Carbon Sequestration Potential of Commercial Agroforestry Systems in Indo-Gangetic Plains of India: Poplar and Eucalyptus-Based Agroforestry Systems
Abstract
:1. Introduction
2. Methodology
3. Nature and Structure of Agroforestry in Indo-Gangetic Plains
Physiographic Information | Zone of Indo Gangetic Regions | |||
---|---|---|---|---|
Lower Gangetic Plains | Middle Gangetic Plains | Upper Gangetic Plains | Trans-Gangetic Plains | |
Area | About 6.94 M ha area of West Bengal and Jharkhand consisting of 15 districts | 17.03 M ha area from 61 districts covering the eastern part of Uttar Pradesh and northern districts of Bihar | 13.87 M ha area of Central and Western (45 districts) Uttar Pradesh | 12.50 M ha area of 51 districts of Delhi, Haryana, Punjab, and Rajasthan |
Climate | Hot and humid monsoon-type climate with temperatures ranging from 2.2 °C to 21 °C Rainfall ranges from 1150 to 1750 mm | Humid to sub-humid climate. Mean temperature ranges from 8.9 °C to 37.6 °C. Rainfall 1000–1500 mm | Sub-humid with four seasons: hot summer, wet summer, pre-winter transition, and winter. Temperature reaches 0 °C in winter to up to 48 °C in summer. Rainfall: 500 mm in west to 1400 in east | Semi-arid and sub-humid region with three seasons (rainy, winter, summer) Temperature rises more than 45 °C in summer. Rainfall varies from 200 mm to 1200 mm |
Crops | Rice, jute, wheat, mustard, mung, sorghum, colocasia | Rice, wheat, tuber crops, vegetables and medicinal crops | Rice, sugarcane, wheat, lentils, mustard, vegetables, berseem, chickpea, and bajra | Wheat, cotton, rice, chickpea, lentil, bajra, guar, fodder crops |
Vegetation | Trees: Acacia mangium, Gmelina arborea, Tectona grandis, Eucalyptus spp., Dalbergia sissoo and Bamboo Fruits: Mangifera indica, Litchi chinensis, Psidium guajava | Timber trees: Anthocephalus cadamba, Azadirachta indica, Madhuca longifolia, Butea monosperma, Bamboo spp. & Tectona grandis Fruits: Mangifera indica, Litchi sinensis, Psidium guajava | Timber trees: Eucalyptus spp., Populus deltoides, Melia spp., Madhuca longifolia, Dalbergia sissoo Fruit Trees: Mangifera indica, Psidium guajava | Timber trees: Acacia nilotica, Dalbergia sissoo, Melia composita, Eucalyptus spp., Populus deltoides, Prosopis cineraria, Ailanthus excelsa, Terminalia arjuna Fruits trees: Apple ber, Psidium guajava, magifera indica, Agel marmelos, Emblica officilis |
State | Agri-Silviculture | Boundary Plantation | Silvopasture |
---|---|---|---|
Punjab | Populus deltoides, Eucalyptus spp., and Melia composita for plywood and pulp purposes Scattered plantations of Tectona grandis, Dalbergia sissoo, and Azadirachta indica for timber and furniture purposes | Dalbergia sissoo, Azadirachta indica, Acacia nilotica, Ailanthus excelsa are maintained traditionally on field bunds or scattered. Commercially Eucalyptus tereticornis and Populus deltoides on a single row or paired row on boundaries. | Grasses or fodder crops are being intercropped with Eucalyptus tereticornis, Populus deltoides, and Melia composita. |
Haryana | Eucalyptus tereticornis, Populus deltoides, Ailanthus excelsa, Melia composita are the main commercial tree species for industrial purposes | Traditionally, Ailanthus excelsa, Dalbergia sissoo, Prosopis cineraria, Tecomella undulata are maintained on boundaries for fuelwood, timber and fodder. Commercially, Eucalyptus tereticornis and Populus deltoides on a single row or paired row on boundaries | Berseem, lucerne and grasses are being grown with Ziziphus mauritiana, Acacia nilotica, and Emblica officinalis. Irrigated areas such as Yamunanagar, Berseem and sorghum are widely intercropped with Populus deltoides. |
Tarai region of Uttarakhand | Populus deltoides, bamboo, and Eucalyptus spp. are widely preferred for block plantations to supply raw material for plywood | Eucalyptus, Bamboo spp. and Dalbergia sissoo | Berseem with commercial tree species and under alleys of fruit orchards |
Central Uttar Pradesh | Dalbergia sissoo, Mangifera indica, Tectona grandis and Euclayptus spp. for timber and plywood. Apart from that, some fruit trees, including Mangifera indica, indica, Psidium guajava, Zizyphus mauratiana, Emblica officinalis, and Aegel marmelos, are widely grown by the farmers | Acacial nilotica, Azadirachta indica, Dalbergia sisoo, Madhuca longifolia, and Bamboo | Napier, stylo, and Cenchrus spp., are grown with Luecaena leucocephala and Albizia amara |
