Vegetation Characteristics Based Climate Change Vulnerability Assessment of Temperate Forests of Western Himalaya
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling
2.3. Vulnerability Analysis
3. Results
Vulnerability Status
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO and UNEP. The State of the World’s Forests 2020: Forests, Biodiversity and People; FAO: Rome, Italy, 2020. [Google Scholar]
- Dimri, A.P.; Dash, S.K. Wintertime climatic trends in the western Himalayas. Clim. Chang. 2012, 111, 775–800. [Google Scholar] [CrossRef]
- Shrestha, A.B.; Aryal, R. Climate change in Nepal and its impact on Himalayan glaciers. Reg. Environ. Change 2011, 11, 65–77. [Google Scholar] [CrossRef]
- Bhutiyani, M.R.; Kale, V.S.; Pawar, N.J. Long-term trends in maximum, minimum and mean annual air temperatures across the Northwestern Himalaya during the twentieth century. Clim. Change 2007, 85, 159–177. [Google Scholar] [CrossRef]
- Chakraborty, A.; Joshi, P.K.; Sachdeva, K. Predicting distribution of major forest tree species to potential impacts of climate change in the central Himalayan region. Ecol. Eng. 2016, 97, 593–609. [Google Scholar] [CrossRef]
- Kelly, A.E.; Goulden, M.L. Rapid shifts in plant distribution with recent climate change. Proc. Natl. Acad. Sci. USA 2008, 105, 11823–11826. [Google Scholar] [CrossRef] [Green Version]
- Yadava, A.K.; Sharma, Y.K.; Dubey, B.; Singh, J.; Singh, V.; Bhutiyani, M.R.; Yadav, R.R.; Misra, K.G. Altitudinal treeline dynamics of Himalayan pine in western Himalaya, India. Quat. Int. 2017, 444, 44–52. [Google Scholar] [CrossRef]
- Dubey, B.; Yadav, R.R.; Singh, J.; Chaturvedi, R. Upward shift of Himalayan pine in Western Himalaya, India. Curr. Sci. 2003, 85, 1135–1136. [Google Scholar]
- Singh, P.; Arya, V.; Negi, G.C.S.; Singh, S.P. Expansion of Rhododendron campanulatum krummholz in the treeline ecotone in Tungnath, Garhwal Himalaya. Trop. Ecol. 2018, 59, 287–295. [Google Scholar]
- Leemans, R.; Eickhout, B. Another reason for concern: Regional and global impacts on ecosystems for different levels of climate change. Glob. Environ. Chang. Benefits Clim. Policy 2004, 14, 219–228. [Google Scholar] [CrossRef]
- Woodward, F.I. Temperature and the distribution of plant species. Symp. Soc. Exp. Biol. 1988, 42, 59–75. [Google Scholar]
- Eriksson, O. Regional Dynamics of Plants: A Review of Evidence for Remnant, Source-Sink and Metapopulations. Oikos 1996, 77, 248–258. [Google Scholar] [CrossRef]
- Criddle, R.S.; Church, J.N.; Smith, B.N.; Hansen, L.D. Fundamental Causes of the Global Patterns of Species Range and Richness. Russ. J. Plant Physiol. 2003, 50, 192–199. [Google Scholar] [CrossRef]
- Måren, I.E.; Sharma, L.N. Seeing the wood for the trees: Carbon storage and conservation in temperate forests of the Himalayas. For. Ecol. Manag. 2021, 487, 119010. [Google Scholar] [CrossRef]
- Martin, D.; Lal, T.; Sachdev, C.B.; Sharma, J.P. Soil organic carbon storage changes with climate change, landform and land use conditions in Garhwal hills of the Indian Himalayan mountains. Agric. Ecosyst. Environ. 2010, 138, 64–73. [Google Scholar] [CrossRef]
- Singh, D.; Sharma, P.; Kumar, U.; Daverey, A.; Arunachalam, K. Effect of forest fire on soil microbial biomass and enzymatic activity in oak and pine forests of Uttarakhand Himalaya, India. Ecol. Processes 2021, 10, 29. [Google Scholar] [CrossRef]
