then drying and dipping it in linseed oil. The method used in the Danish National Museum (1858–1958) for more than 80% of all waterlogged wooden artefacts collected; applied to some parts of Oseberg Ship in Norway. | Prevents shrinkage, crystals can destroy fragile cells, wood is brittle, prone to cracking and deformations, deposits on the surface, iron elements must be removed, no longer in use. |
Boron compounds | The Thessaloniki process for medium-degraded waterlogged wood described by Borgin (1978)—soaking wood in a concentrated solution of sodium tetraborate with sodium silicate and an organic polymer. After drying, wood is treated with a concentrated barium hydroxide solution to force precipitation of barium borate and barium silicate inside wood tissue. | Wood stabilisation and appearance are not always satisfactory; no longer in use. |
Chromium compounds | Conservation by exchanging water in wood for a 2–10% solution of chromium(VI)oxide with the addition of 10–20% sodium dichromate (1965, French patent by Garrouste). Bouis proposed a similar method in 1975 but with the addition of linseed oil after drying (chromium compounds harden linseed oil). | Good dimensional stability, low weight and high porosity, resistance against fungi and fire, brittle, unnatural colour, the high toxicity of the chemicals; hardly used. |
Silicon compounds (sodium and potassium silicate) | Scoot (1921–1926) applied silicon glass for restoration objects in the museum; Cebertowicz and Jasienski (1951) used a mixture containing water glass by electrokinetic method on wooden elements in Biskupin, Poland; a dugout canoe consolidated by slow drying and brushing with a sodium silicate solution (Plenderleith). | Improved strength and hardness, cracks can close, unaesthetic appearance, irreversible; alkali silicates or water glass are no longer in use. |
Organic compounds | ||
Animal glues | Glue solutions used for conservation of dugout canoes in Switzerland (1850–1900); Rathgen (1924) proposed using an aqueous glue solution in combination with drying and impregnation with resins; waterlogged wood conservation in Hungary (1959). | Glues are sensitive to moisture and microbial attack, shrink and become brittle, have poor penetrability, darkened wood colour; no longer in use. |
Linseed oil | Oseberg Ship treated with creosote and linseed oil (since 1904) or linseed oil and white spirit (1957), parts of Oseberg Ship and funeral artefacts treated with linseed oil (1913); a boat treated with a mixture of turpentine, linseed oil, colophony and Carbolineum (1958). | Insufficient stabilisation, no longer in use. |
Tung oil | Used for surface treatment of parts of the Hjortespring Find (Denmark) impregnated with alum (1921). | Poor strengthening effect, spotting on the surface, unnatural brown colour; no longer in use. |
Lanolin | Lanolin method proposed by Vynckier (1982/83). | Method not important in wood conservation. |
Beeswax | Small wooden artefacts heated in a mixture of rapeseed oil, wax, spruce resin and benzene by Speerschneider (1861); pouring melted wax on a wooden object (1924); protective coating of melted beeswax for wood treated with alcohol and resin (1979). | Sometimes used for small and fragile artefacts, or as a compound of some conservation mixtures. |
Carnauba wax | Dehydrated waterlogged wood submerged in melted paraffin, then in a mixture of dammar, carnauba wax, paraffin and beeswax by Brorson Christensen (1949–1956). | High durability, good stabilisation effect; no longer in use. |
Paraffin | Dripping or pouring melted paraffin on wood, or storage in liquid paraffin (1924); wood dehydration with methanol and toluene, then impregnation with melted paraffin (Leechman 1929); dehydration with ethanol prior to paraffin treatment (Kisser and Pittioni, 1935); the paraffin method used in Hungary (1950–1960). | Good dimensional stabilisation for soft objects with low density; occasionally used for small highly degraded artefacts and wood/metal composites. |