Eastern Uttar Pradesh | Mangifera indica, indica, Psidium guajava, and Syzygium cumini grown in orchards | Dalbergia sissoo, Eucalyptus spp., bamboo on field boundaries. Bamboo as live fence | Fodder grasses intercropped with Emblica officinalis, Psidium guajava, and Ziziphus mauritiana |
Bihar | Dalbergia sissoo, Tectona grandis, Terminalia arjuna, Bamboo species and different orchards of Mangiferaindica, Psidium guajava, Emblica officinalis, and Litchi chinensis | Tectona grandis, Dalbergia sissoo, Mangifera indica and Bombax ceiba | Fodder crops with Dalbergia sissoo, Mangifera indica, Leucaena leucocephala, Tectona grandis, Bamboo spp. |
West Bengal | Terminalia arjuna, Acacia mangium, Acacia auriculiformis, Gmelina arborea planted in blocks with Annona squamosa, Emblica officinalis, Ziziphus mauritiana, Punica granatum, Madhuca latifolia, Syzygium cumini | Butea monosperma, Tectona grandis and Mangifera indica | Dicanthium and Pennisetum grasses are grown with Acacia mangium, Tectona grandis, and fruit orchards |
4. Concepts of Carbon Capture and Storage in Agroforestry System
5. Agroforestry Systems in IGP
5.1. Poplar-Based Agroforestry
5.2. Eucalyptus-Based Agroforestry
5.3. Case Study: Carbon Stocking in Poplar and Eucalyptus in Haryana
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Garrity., D.; Okono, A.; Grayson, M.; Parrott, S. World Agroforestry into the Future; World Agroforesty Centre: Nairobi, Kenya, 2008; p. 196. [Google Scholar]
- World Bank. Sustaining Forests: A Development Strategy; WB: Washington, DC, USA, 2004. [Google Scholar]
- Chavan, S.B.; Keerthika, A.; Dhyani, S.K.; Handa, A.K.; Newaj, R.; Rajarajan, K. National agroforestry policy in India: A lowhanging fruit. Curr. Sci. 2015, 108, 1826–1834. [Google Scholar]
- Nationan Commission on Agriculture. Report of The National Commission On Agriculture 1976; Ministry of Agriculture and Irrigation, Government of India: New Delhi, India, 1976; pp. 1–16.
- Forest Conservation Act. Handbook of Forest (Conservation) Act, 1980 and Forest Conservation Rules, 2003 (Guidelines & Clarifications); Ministry of Environment, Forest and Climate Change, Government of India: New Delhi, India, 2019; pp. 1–133.
- National Forest Policy. Report of National Forest Policy 1988; Ministry of Environment and Forests, Government of India: New Delhi, India, 1988; pp. 1–10.
- Gera, M. Poplar culture for speedy carbon sequestration in India: A case study from Terai region of Uttarakhand. Envis For. Bull. 2012, 12, 75–83. [Google Scholar]
- Chavan, S.B.; Keerthika, A.; Bhat, S.S.; Handa, A.K.; Rajarajan, K.; Ahmad, S. Poplar (Populus deltoides) in Jammu and Kashmir, India: Facts and fiction. Curr. Sci. 2020, 119, 910–911. [Google Scholar]
- Chaturvedi, O.P.; Handa, A.K.; Uthappa, A.R.; Sridhar, K.B.; Kumar, N.; Chavan, S.B.; Rizvi, J. Promising Agroforestry Tree Species in India; Central Agroforestry Research Institute: Jhansi, India; South Asia Regional Programme of the World Agroforestry Research Centre: New Delhi, India, 2017; pp. 1–190. [Google Scholar]
- National Agroforestry Policy. Report of National Agroforestry Policy 2014; Ministry of Agriculture, Government of India: New Delhi, India, 2014; pp. 1–14.
- Chavan, S.B.; Dhillon, R.S. Doubling farmers’ income through populus deltoides-based agroforestry systems in Northwestern India: An economic analysis. Curr. Sci. 2019, 117, 219–226. [Google Scholar] [CrossRef]
- Chavan, S.B.; Dhillon, R.S.; Sirohi, C.; Keerthika, A.; Kumari, S.; Bharadwaj, K.K.; Jinger, D.; Kakade, V.; Chichaghare, A.R.; El-Abedin, T.K.Z.; et al. Enhancing farm income through boundary plantation of poplar (populus deltoides): An economic analysis. Sustainability 2022, 14, 8663. [Google Scholar] [CrossRef]
- Newaj, R.; Dhyani, S.K.; Chavan, S.B.; Rizvi, R.H.; Prasad, R.; Ajit; Alam, B.; Handa, A.K. Methodologies for Assessing Biomass, Carbon Stock and Carbon Sequestration in Agroforestry Systems; National Research Centre for Agroforestry: Jhansi, India, 2014; p. 45. [Google Scholar]
- Newaj, R.; Chavan, S.B.; Alam, B.; Dhyani, S.K. Biomass and carbon storage in trees grown under different agroforestry systems in semi-Arid region of central India. Ind. For. 2016, 142, 642–648. [Google Scholar]