- Rawat, M.; Arunachalam, K.; Arunachalam, A.; Alatalo, J.M.; Kumar, U.; Simon, B.; Hufnagel, L.; Micheli, E.; Pandey, R. Relative contribution of plant traits and soil properties to the functioning of a temperate forest ecosystem in the Indian Himalayas. Catena 2020, 194, 104671. [Google Scholar] [CrossRef]
- Adams, M.B.; Kelly, C.; Kabrick, J.; Schuler, J. Temperate forests and soils [Chapter 6]. In Global Change and Forest Soils: Cultivating Stewardship of a Finite Natural Resource. Developments in Soil Science; Busse, M., Giardina, C.P., Morris, D.M., Page-Dumroese, D.S., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; Volume 36, pp. 83–108. [Google Scholar] [CrossRef]
- Monson, R.K. Ecology of Temperate Forests. In Ecology and the Environment, the Plant Sciences; Monson, R.K., Ed.; Springer: New York, NY, USA, 2014; pp. 273–296. [Google Scholar] [CrossRef]
- Swanston, C.; Brandt, L.A.; Janowiak, M.K.; Handler, S.D.; Butler-Leopold, P.; Iverson, L.; Thompson, F.R., III; Ontl, T.A.; Shannon, P.D. Vulnerability of forests of the Midwest and Northeast United States to climate change. Clim. Change 2018, 146, 103–116. [Google Scholar] [CrossRef]
- Varughese, G.; Ostrom, E. The contested role of heterogeneity in collective action: Some evidence from community forestry in Nepal. World Dev. 2001, 29, 747–765. [Google Scholar] [CrossRef]
- Upgupta, S.; Sharma, J.; Jayaraman, M.; Kumar, V.; Ravindranath, N.H. Climate change impact and vulnerability assessment of forests in the Indian Western Himalayan region: A case study of Himachal Pradesh, India. Clim. Risk Manag. 2015, 10, 63–76. [Google Scholar] [CrossRef] [Green Version]
- Abrams, M.D.; Nowacki, G.J. An interdisciplinary approach to better assess global change impacts and drought vulnerability on forest dynamics. Tree Physiol. 2016, 36, 421–427. [Google Scholar] [CrossRef]
- Chaturvedi, R.K.; Gopalakrishnan, R.; Jayaraman, M.; Bala, G.; Joshi, N.V.; Sukumar, R.; Ravindranath, N.H. Impact of climate change on Indian forests: A dynamic vegetation modeling approach. Mitig. Adapt. Strat. Gl. 2011, 16, 119–142. [Google Scholar] [CrossRef]
- Kumar, M.; Savita; Singh, H.; Pandey, R.; Singh, M.P.; Kalra, N.; Ravindranath, N.H. Assessing vulnerability of forest ecosystem in the Indian Western Himalayan region using trends of net primary productivity. Biodivers. Conserv. 2018, 28, 2163–2182. [Google Scholar] [CrossRef] [Green Version]
- Pokhriyal, P.; Rehman, S.; Areendran, G.; Raj, K.; Pandey, R.; Kumar, M.; Sahana, M.; Sajjad, H. Assessing forest cover vulnerability in Uttarakhand, India using analytical hierarchy process. Model. Earth Syst. Environ. 2020, 6, 821–831. [Google Scholar] [CrossRef]
- Thakur, S.; Negi, V.S.; Pathak, R.; Dhyani, R.; Durgapal, K.; Rawal, R.S. Indicator based integrated vulnerability assessment of community forests in Indian west Himalaya. For. Ecol. Manag. 2020, 457, 117674. [Google Scholar] [CrossRef]
- Hooper, D.U.; Chapin, F.S.; Ewel, J.J.; Hector, A.; Inchausti, P.; Lavorel, S.; Lawton, J.H.; Lodge, D.M.; Loreau, M.; Naeem, S.; et al. Effects of Biodiversity on Ecosystem Functioning: A Consensus of Current Knowledge. Ecol. Monogr. 2005, 75, 3–35. [Google Scholar] [CrossRef]
- Mccann, K. The diversity–stability debate. Nature 2000, 405, 228–233. [Google Scholar] [CrossRef]