Microcrystalline wax | Mentioned as waterlogged wood consolidant by Werner (1959) and Sujanova (1972). | Not used for wood stabilisation. |
Dammar | As a component of a conservation mixture (1949–1956); the alcohol–ether–dammar method described by Plenderleith (1956); wooden writing tablets treated with dammar after water–methanol–ether exchange (Blackshaw, 1974). | Good consolidation effects for heavily degraded wood, appropriate for smaller objects; chemicals applied pose a risk of explosion and fire; not commonly used. |
Colophony | The acetone–rosin method published by McKerrell (1972); used for conservation of hardwood objects such as dead eyes, pulley blocks, and other ship’s fittings by Fox and for inlays of wood and ivory of a sword handle by Payton (1987). | Good dimensional stabilisation, suitable for low-permeability hardwoods; occasionally applied for better-reserved small objects. |
Shellac | Alum-treated wood coated with shellac after drying and brushed with linseed oil (Herbst 1858–1860); heavy waterlogged object dewatered with glycerol and dried can be coated with a shellac solution (Plenderleith, 1956). | Low weight of treated object, good dimensional stabilisation; not in use anymore. |
Ethylene glycol | Soaking wood with ethylene glycol until the final treatment (Miihlethaler, 1969); used to swell dried and shrunken waterlogged wood (De Jong, 1977); as an anti-shrink agent in the Thessaloniki process (Borgin, 1978). | Insufficient wood swelling by low-molecular glycols; rarely used. |
Glycerol | For storing and soaking of wooden artefacts (1900); mixed alum–glycerol treatment (Brorson Christensen, 1910); Celtic monumental sculpture treated with rosin/glycerol (after 1911); parts of the Hjortespring Boat treated with glycerol (method developed by Rosenberg, 1921); as pre-treatment followed by freeze-drying (1986). | Crack formation or warping can occur, very hygroscopic; not in use. |
Polyethylene glycols (PEGs) | Recognised as suitable consolidant for waterlogged wood by Moren and Centerwall (1961) and Stamm (1956); parts of Oseberg Ship treated with melted PEG 4000 by Rosenqvist; the beginning of the conservation of the Vasa ship in Sweden (1961); conservation of the Bremen Cog (recommendations by Noack, 1965); treatment of parts of the Sjøvollen Ship in Norway (1968); PEG pre-treatment followed by freeze-drying developed by Iwasaki and Higuchi and Ambrose (1969–1970); the beginning of the Mary Rose conservation, Great Britain (1982). | Direct exchange of water by PEG, good stabilisation effect, darkened wood colour, high weight of the treated object, susceptible to microbial degradation, corrosive to metals, not stable in the long-term; the most common conservation method for waterlogged wood. |
Sucrose | Noack proposed sucrose for the Bremen Cog treatment (1965); Franguelli and Loda (1970–1972) investigate wood conservation with sucrose; sucrose as a pre-treatment to freeze-drying (Parrent, 1983); | Good stabilisation and consolidation effect, best for better-preserved wood, natural wood appearance; used for objects of not particular historical value, when PEG-treatment is too expensive and time-consuming. |
Sugar alcohols | Suitability of mannitol and sorbitol studied by Barbour and Murray (1982); mannitol as a pre-treatment followed by freeze-drying (Murray, 1985); two-stage treatment with mannitol and PEG prior to freeze-drying (Imazu, 1988); treatment of a 6-m-long wooden coffin (1998) and dugout pipeline (1999). | Insufficient stabilisation and white deposits—mannitol, better results for lactitol; not commonly used. |