- Chavan, S.B.; Newaj, R.; Rizvi, R.H.; Ajit; Prasad, R.; Alam, B.; Handa, A.K.; Dhyani, S.K.; Jain, A.; Tripathi, D. Reduction of global warming potential vis-à-vis greenhouse gases through traditional agroforestry systems in Rajasthan, India. Environ. Dev. Sustain. 2020, 23, 4573–4593. [Google Scholar] [CrossRef]
- Jinger, D.; Kaushal, R.; Kumar, R.; Paramesh, V.; Verma, A.; Shukla, M.; Chavan, S.B.; Kakade, V.; Dobhal, S.; Uthappa, A.R.; et al. Degraded land rehabilitation through agroforestry in India: Achievements, current understanding, and future prospectives. Front. Ecol. Evol. 2023, 11, 69. [Google Scholar] [CrossRef]
- Panwar, P.; Pal, S.; Bhatt, V.K.; Prasad, R.; Tiwari, A.K.; Patra, S. Toposequential agroforestry based land use system for soil and water conservation in sloping lands. Range Manag. Agrofor. 2018, 39, 93–96. [Google Scholar]
- Chauhan, S.K.; Mangat, P.S. Poplar based agroforestry is ideal for Punjab, India. Asia-pacific agrofor. News 2006, 28, 7–8. [Google Scholar]
- Chauhan, S.K.; Chauhan, R. Exploring carbon sequestration in poplar-wheat based integrated cropping system. Asia-Pac. Agrofor. News 2009, 35, 9–10. [Google Scholar]
- Dhillon, R.S.; Chavan, S.B.; Bangarwa, K.S.; Bharadwaj, K.K.; Kumari, S.; Sirohi, C. Eucalyptus-based agroforestry system under semi-arid condition in Northwestern India: An economic analysis. Ind. J. Ecol. 2018, 45, 470–474. [Google Scholar]
- Jinger, D.; Kumar, R.; Kakade, V.; Dinesh, D.; Singh, G.; Pande, V.C.; Bhatnagar, P.R.; Rao, B.K.; Vishwakarma, A.K.; Kumar, D.; et al. Agroforestry system for controlling soil erosion and enhancing system productivity in ravine lands of Western India underclimate change scenarios. Environ. Monit. Assess. 2022, 194, 267. [Google Scholar] [CrossRef]
- Pathak, P.S.; Dagar, J.C.; Kaushal, R.; Chaturvedi, O.P. Agroforestry inroads from the traditional two-crop systems in heartlands of the Indo-Gangetic plains. In Agroforestry Systems in India: Livelihood Security & Ecosystem Services; Dagar, J.C., Singh, A.K., Arunachalam, A., Eds.; Springer: New Delhi, India, 2014; pp. 87–116. [Google Scholar]
- Panwar, P.; Chauhan, S.K.; Kaushal, R.; Das, D.K.; Arora, G.; Chaturvedi, O.P. Carbon sequestration potential of poplar-based agroforestry using the CO2FIX model in the Indo-Gangetic Region of India. Trop. Ecol. 2017, 58, 439–447. [Google Scholar]
- Panigrahy, S.; Upadhyay, G.; Ray, S.S.; Parihar, J.S. Mapping of cropping system for the indo-gangetic plain using multi-date spot NDVI-VGT data. J. Indian Soc. Remote. Sens. 2010, 38, 627–632. [Google Scholar] [CrossRef]
- Singh, R.L. India—A Regional Geography; National Geographical Society of India: Varanasi, India, 1971. [Google Scholar]
- Arunachalam, A.; Chavan, S.B.; Handa, A.K.; Kumar, A.; Bhaskar, S.; Alagusundaram, K.; Mohapatra, T. Agroforestry Systems for the Indian Himalayan Region; Indian Council of Agricultural Research: New Delhi, India, 2019; p. 20. [Google Scholar]
- Panwar, P. Agroforestry systems and practices in West Bengal. In Agroforestry Systems and Practices; Puri, S., Panwar, P., Eds.; New India Publishing Agency: New Delhi, India, 2007; pp. 319–332. [Google Scholar]
- Verma, P.; Bijalwan, A.; Dobriyal, M.; Swamy, S.L.; Thakur, T. A paradigm shift in agroforestry practices in uttar pradesh. Curr. Sci. 2017, 112, 509. [Google Scholar] [CrossRef]
- Pathak, P.S.; Pateria, H.M.; Solanki, K.R. Agroforestry Systems in India: A Diagnosis and Design Approach; National Research Centre for Agroforestry: Jhansi, India, 2000; p. 166. [Google Scholar]
- Food and Agriculture Organization of the United Nations. Global Forest Resource Assessment 2001 and FAO Forestry Paper; FAO: Rome, Italy, 2001; p. 140. [Google Scholar]
- United Nations Framework Conevention on Climate Change. Report of the Conference of Parties on Its Thirteenth Session; UNFCCC: Bonn, Germany, 2007. [Google Scholar]
- Gorte, R. Carbon Sequestration in Forests. In Proceedings of the Congressional Research Service, Washington, DC, USA, 6 August 2009. [Google Scholar]
- Montagnini, F.; Nair, P.K.R. Carbon sequestration: An underexploited environmental benefit of agroforestry systems. Agrofor. Syst. 2004, 61, 281–295. [Google Scholar]
- Intergovernmental Panel on Climate Change. Land Use, Land-Use Change and Forestry—Special Report; IPCC: Bracknell, UK, 2001; p. 377.