- Caspersen, J.P.; Pacala, S.W. Successional diversity and forest ecosystem function. Ecol. Res. 2001, 16, 895–903. [Google Scholar] [CrossRef]
- Thompson, I.D. (Ed.) Forest Resilience, Biodiversity, and Climate Change: A Synthesis of the Biodiversity/Resiliende/Stability Relationship in Forest Ecosystems, CBD Technical Series. Secretariat of the Convention on Biological Diversity: Montreal, QC, Canada, 2009. [Google Scholar]
- Tilman, D. The Influence of Functional Diversity and Composition on Ecosystem Processes. Science 1997, 277, 1300–1302. [Google Scholar] [CrossRef] [Green Version]
- Cardinale, B.J.; Palmer, M.A.; Collins, S.L. Species diversity enhances ecosystem functioning through interspecific facilitation. Nature 2002, 415, 426–429. [Google Scholar] [CrossRef]
- Duffy, J.E. Why biodiversity is important to the functioning of real-world ecosystems. Front. Ecol. Environ. 2009, 7, 437–444. [Google Scholar] [CrossRef] [Green Version]
- FSI. India State of Forest Report; Forest Survey of India: Dehradun, India, 2019. [Google Scholar]
- Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef] [Green Version]
- Simpson, E.H. Measurement of Diversity. Nature 1949, 163, 688. [Google Scholar] [CrossRef]
- Pandey, R. Forest resource utilisation by tribal communities of Jaunsar, Uttrakhand. Indian For. 2009, 135, 655–662. [Google Scholar] [CrossRef]
- Champion, H.G.; Seth, S.K. A Revised Forest Types of India; Manager of Publications, Government of India: Delhi, India, 1968. [Google Scholar]
- Pielou, E.C. An introduction to mathematical ecology. In Wiley Interscience; John Wiley & Sons: Hoboken, NJ, USA, 1969. [Google Scholar]
- Menhinick, E. A comparison of some species diversity indices applied to samples of field insects. Ecology 1964, 45, 859–861. [Google Scholar] [CrossRef]
- Pichi-Sermolli, R. An index for establishing the degree of maturity in plant communities. J. Ecol. 1948, 36, 85–90. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change: Chapter 10 Asia; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Omerkhil, N.; Kumar, P.; Mallick, M.; Meru, L.B.; Chand, T.; Rawat, P.S.; Pandey, R. Micro-level adaptation strategies by small-holders to adapt climate change in the least developed countries (LDCs): Insights from Afghanistan. Ecol. Indic. 2020, 11, 106781. [Google Scholar] [CrossRef]
- Gotelli, N.; Colwell, R. Quantifying biodiversity: Procedures and pitfalls in the measurement and comparison of species richness. Ecol. Lett. 2001, 4, 379–391. [Google Scholar] [CrossRef] [Green Version]
- Tilman, D. Resource competition and community structure. Monogr. Popul. Biol. 1982, 17, 1–296. [Google Scholar]
- Wood, A.; Stedman-Edwards, P.; Mang, J. The Root Causes of Biodiversity Loss; Routledge: London, UK, 2013. [Google Scholar] [CrossRef]
- Gilliam, F.S. The Ecological Significance of the Herbaceous Layer in Temperate Forest Ecosystems. BioScience 2007, 57, 845–858. [Google Scholar] [CrossRef]
- International Union for Conservation of Nature Annual Report 2019. Available online: https://www.iucn.org/about/programme-work-and-reporting/annual-reports (accessed on 4 June 2021).
- International Union for Conservation of Nature Annual Report 2020. Available online: https://www.iucnredlist.org/statistics (accessed on 8 June 2021).