Cellulose ethers | A wooden coffin treated with Methyl cellulose solution (Schlabow, 1961); reports about not satisfactory results of methyl cellulose impregnation (Van der Heide, 1963; Ankner, 1969). | Reversible, but not suitable as consolidants because of poor penetration; not in use. |
Cellulose esters | Nitrocellulose varnish used for sealing of the alum-treated parts of the Hjortespring Find, Denmark (1921); treatment of wooden scabbard with a solution of celluloid in amyl acetate and acetone (Plenderleith, 1954). | Low penetration, insufficient strengthening, brittleness of treated objects, nitrocellulose is highly flammable; not in use. |
Phenol-formaldehyde resins (PF resins) | Considered as waterlogged wood consolidant since 1965–69 by Noack and Mühlethaler; USSR patent by Vichrov (the method of Minsk) for conservation of archaeological artefacts (1972); combined treatment with sucrose solution and phenol alcohol by Kolčin (1973), and sucrose with PF resin by Kazanska and Nikitina (1984). | Not suitable for large objects due to the short hardening time, imparts dark colour; not in use. |
Urea-formaldehyde resins (UF resins) | First experiments with water-soluble UF resins (Celodal, 1938) and with hardening using a catalyst (von Stockar 1938); conservation of wooden bucket (1968); a combination of UF resins with alum (Szalay, 1980). | Not suitable for large objects; rarely used. |
Melamine-formaldehyde resins (MF resins) | Used for waterlogged wood conservation since 1957 by Mueller-Beck and Haas; successful conservation of a paddle with Piazep ME/2 by Cott (1968); application of Kauramin CE 5549 for conservation of coat and ship elements by Witköpper and Hoffmann (1998). | Sufficient penetration and stabilisation, wood can bleach; occasionally used for smaller objects. |
Polyvinyl compounds | Poly(vinyl acetate) used for preliminary conservation of waterlogged wood (Losos, 1958); further experiments on the method by Brorson Christensen (1970). Poly(vinyl alcohol) used by Losos (1958); a mixture of Poly(vinyl alcohol) and glycerol for wood conservation used by Rumâncev (1958); medieval artefacts consolidated by Müller and Thieme (1966). Gilroy used Poly(vinyl butyral) to conserve a pulley shave from the Dutch ship Zeevijk in 1978. Poly(vinyl chloride) was tried for spoon conservation by Ypey in 1964. | Poly(vinyl acetate) is not hard enough for wood stabilisation, low dimensional stabilisation; Poly(vinyl alcohol) is reversible, poor dimensional stabilisation; Poly(vinyl butyral) has poor penetrability, gives good strengthening effects; not in use. |
Poly(methyl methacrylate) (PMMA/MMA) | Used for in situ polymerisation in waterlogged wood by Brendel in 1966 and Munnikendam in 1967. PMMA used for the conservation of some artefacts from the Oseberg find stored in formalin by Rosenkvist. | MMA requires wood dehydration which can lead to its shrinkage, heat released during polymerisation can cause warping or shrinkage in wood; PMMA has a plasticising effect, wood can swell; occasionally used for small artefacts. |
Poly(ethyl methacrylate) | Sawada used a solution of Paraloid B72 in xylene for consolidation of a vermilion Japanese lacquer vessel (1981). | Used only in exceptional cases. |
Poly(butyl methacrylate) (PBMA/BMA) | Bowls, spoons, arrows, spheres, and wedges of wood treated with BMA by Nogid and Podzdnâk (1964/65); modification of the method by De Jong (1977). | Strength improvement, colour and grain pattern not changed; rarely used. |
Poly(2-hydroxyethyl methacrylate) (HEMA) | In situ polymerisation of HEMA in oak samples by Munnikedam (1967) resulted in crack formation; modification of the method by De Jong (1975–77) using different catalysts; the method considered by Grattan as less effective than others (1982). | Good strength improvement; can lead to crack formation; not used in practice. |