- Chavan, S.; Newaj, R.; Keerthika, A.; Ram, A.; Jha, A.; Kumar, A. Agroforestry for adaptation and mitigation of climate change. Popular Kheti 2014, 2, 214–220. [Google Scholar]
- Mittal, S.; Singh, P. Intercropping field crops between rows of Leucaena leucocephala under rainfed conditions in northern India. Agrofor. Syst. 1989, 8, 165–172. [Google Scholar] [CrossRef]
- Bhatia, A.; Kanuja, R.K.; Sharma, A.K. Carbon sequestration potential of agroforestry systems in India. Clim. Change 2007, 84, 571–590. [Google Scholar]
- Banerjee, S.K.; Prakasam, U. Biomass carbon pool and soil organic carbon sequestration in tectona grandis plantations. Ind. For. 2013, 139, 797–802. [Google Scholar]
- Yadava, A.K. Biomass production and carbon sequestration in different agroforestry systems of Tarai region of central Himalaya. Ind. For. 2010, 136, 234–244. [Google Scholar]
- Sen, T.; Chauhan, S.K. Biomass partitioning and carbon storage in short rotation tree species. In Proceedings of the ISTS-IUFRO Conference on Sustainable Resource Management for Climate Change Mitigation And Social Security, Chandigarh, India, 13–14 March 2014. [Google Scholar]
- Chauhan, S.K.; Sharma, S.C.; Beri, V.; Ritu; Yadav, S.; Gupta, N. Yield and carbon sequestration potential of wheat (Triticum aestivum) and poplar (Populus deltoides) based agri-silvicultural system. Ind. J. Agric.Sci. 2010, 80, 129–135. [Google Scholar]
- Singh, V.; Toky, O.P. Biomass and net primary productivity in Leucaena, Acacia and Eucalyptus, short rotation, high density (‘energy’) plantations in arid India. J. Arid Environ. 1995, 31, 301–309. [Google Scholar] [CrossRef]
- Yadava, A.K. Potential of agroforestry systems in carbon sequestration for mitigating climate changes in Tarai region of Central Himalaya. Nat. Sci. 2011, 9, 72–80. [Google Scholar]
- Arora, G.; Chaturvedi, S.; Kaushal, R.; Nain, A.; Tewari, S.; ALAM, N.M.; Chaturvedi, O.P. Growth, biomass, carbon stocks, and sequestration in an age series of Populus deltoides plantations in Tarai region of central Himalaya. Turk. J. Agric. For. 2014, 38, 550–560. [Google Scholar] [CrossRef]
- Kanime, N.; Kaushal, R.; Tewari, S.K.; Raverkar, K.P.; Chaturvedi, S.; Chaturvedi, O.P. Biomass production and carbon sequestration in different tree-based systems of Central Himalayan Tarai region. For. Trees Livelihoods 2013, 22, 38–50. [Google Scholar] [CrossRef]
- Singh, P.; Lodhiyal, L.S. Biomass and carbon allocation in 8-year-old poplar (Populus deltoides Marsh.) plantation in Tarai agroforestry system of central Himalaya, India. N. Y. Sci. J. 2009, 2, 49–53. [Google Scholar]
- Negi, M.S.; Tandon, V.N.; Rawat, H.S. Biomass andnutrient distribution in young teak (Tectona grandis) plantaionin Tarai Region of Uttar Pradesh. Ind. For. 1995, 121, 455–463. [Google Scholar]
- Kumar, M.; Anemsh, K.; Sheikh, M.A.; Raj, A.J. Structure and carbon stock potential in traditional agro forestry system of Garhwal Himalaya. J. Agric. Technol. 2012, 8, 2187–2200. [Google Scholar]
- Kaushal, R.; Tewari, S.K.; Banik, R.L.; Chaturvedi, S. Growth, Biomass Production and Soil properties under different bamboo Species. In Proceedings of the ISTS-IUFRO Conference on Sustainable Resource Management for Climate Change mitigation and Social Security, Chandigarh, India, 13–14 March 2014. [Google Scholar]
- Joshi, N.R.; Tewari, A.; Singh, V. Biomass and carbon accumulation potential towards climate change mitigation by young plantations of Dalbergiasissoo Roxb. and Eucalyptus. hybrid in Terai Central Himalaya, India. Am. J. Res. Commun. 2013, 1, 261–274. [Google Scholar]
- Pingale, B.N. Studies on Carbon Sequestration in Poplar (Populus deltoids Bartr. Ex. Marsh) Based Agroforestry System with Varying Tree Density. Master’s Thesis, G.B. Pant University of Agriculture & Technology, Uttarakhand, India, 2009. [Google Scholar]
- Kaur, B.; Gupta, S.R.; Singh, G. Carbon storage and nitrogen cycling in silvipastoral system on sodic soil Northwestern India. Agrofor. Syst. 2002, 54, 21–29. [Google Scholar] [CrossRef]
- Kumar, V.; Singh, R.; Kumari, S.; Dhiman, S.D. Biomass and carbon stock of Eucalyptus tereticornis Sm. in Haryana, India. J. For. Res. 2020, 31, 1897–1906. [Google Scholar] [CrossRef]
- Sharma, R.K.; Singh, K.D. Biomass and carbon stock of poplar in Kurukshetra, Haryana. Ind. For. 1992, 118, 595–602. [Google Scholar]
- Kumar, P.; Mishra, A.K.; Choudhary, S.K.; Singh, R.; Singh, K.; Rai, P.; Pandey, C.B.; Sharma, D.K. Biomass estimation and carbon sequestration in Populus deltoides plantation in India. J. Soil Salin. Water Qual. 2016, 1, 25–29. [Google Scholar]