- FAO. Biodiversity for Food and Agriculture and Ecosystem Services: Thematic Study for The State of the World’s Biodiversity for Food and Agriculture; FAO: Rome, Italy, 2020. [Google Scholar] [CrossRef]
- Malik, Z.A.; Bhat, J.A.; Ballabha, R.; Bussmann, R.W.; Bhatt, A.B. Ethnomedicinal plants traditionally used in health care practices by inhabitants of Western Himalaya. J. Ethnopharmacol. 2015, 172, 133–144. [Google Scholar] [CrossRef]
- Saxena, A.K.; Pandey, U.; Singh, J.S. On the Ecology of Oak Forest in Nainital Hills, Kumoun Himalaya. Glimpses of Ecology: Prof. R. Misra Commemoration Volume; Jaipur International Scientific Publication: Jaipur, India, 1978; pp. 167–180. [Google Scholar]
- Coomes, D.A.; Allen, R.B. Effects of size, competition and altitude on tree growth. J. Ecol. 2007, 95, 1084–1097. [Google Scholar] [CrossRef]
- Verma, R.K.; Kapoor, K.S.; Subramani, S.P.; Rawat, R.S. Evaluation of plant diversity and soil quality under plantation raised in surface mined areas. Indian J. For. 2004, 27, 227–233. [Google Scholar]
- Shaheen, H.; Ullah, Z.; Khan, S.M.; Harper, D.M. Species composition and community structure of western Himalayan moist temperate forests in Kashmir. For. Ecol. Manag. 2012, 278, 138–145. [Google Scholar] [CrossRef]
- Ibáñez, I.; Clark, J.S.; Dietze, M.; Feeley, K.J.; Hersh, M.; LaDeau, S.; McBride, A.C.; Welch, N.E.; Wolosin, M.S. Predicting biodiversity change: Outside the climate envelope, beyond the species-area curve. Ecology 2006, 87, 1896–1906. [Google Scholar] [CrossRef]
- Halofsky, J.E.; Peterson, D.L. Climate change vulnerabilities and adaptation options for forest vegetation management in the northwestern USA. Atmosphere 2016, 7, 46. [Google Scholar] [CrossRef] [Green Version]
- Verma, A.; Garkoti, S. Population structure, soil characteristics and carbon stock of the regenerating banj oak forests in Almora, Central Himalaya. For. Sci. Technol. 2019, 15, 117–127. [Google Scholar] [CrossRef] [Green Version]
- Malik, J.; Bhatt, A.B.; Pandey, R. Anthropogenic Disturbances and Their Impact on Vegetation in Western Himalaya, India. J. Mt. Sci. 2016, 13, 69–82. [Google Scholar] [CrossRef]
- Ranjan, R. What drives forest degradation in the central Himalayas? Understanding the feedback dynamics between participatory forest management institutions and the species composition of forests. For. Policy Econ. 2018, 95, 85–101. [Google Scholar] [CrossRef]
- Manral, V.; Bargali, K.; Bargali, S.; Shahi, C. Changes in soil biochemical properties following replacement of Banj oak forest with Chir pine in Central Himalaya, India. Ecol. Processes 2020, 9, 30. [Google Scholar] [CrossRef]
Forest Type | No. of Individual | Total Species | TBA (m2/ha) | Simpson’s Index | Equitability Index | Menhinick’s Species Richness Index | Shannon-Weiner Index | Degree of Maturity |
---|---|---|---|---|---|---|---|---|
BOF-I | 409 | 12 | 22.00 | 0.27 | 0.69 | 0.59 | 1.70 | 1.25 |
BOF-II | 381 | 4 | 35.05 | 0.96 | 0.08 | 0.20 | 0.11 | 0.37 |
BOF-III | 930 | 8 | 31.24 | 0.49 | 0.43 | 0.26 | 0.90 | 0.42 |
DBCF | 313 | 3 | 18.63 | 0.54 | 0.75 | 0.17 | 0.83 | 0.89 |
DDF | 336 | 3 | 53.22 | 0.53 | 0.71 | 0.16 | 0.77 | 0.57 |