Styrene | Neolithic ash samples treated with styrene by De Guichen et al. (1966) without satisfactory results; impregnation of wood after an exchange of water with a mixture of styrene and acrylonitrile using irradiation polymerisation (1970). | Improvement in wood strength, suitable for artefacts destroyed by insects or fungi, wood becomes brittle and hard; sometimes used for small wooden objects. |
Unsaturated polyester resins | Application of resin to wood filled with acetone after water exchange by Ketelsen (1959) resulted in 7% wood shrinkage; using irradiation curing for styrene/polyester treated wood (De Tassigny and Ginier-Gillet, 1979); consolidation of a freeze-dried wood with Ludopal U 150 and irradiation curing (Schaudy et al., 1985); poly(caprolactone) oligomers tested for the conservation of waterlogged wood by Gerasimova et al. (1981) | Permanent and homogenous strengthening, cracks close upon curing, resistant to UV radiation and moisture changes; used occasionally for small artefacts. |
Epoxy resins | Used only for dewatered (dried) wood; alum-treated parts of Oseberg Ship were sealed with Epolack (1954–56); conservation by brushing the surface of dugout canoe (Werner, 1961); treatment of a woven helmet by Bill (1979). | Resistant to biodegradation, does not improve wood dimensional stability, can deepen wood colour and produce a gloss on the surface; rarely used for already dried wood. |
Polyurethanes | Used for glueing PEG-treated wood by Noack (1965). | Not used for consolidation, it can serve as a protective foam. |
Organosilicon compounds | The hull of Vasa ship sprayed with a mixture of PEG, borax, boric acid and methyl polysiloxane (1965); tetraethoxysilane (TEOS) tested for waterlogged wood by Semczak (1975); acrylate dimethylsiloxane oligomers tested by Yashvili (1975); a canoe treated with TEOS by Bright (1979); in situ polymerisation of organosilicon compounds mentioned by Xu (1983). | Good dimensional stability, hydrophobizing effect, TEOS reverses wood grain pattern, white deposits on the surface, wood becomes brittle; acrylate-siloxane oligomers preserve natural wood appearance; rarely used. |
Method | ASE [%] | Appearance | Mechanical Properties | Moisture Properties | Resistance to Fungi | Reversibility | Other |
---|---|---|---|---|---|---|---|
Sugars and sugar alcohols | |||||||
Sucrose [97,126,195,197] | 81–100 (fd), 47–98 (ad) | darker colour, crystalline deposits, a sticky film of wood surface | … | + (under RH < 70%] | - | + | cell lumina filled, the cell wall bulked |
Sucralose [197] | 63 | wood warping and twisting | … | … | - | + | long-term stability, reduced reactivity with wood polymers |
Trehalose [97,197,198,199] | 86–99 | darker colour, crystalline deposits or a coating | + | + | - | + | faster, cheaper and safer than other methods, long-term stabilisation effect, smaller cell lumina filled |
Lactitol [97,131,142,201] | 91–109 | ncs | + | + | - | + | recommended for small artefacts |
Mannitol and sorbitol [12] | 70 (sorbitol), 30 (mannitol) | crystalline deposits on the wood surface (mannitol) | … | … | - | + | sorbitol—more cost- and time-efficient than other sugar methods |
Xylitol [199] | 103–106 | ncs | + | ncs | - | + | more effective than trehalose and lactitol treatment |
Proteins | |||||||
Keratin [204,205,209] | 64–108 | ncs | + | - | + | potential retreatment | more effective for less degraded wood, cell lumina remain open, reinforcement of the cell wall |
Cellulose and its derivatives | |||||||
Bacterial nanocellulose [210] | 55–94 | unaesthetic layer on the surface, wood yellowing or whitening | … | ncs | … | … | cell lumina filled, coated cell walls, non-stable solution |
Cellulose nanocrystals [210] | 37–84 | ncs | … | ncs | … | … | coated cell walls, cell lumina empty, poor wood penetrability, non-stable solution |