- Rizvi, R.H.; Dhyani, S.K.; Maurya, D. Models for estimating carbon stock in stemwood biomass of Poplar trees in agroforestry plantations in tarai plains of north-western India. Ind. J. For. 2012, 34, 253–256. [Google Scholar]
- Ram, J.; Dagar, J.C.; Lal, K.; Singh, G.; Toky, O.P.; Tanwar, V.S.; Dar, S.R.; Chauhan, M.K. Biodrainage to combat waterlogging, increase farm productivity and sequester carbon in canal command areas of northwest India. Curr. Sci. 2011, 100, 1673–1680. [Google Scholar]
- Chavan, S.B. Modelling Biomass and Carbon Sequestration Potential in Poplar (Populus deltoides) and Eucalyptus (Eucalyptus tereticornis) Based Agroforestry Systems. Ph.D. Thesis, Chaudhary Charan Singh Haryana Agricultural University, Hissar, India, 2019. [Google Scholar]
- Kanuja, R.K.; Bhatia, A.K. Leucaena leucocephala alley cropping: Biomass and carbon stock in Kanpur, Uttar Pradesh. Ind. J. For. 2007, 30, 425–432. [Google Scholar]
- Chauhan, S.K.; Gupta, N.; Walia, R.; Yadav, S.; Chauhan, R.; Mangat, P.S. Biomass and carbon sequestration potential of poplar-wheat inter-cropping system in irrigated agro-ecosystem in India. J. Agric. Sci. Technol. 2011, 1, 575–586. [Google Scholar]
- Chauhan, S.K.; Gupta, N.; Ritu; Yadav, S.; Chauhan, R. Biomass and Carbon allocation in different parts of agroforestry tree species. Ind. For. 2009, 135, 981–992. [Google Scholar]
- Chauhan, S.K.; Singh, S.; Sharma, S.; Sharma, R.; Saralch, H.S. Tree biomass and carbon sequestration in four short rotation tree plantations. Range. Manag. Agrofor. 2019, 40, 77–82. [Google Scholar]
- Sarangle, S.; Rajasekaran, A.; Benbi, D.K. Biomass and carbon stock, carbon sequestration potential under selected land use systems in Punjab. For. Res. Eng. Int. J. 2018, 9, 75–80. [Google Scholar] [CrossRef]
- Naik, S.K.; Sarkar, P.K.; Das, B.; Singh, A.K.; Bhatt, B.P. Biomass production and carbon stocks estimate in mango orchards of hot and sub-humid climate in eastern region, India. Carbon Manag. 2019, 10, 477–487. [Google Scholar] [CrossRef]
- Naik, S.K.; Sarkar, P.K.; Das, B.; Singh, A.K.; Bhatt, B.P. Predictive models for dry biomass and carbon stock estimation in Litchi chinensis under hot and dry sub-humid climate. Arch. Agron. Soil Sci. 2018, 64, 1366–1378. [Google Scholar] [CrossRef]
- Central Agroforestry Research Institute. Annual Report; CAFRI: Jhansi, India, 2014; pp. 1–80. [Google Scholar]
- Indian Council of Forestry Research and Education. Country Report on Poplars and Willows Period: 2012 to 2015; ICFRE: Dehradun, India, 2016.
- Forest Survey of India. India State of Forest Report 2013; FSI: Dehradun, India, 2013.
- Forest Survey of India. India State of Forest Report; FSI: Dehradun, India, 2015.
- Newaj, R.; Chavan, S.B.; Prasad, R. Climate-smart agriculture with special reference to agroforestry. Ind. J. Agrofor. 2015, 17, 96–108. [Google Scholar]
- Haque, N. Highest wood production by poplar (Populus deltoides) clones under Agroforestry Systems in Punjab State of India- a case study. In Proceedings of the World Agroforestry Congress, New Delhi, India, 10–14 February 2014. [Google Scholar]
- Chauhan, S.K.; Brar, M.S.; Sharma, R. Performance of poplar (Populus deltoides Bartr.) and its effect on wheat yield under agroforestry system in irrigated agro-ecosystem, India. Casp. J. Environ. Sci. 2012, 10, 53–60. [Google Scholar]
- Das, D.K.; Chaturvedi, O.P. Structure and function of populus deltoides agroforestry systems in Eastern India: Dry matter dynamics. Agrofor. Syst. 2005, 65, 215–221. [Google Scholar] [CrossRef]
- Dhillon, R.S.; Bangarwa, K.S.; Beniwal, R.S.; Bhardwaj, K.K.; Handa, A.K.; Kumari, S.; Chavan, S.B.; Rizvi, R.H.; Sirohi, C.; Sheokand, R.N. Effect of spacing on crop yield and soil nutrient status under poplar-based agroforestry system in semi-arid ecosystem. Ind. J. Agrofor. 2017, 19, 42–47. [Google Scholar]
- Sirohi, C.; Bnagrawa, K.S. Effect of different spacings of poplar-based agroforestry system on soil chemical properties and nutrient status in Haryana, India. Curr. Sci. 2017, 113, 1403–1407. [Google Scholar] [CrossRef]
- Fahad, S.; Chavan, S.B.; Chichaghare, A.R.; Uthappa, A.R.; Kumar, M.; Kakade, V.; Pradhan, A.; Jinger, D.; Rawale, G.; Yadav, D.K.; et al. Agroforestry systems for soil health improvement and maintenance. Sustainability 2022, 14, 14877. [Google Scholar] [CrossRef]
- Ahuja, G. Poplar—A Multifarious Tree Species for Wood Industries, Rural Livelihoods and Nature Conservation; Indira Gandhi National Forest Academy: Dehradun, India, 2012; pp. 84–95.