KOF | 438 | 6 | 212.65 | 0.39 | 0.68 | 0.29 | 1.22 | 0.64 |
LLBPF | 471 | 3 | 24.30 | 0.47 | 0.73 | 0.14 | 0.80 | 0.57 |
MDF-I | 708 | 6 | 41.14 | 0.32 | 0.76 | 0.23 | 1.37 | 0.72 |
MDF-II | 279 | 5 | 76.92 | 0.17 | 0.24 | 0.30 | 0.39 | 0.75 |
MOF-I | 511 | 13 | 47.17 | 0.22 | 0.70 | 0.58 | 1.78 | 1.31 |
MOF-II | 705 | 9 | 39.82 | 0.27 | 0.71 | 0.34 | 1.56 | 0.62 |
MTDF-I | 237 | 7 | 87.53 | 0.52 | 0.44 | 0.45 | 0.86 | 1.14 |
MTDF-II | 565 | 12 | 35.19 | 0.23 | 0.70 | 0.50 | 1.73 | 1.10 |
NPF | 182 | 2 | 18.84 | 0.16 | 0.43 | 0.15 | 0.30 | 0.82 |
WHHLBPF | 387 | 2 | 30.02 | 0.42 | 0.88 | 0.10 | 0.61 | 0.52 |
WHUO/FF | 404 | 13 | 70.59 | 0.19 | 0.73 | 0.65 | 1.86 | 1.14 |
WMCF | 400 | 9 | 30.49 | 0.28 | 0.66 | 0.45 | 1.44 | 1.03 |
Forest Type | Exposure Index | Sensitivity Index | Adaptive Capacity Index | Vulnerability | Vulnerability Status |
---|---|---|---|---|---|
BOF-I | 0.85 | 0.55 | 0.58 | −0.03 | Low |
BOF-II | 0.71 | 0.66 | 0.33 | 0.32 | Most |
BOF-III | 1.00 | 0.54 | 0.61 | −0.07 | Low |
DBCF | 0.25 | 0.83 | 0.57 | 0.26 | Most |
DDF | 0.1 | 0.79 | 0.65 | 0.14 | Moderate |
KOF | 0.73 | 0.53 | 0.7 | −0.17 | Least |
LLBPF | 0.14 | 0.81 | 0.66 | 0.14 | Moderate |
MDF-I | 0.71 | 0.68 | 0.73 | −0.06 | Low |
MDF-II | 0.54 | 0.78 | 0.32 | 0.47 | Most |
MOF-I | 0.43 | 0.49 | 0.58 | −0.08 | Least |
MOF-II | 0.71 | 0.60 | 0.78 | −0.19 | Least |
MTDF-I | 0.56 | 0.61 | 0.35 | 0.25 | Moderate |
MTDF-II | 0.76 | 0.54 | 0.64 | −0.11 | Least |
NPF | 0.16 | 0.98 | 0.36 | 0.63 | Most |
WHHLBPF | 0.34 | 0.87 | 0.71 | 0.16 | Moderate |
WHUO/FF | 0.54 | 0.48 | 0.66 | −0.18 | Least |
WMCF | 0.56 | 0.64 | 0.59 | 0.05 | Low |
Category | Vulnerability Status | Total | |||
Elevation Range | Least | Low | Moderate | Most | |
High (above 2500 m) | 1 | 1 | 1 | 1 | 4 |
Middle (between 2000–2500 m) | 3 | 0 | 3 | 2 | 8 |
Lower (below 2000 m) | 1 | 3 | 0 | 1 | 5 |
Total | 5 | 4 | 4 | 4 | 17 |
Fisher’s Exact Test = 6.74 (0.33) | |||||
Exposure Level | Least | Low | Moderate | Most | Total |
Least | 0 | 0 | 3 | 2 | 5 |
Low | 2 | 0 | 1 | 1 | 4 |
Moderate | 1 | 2 | 0 | 1 | 4 |
High | 2 | 2 | 0 | 0 | 4 |
Total | 5 | 4 | 4 | 4 | 17 |
Fisher’s Exact Test = 11.59 (0.14) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pandey, R.; Sharma, J.; Singh, R.; Rawat, M.; Saklani, H.; Tomar, P.K.; Tiwari, L.; Bhatt, I.D.; Chand, T.; Bala, N.; et al. Vegetation Characteristics Based Climate Change Vulnerability Assessment of Temperate Forests of Western Himalaya. Forests 2022, 13, 848. https://doi.org/10.3390/f13060848
Pandey R, Sharma J, Singh R, Rawat M, Saklani H, Tomar PK, Tiwari L, Bhatt ID, Chand T, Bala N, et al. Vegetation Characteristics Based Climate Change Vulnerability Assessment of Temperate Forests of Western Himalaya. Forests. 2022; 13(6):848. https://doi.org/10.3390/f13060848
Chicago/Turabian StylePandey, Rajiv, Jyoti Sharma, Rajat Singh, Monika Rawat, Himani Saklani, Pankaj Kumar Tomar, Laxmikant Tiwari, Indra Dutt Bhatt, Tara Chand, Nirmalya Bala, and et al. 2022. "Vegetation Characteristics Based Climate Change Vulnerability Assessment of Temperate Forests of Western Himalaya" Forests 13, no. 6: 848. https://doi.org/10.3390/f13060848