Nanocellulose whiskers [211] | poor | … | … | … | … | … | poor wood penetrability, non-stable solution |
Crosslinkable cellulose ethers [92,212,214] | … | … | … | … | … | - | high affinity to lignin, limited penetrability |
6-deoxy-6-(ω-aminoethyl) amino cellulose, 6-deoxy-6-(ω-hydroxyethyl) amino cellulose [215] | effective stabilisation | … | + | … | … | partly | improved wood penetrability |
Lignin and its derivatives | |||||||
Lignin nanoparticles [210] | 51–88 | depositions on wood surface, darkened wood colour | … | ncs | … | … | non-stable solution, poor penetrability, coated cell walls and filled cell lumina |
Isoeugenol [217,218] | effective stabilisation | … | … | … | … | … | in situ polymerisation |
Chitosan and guar | |||||||
Chitosan [211,220,221,225] | effective stabilisation | … | + | … | + | potential reconservation | good penetrability, cell lumina remain open |
Guar [221] | effective stabilisation | … | + | … | … | … | good penetrability, |
Chitosan-based supramolecular system [226] | effective stabilisation | … | … | … | … | … | Multifunctional system: stability, chelating Fe ions, protecting against biodegradation |
Oligoamides | |||||||
polyethylene-L-tartaramide, polyethylene-D(+)-glucaramide, polyethylene-α,α-trehaluronamide [227] | 18–35 | … | … | + | … | … | high affinity to lignin, good penetrability |
oligo ethylene-L-tartaramide, oligo esamethylene-L-tartaramide, copolymer between ethylenediamine, adipic and tartaric acids, allyl α,α′-trehalose/vinyl alcohol copolymer [228] | effective stabilisation | … | … | … | … | + (for oligoamides) | high affinity to lignin, good penetrability |
Other natural compounds | |||||||
Colophony and Rosin [58,92,128,202,229,230,231] | effective stabilisation | wood darkening possible | … | + | + | ? | good penetrability, cell walls encrusted, cell lumina remain open |
Polyhydroxylated monomer synthesised from α-pinene [232] | … | … | … | … | … | … | hydrogen bonding with wood polymers |
Halloysite nanotubes (HNT) | |||||||
HNT/beeswax [236] | 85 | … | … | … | … | … | filled cell lumina |
HNT/wax Pickering emulsion [237] | 87 | ncs | + | … | … | … | filled cell lumina |
HNT/Rosin [238,239] | 36–65 | … | … | … | … | … | filled cell lumina |
HNT/PEG/Ca(OH)2 [240] | … | … | + | … | … | … | filled cell lumina, wood deacidification |
Organosilicon compounds | |||||||
Silicon polymer + crosslinker + catalyst [126,202,244,245] | 82–90 | ncs | ncs | … | … | - | good penetrability |
Selected alkoxysilanes and siloxanes [35,247,248,251] | 81–98 | wood colour can change, depending on the chemical | + (except amino compounds) | … | + | potentially reversible or retreatable, depending on the chemical | good penetrability, smaller molecules bulk the cell wall, bigger fill the cell lumina |
Other polymers | |||||||
Phenol-formaldehyde [254] | effective stabilisation | ncs | + | … | … | -, retreatable | cell lumina remain open |
Melamine formaldehyde (Kauramin) [211,256,257,258,259] | excellent dimensional stabilisation | unaesthetic coating on the surface, lighter tone of wood colour | + | + | … | - | time- and cost-efficient method |
Activators regenerated by electron transfer for atom transfer radical polymerisation (ARGET ATRP) [260,261] | 77–998 | slightly lighter wood colour | … | … | … | retreatable | cell lumina remain open |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Broda, M.; Hill, C.A.S. Conservation of Waterlogged Wood—Past, Present and Future Perspectives. Forests 2021, 12, 1193. https://doi.org/10.3390/f12091193
Broda M, Hill CAS. Conservation of Waterlogged Wood—Past, Present and Future Perspectives. Forests. 2021; 12(9):1193. https://doi.org/10.3390/f12091193
Chicago/Turabian StyleBroda, Magdalena, and Callum A. S. Hill. 2021. "Conservation of Waterlogged Wood—Past, Present and Future Perspectives" Forests 12, no. 9: 1193. https://doi.org/10.3390/f12091193