- Benbi, D.K.; Brar, K.; Toor, A.S.; Singh, P.; Singh, H. Soil carbon pools under poplar-based agroforestry, rice-wheat, and maize-wheat cropping systems in semi-arid India. Nutr. Cycl. Agroecosyst. 2012, 92, 107–118. [Google Scholar] [CrossRef]
- Ajit; Das, D.K.; Chaturvedi, O.P.; Nighat, J.; Dhyani, S.K. Predictive models for dry weight estimation of above and below ground biomass components of Populus deltoides in India: Development and comparative diagnosis. Biomass Bioenerg. 2011, 35, 1145–1152. [Google Scholar] [CrossRef]
- Rizvi, R.H.; Dhyani, S.K.; Yadav, R.S.; Singh, R. Biomass production and carbon stock of popular agroforestry systems in Yamunanagar and Saharanpur districts of northwestern India. Curr. Sci. 2011, 100, 736–742. [Google Scholar]
- Chaturvedi, O.P.; Handa, A.K.; Kaushal, R.; Uthappa, A.; Sarvade, S.; Panwar, P. Biomass production and carbon sequestration through agroforestry. Range Manag. Agrofor. 2016, 37, 116–127. [Google Scholar]
- Chauhan, S.K.; Sharma, R.; Singh, B.; Sharma, S.C. Biomass production, carbon sequestration and economics of on-farm poplar plantations in Punjab, India. J. Appl. Nat. Sci. 2015, 7, 452–458. [Google Scholar] [CrossRef]
- Raj, A.; Jhariya, M.K.; Bargali, S.S. Bund based agroforestry using eucalyptus species: A review. Curr. Agric. Res. J. 2016, 4, 148–158. [Google Scholar] [CrossRef]
- Saxena, N.C. Farm Forestry in Nort-West India: Lessons from the 1980s; Studies of agroforestry in western U.P. Final report of APCF scheme; NRCAF: Jhansi, India, 1990. [Google Scholar]
- Goldin, I.; Rogers, H.; Stem, N.H. The Role and Effectiveness of Development Assistance: Lessons from World Bank Experience. 2002. Available online: http://go.worldbank.org/16O8JRI6W0 (accessed on 12 January 2023).
- Luna, R.K. Eucalypts in Agroforestry. In Eucalypts in India; ENVIS Forestry Bulletin, Forest Research Institute: Dehradun, India, 2014; pp. 209–234. [Google Scholar]
- Krishnakumar, N.; Sivakumar, V.; Anandalakshmi, R. Eucalypt Improvement in Southern India. In Eucalypts in India; ENVIS Forestry Bulletin, Forest Research Institute: Dehradun, India, 2014; pp. 139–148. [Google Scholar]
- Kulkarni, H.D. Eucalypt Improvement at ITC. In Eucalypts in India; ENVIS Forestry Bulletin, Forest Research Institute: Dehradun, India, 2014; pp. 149–184. [Google Scholar]
- Bargali, S.S.; Singh, S.P. Dry matter dynamics, storage and flux of nutrients in an aged eucalypt plantation. Oecologia Mont. 1995, 4, 9–14. [Google Scholar]
- Parrotta, J. Productivity, nutrient cycling, and succession in single- and mixed-species plantations of Casuarina equisetifolia, Eucalyptus robusta, and Leucaena leucocephala in Puerto Rico. For. Ecol. Manag. 1999, 124, 45–77. [Google Scholar] [CrossRef]
- Singh, B.; Gill, R.I.S. Carbon sequestration and nutrient removal by some tree species in an agrisilviculture system in Punjab, India. Range Manag. Agrofor. 2014, 35, 107–114. [Google Scholar]
- Singh, G. Carbon sequestration under an agrisilvicultural system in the Arid Region. Ind. For. 2005, 131, 543–552. [Google Scholar]
- Rawat, V.; Negi, J.D.S. Biomass production of Eucalyptus tereticornis in different agro-ecological regions of India. Ind. For. 2004, 130, 762–770. [Google Scholar]
- Kidanu, S.; Mamo, T.; Stroosnijder, L. Biomass production of Eucalyptus boundary plantations and their effect on crop productivity on Ethiopian highland Vertisols. Agrofor. Syst. 2005, 63, 281–290. [Google Scholar] [CrossRef]
- Ajit; Dhyani, S.K.; Handa, A.K.; Newaj, R.; Chavan, S.B.; Alam, B.; Prasad, R.; Ram, A.; Rizvi, R.H.; Jain, A.K.; et al. Estimating carbon sequestration potential of existing agroforestry systems in India. Agrofor. Syst. 2016, 91, 1101–1118. [Google Scholar] [CrossRef]
- Luna, R.K.; Thakur, N.S.; Gunaga, R.P.; Kumar, V. Biomass, carbon stock and carbon dioxide removal across different girth classes of Eucalyptus species in punjab: Implication for Eucalyptus plantations. J. Tree Sci. 2016, 35, 13–20. [Google Scholar]
- Dogra, A.S. Contribution of trees outside forest towards wood production and environmental amelioration. Ind. J. Ecol. 2011, 38, 84–102. [Google Scholar]
- Zhao, L.; Du, M.; Du, W.; Guo, J.; Liao, Z.; Kang, X.; Liu, Q. Evaluation of the carbon sink capacity of the proposed Kunlun Mountain National Park. Int. J. Environ. Res. Public Health 2022, 19, 9887. [Google Scholar] [CrossRef] [PubMed]
State | Location | System | Tree Species | No. of Tree (tees ha−1) | Age (year) | CSP (Mg C ha−1 yr−1) | References |
---|---|---|---|---|---|---|---|
Uttarakhand | Tarai region | Agri-silviculture | Populus deltoides | 200 | 8 | 2.06 | [39] |
Boundary | Eucalyptus tereticornis | - | - | 0.88 | |||
Block | Populus deltoides | 500 | - | 0.52 | |||
500 | - | 1.96 | |||||
Block | Populus deltoides | 500 | 9 | 2.06 | [43] | ||
Boundary | Eucalyptus tereticornis | 192 | 9 | 0.34 | |||
Block | Dalbergia sissoo (block) | 625 | 10 | 1.04 | |||
Boundary | Populus deltoides | 130 | 9 | 0.5 | |||
Plantation | 500 | 11 | 6.15 | [44] | |||
Plantation | 500 | 8 | 2.85 | [45] | |||
Central Himalaya | Agri-silviculture | Populus deltoides | 500 | 8 | 12.0 | [46] | |
Tarai central division | Silviculture | Tectona grandis | 570 | 10 | 3.74 | [47] | |
500 | 20 | 2.25 | |||||
494 | 30 | 2.87 | |||||
Budali | Agroforestry MPTs | Mixed tree species | 1000 | - | 3.83 | [48] | |
Manjokot | 950 | 1.95 | |||||
Manao | 940 | 2.99 | |||||
Dungripanth | 1230 | 2.66 | |||||
Chamdaar | 1560 | 8.2 | |||||
Keshu | 1310 | 6.52 | |||||
Northern India | Agri-silviculture | Dendrocalamus hamiltonii | 1000 | 7 | 15.9 | [49] | |
Tarai | Plantation | Dalbergia sissoo | 1825 | 10 | 6.46 | [50] | |
Eucalyptus hybrid | 1010 | 8 | 7.88 | ||||
Pantanagar | Agri-silviculture | Populus deltoides | 1000 | 8 | 9.02 | [51] | |
500 | 8 | 6.76 | |||||
333 | 8 | 4.94 | |||||
250 | 8 | 4.02 | |||||
200 | 8 | 3.46 | |||||
Haryana | Kurukshetra | Silvopasture | Acacia nilotica | - | - | 2.81 | [52] |
Dalbergia sissoo | - | - | 5.37 | ||||
Prosopis juliflora | - | - | 6.5 | ||||
Plantation | Eucalyptus tereticornis | 925 | 8 | 11.4 | [53] | ||
Agri-silviculture | Populus deltoides | - | 6 | 0.36 | [54] | ||
Yamunanagar | Agri-silviculture | 500 | 7 | 10.6 | [55] | ||
Agri-silviculture | 9.42 | [56] | |||||
Boundary plantation | 3.86 | ||||||
Chandigarh | Agri-silviculture | Leucaena leucocephala | 10,666 | 6 | 10.4 | [36] | |
Hisar | Strip plantation | Eucalyptus tereticornis | 200 | 5.4 | 2.87 | [57] | |
Boundary | 200 | 8 | 3.37 | [58] | |||
Agri-silviculture | 1111 | 20.7 | |||||
Boundary | Populus deltoides | 200 | 8 | 4.8 | |||
Agri-silviculture | 500 | 14.0 | |||||
High-density energy plantation | Eucalyptus tereticornis | 2500 | 8 | 6.16 | [42] | ||
Leucaena leucocephala | 2500 | 8 | 7.31 | ||||
Acacia nilotica | 2500 | 8 | 4.64 | ||||
Uttar Pradesh | Kanpur | Alley cropping | Leucaena leucocephala | - | - | 3.4 | [59] |
Saharanpur | Agri-silviculture | Populus deltoides | 500 | 7 | 11.8 | [56] | |
Boundary plantation | 200 | 4.56 | |||||
Punjab | Ludhiana | Agri-silviculture (A + B) | Populus deltoides | 493 | 6 | 6.21 | [60] |
Agroforestry MPTs | Acacia catechu | 555 | 3 | 1.84 | [61] | ||
Acacia nilotica | 1.53 | ||||||
Acrocarpus fraxinifolius | 3.75 | ||||||
Anthocephalus cadamba | 2.73 | ||||||
Bombax ceiba | 1.28 | ||||||
Dalbergia sissoo | 2.17 | ||||||
Eucalyptus tereticornis | 3.12 | ||||||
Gmelina arborea | 2.08 | ||||||
Melia azedarach | 1.32 | ||||||
Populus deltoides | 3.58 | ||||||
Terminalia arjuna | 1.89 | ||||||
Toona ciliata | 1.39 | ||||||
SRF plantation | Acacia catechu | 630 | 10 | 4.78 | [62] | ||
Dalbergia sissoo | 690 | 10 | 4.58 | ||||
Melia azedarach | 640 | 10 | 3.94 | ||||
Terminalia arjuna | 690 | 10 | 9.54 | ||||
Taran | Plantation | Populus deltoides | 714 | 5 | 18.5 | [63] | |
Eucalyptus tereticornis | 4444 | 130 | |||||
Tectona grandis | 625 | 5.55 | |||||
Ladhowal | SRF | Eucalyptus spp. | 258 | 8 | 11.8 | [40] | |
Pongamia pinnata | 258 | 8 | 2.75 | ||||
Jharkhand | Ranchi | Orchard | Mangifera indica | 400 | 10 | 0.38 | [64] |
Litchi | 200 | 10 | 0.18 | [65] | |||
West Bengal | Tista valley range | Plantation | Tectona grandis | 400 | 47 | 2.9 | [38] |
Pankhabari range | 800 | 24 | 4.35 | ||||
Bagdogra range | 848 | 24 | 2.73 |
States | Geographical Area (sq. km) | Forest Area (sq. km) | Tree Cover (sq. km) | Growing Stock (million cub m) | Carbon Stock (million t) |
---|---|---|---|---|---|
West Bengal | 88,752 | 16,808 | 2088 | 37.6 | 8.72 |
Bihar | 94,163 | 7288 | 2182 | 37.2 | 9.75 |
Uttar Pradesh | 240,928 | 14,461 | 7044 | 80.1 | 18.3 |
Haryana | 441,212 | 1584 | 1355 | 15.3 | 3.45 |
Punjab | 50,362 | 1771 | 1544 | 18.1 | 4.03 |
Delhi | 1483 | 18,877 | 111 | 1.15 | 0.06 |
Northern Plains | 295,780 | - | 7912 | 99.5 | 22.6 |
Eastern Plains | 223,339 | - | 4628 | 76.8 | 19.8 |
India | 3,287,262 | 92,572 | 1573 | 279.8 |
Location | Age/Density | ABG | BG | Total | Reference | |||
---|---|---|---|---|---|---|---|---|
Stem | Leaves | Branches | Total | Roots | ||||
Punjab | 3 (555) | 18.92 | 8.60 | 5.76 | 32.28 | 8.56 | 74.1 | [19] |
Uttarakhand | 8 (500) | 109.1 | 21.82 | 20.43 | 151.4 | 41.02 | 192.4 | [49] |
Uttarakhand | 10 (500) | 50.3 | 7.41 | 27.11 | 85.55 | - | 85.5 | [44] |
Bihar | 9 (500) | 74.3 | 9.25 | 5.33 | 88.94 | 34.5 | 109.8 | [79] |
Haryana | 9 (500) | 151.7 | 1.27 | 22.04 | 175.0 | 28.2 | 203.2 | [58] |
Country | Area (1000 ha) by Age Class (Years) | Subtotal Area (1000 ha) | Percentage (%) | ||||
---|---|---|---|---|---|---|---|
0–5 | 5–10 | 10–20 | 20–30 | 30–40 | |||
India | 43.0 | 64.4 | 103.2 | 210.6 | 2.86 | ||
China | 683.0 | 576.4 | 982.7 | 154.4 | 2396.5 | 32.6 | |
Sudan | 118.2 | 189.1 | 165.5 | 8.0 | 480.8 | 6.54 | |
Australia | 131.2 | 260.1 | 48.7 | 1.1 | 0.4 | 441.5 | 6.00 |
Brazil | 2118 | 756.5 | 121.0 | 30.3 | 3025.9 | 41.1 | |
Argentina | 15.8 | 32.6 | 34.5 | 11.8 | 3.9 | 98.6 | 1.34 |
Chile | 353.4 | 204.1 | 85.4 | 7.2 | 2.0 | 652.1 | 8.87 |
Myanmar | 1.1 | 2.1 | 2.2 | 1.1 | 0.5 | 7.0 | 0.095 |
Total area | 7348.3 | 100 |
Objective of Planting | Planting Spacing | Tree Density | Harvesting Period (yr) | Dry Biomass (ha−1) | Remark |
---|---|---|---|---|---|
Firewood | 1 m × 1 m to 1.5 m × 1.5 m | 10,000 to 4444 | 5 | 200–250 | Higher bark percentage and lower under bark diameters expected |
Pulpwood and poles | 2 m × 2 m 3 m × 2 m | 1667 2500 | 4–5 | 60–70 | Low bark percentage |
Saw logs | 3 m × 3 m | 1110 | 10–20 | 70–100 | |
Windbreaks and shelterbelts | 1 m × 1 m to 1.5 m × 1.5 m | 400 533 | 10–15 | 20–30 | One row; two rows |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chavan, S.B.; Dhillon, R.S.; Sirohi, C.; Uthappa, A.R.; Jinger, D.; Jatav, H.S.; Chichaghare, A.R.; Kakade, V.; Paramesh, V.; Kumari, S.; et al. Carbon Sequestration Potential of Commercial Agroforestry Systems in Indo-Gangetic Plains of India: Poplar and Eucalyptus-Based Agroforestry Systems. Forests 2023, 14, 559. https://doi.org/10.3390/f14030559
Chavan SB, Dhillon RS, Sirohi C, Uthappa AR, Jinger D, Jatav HS, Chichaghare AR, Kakade V, Paramesh V, Kumari S, et al. Carbon Sequestration Potential of Commercial Agroforestry Systems in Indo-Gangetic Plains of India: Poplar and Eucalyptus-Based Agroforestry Systems. Forests. 2023; 14(3):559. https://doi.org/10.3390/f14030559
Chicago/Turabian StyleChavan, Sangram Bhanudas, Ravinder Singh Dhillon, Chhavi Sirohi, Appanderanda Ramani Uthappa, Dinesh Jinger, Hanuman Singh Jatav, Akash Ravindra Chichaghare, Vijaysinha Kakade, Venkatesh Paramesh, Sushil Kumari, and et al. 2023. "Carbon Sequestration Potential of Commercial Agroforestry Systems in Indo-Gangetic Plains of India: Poplar and Eucalyptus-Based Agroforestry Systems" Forests 14, no. 3: 559. https://doi.org/10.3390/f14030559