Volatile Compound Chemistry and Insect Herbivory: Pinus edulis Engelm. (Pinaceae) Seed Cone Resin
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Van Buren, R.; Cooper, J.G.; Shultz, L.M.; Harper, K.T. Woody Plants of Utah: A Field Guide with Identification Keys to Native and Naturalized Trees, Shrubs, Cacti, and Vines; University Press of Colorado: Denver, CO, USA, 2012; pp. 30, 118, 119. [Google Scholar]
- Flora of North American Editorial Committee. Flora of North America: Pteridophytes and Gymnosperms; Oxford University Press: New York, NY, USA, 1993; Volume 2, pp. 382–383. [Google Scholar]
- Cronquist, A.; Holmgren, A.H.; Holmgren, N.H.; Reveal, J.L. Intermountain Flora; Vascular Plants of the Intermountain West, USA; Hafner Publishing Company, Inc.: New York, NY, USA, 1972; Volume 1, p. 232. [Google Scholar]
- Welsh, S.L.; Atwood, N.D.; Goodrich, S.; Higgins, L.C. A Utah Flora, 5th ed.; Brigham Young University: Provo, UT, USA, 2016; p. 20. [Google Scholar]
- Ronco, F.P. Pinus edulis Engelm., pinyon. In Silvics of North America; United States Department of Agriculture: Washington, DC, USA, 1990; Volume 1, pp. 327–337. [Google Scholar]
- Langenheim, J.H. Plant Resins: Chemistry, Evolution, Ecology, Ethnobotany; Timber Press, Inc.: Portland, OR, USA, 2003; pp. 24, 33–36. [Google Scholar]
- Poulson, A.; Wilson, T.M.; Packer, C.; Carlson, R.E.; Buch, R.M. Essential oils of trunk, limbs, needles, and seed cones of Pinus edulis (Pinaceae) from Utah. Phytologia 2020, 102, 200–207. [Google Scholar]
- Kindscher, K. Medicinal Wild Plants of the Prairie; University Press of Kansas: Lawrence, KS, USA, 1992; p. 62. [Google Scholar]
- Murphy, E.V.A. Indian Uses of Native Plants; Desert Printers Inc.: Palm Desert, CA, USA, 1959; p. 44. [Google Scholar]
- Bentancourt, J.L.; Schuster, W.S.; Mitton, J.B.; Anderson, R.S. Fossil and genetic history of a pinyon pine (Pinus edulis) isolate. Ecology 1991, 72, 1685–1697. [Google Scholar] [CrossRef]
- Rhode, D.; Madsen, D.B. Pine nut use in the early Holocene and beyond: The Danger Cave archaeobotanical record. J. Archaeol. Sci. 1998, 25, 1199–1210. [Google Scholar] [CrossRef]
- Grand Canyon Nature Notes. Available online: http://npshistory.com/nature_notes/grca/vol8-9c.htm (accessed on 1 August 2023).
- Uphof, T.C.T. Dictionary of Economic Plants; J. Cramer Publisher: Lehre, Germany, 1968; p. 408. [Google Scholar]
- Christensen, K.M.; Whitham, T.G. Impact of insect herbivores on competition between birds and mammals for pinyon pine seeds. Ecology 1993, 74, 2270–2278. [Google Scholar] [CrossRef]
- Cobb, N.S.; Trotter, R.T.; Whitham, T.G. Long-term sexual allocation in herbivore resistant and susceptible pinyon pine (Pinus edulis). Oecologia 2002, 130, 78–87. [Google Scholar] [CrossRef] [PubMed]
- Christensen, K.M.; Whitham, T.G. Indirect herbivore mediation of avian seed dispersal in pinyon pine. Ecology 1991, 72, 534–542. [Google Scholar] [CrossRef]
- Siepielski, A.M.; Benkman, C.W. Selection by a predispersal seed predator constrains the evolution of avian seed dispersal in pines. Funct. Ecol. 2007, 21, 611–618. [Google Scholar] [CrossRef]
- Hollander, J.L.; Vander Wall, S.B. Effectiveness of six species of rodents as dispersers of singleleaf pinon pine (Pinus monophylla). Oecologia 2004, 138, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Vander Wall, S.B. Dispersal of singleleaf pinon pine (Pinus monophylla) by seed-caching rodents. J. Mammal. 1997, 78, 181–191. [Google Scholar] [CrossRef]
- Trowbridge, A.M.; Daly, R.W.; Helmig, D.; Stoy, P.C.; Monson, R.K. Herbivory and climate interact serially to control monoterpene emissions from pinyon pine forests. Ecology 2014, 95, 1591–1603. [Google Scholar] [CrossRef] [PubMed]
- Little, E.L. Common insects on pinyon (Pinus edulis). J. N. Y. Entomol. Soc. 1943, 51, 239–252. [Google Scholar]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Publ.: Carol Stream, IL, USA, 1997. [Google Scholar]
- National Institute of Standards and Technology Mass Spectrometry Data Center. Available online: https://chemdata.nist.gov (accessed on 7 March 2022).
- McCune, B.; Mefford, M.J. PC-ORD. Multivariate Analysis of Ecological Data, Version 7.10; MjM Software Design: Gleneden Beach, OR, USA, 2018. [Google Scholar]
- López, M.D.; Jordán, M.J.; Pascual-Villalobos, M.J. Toxic compounds in essential oils of coriander, caraway and basil active against stored rice pests. J. Stored. Prod. Res. 2008, 44, 273–278. [Google Scholar] [CrossRef]
- Reis, S.L.; Mantello, A.G.; Macedo, J.M.; Gelfuso, E.A.; Da Silva, C.P.; Fachin, A.L.; Cardoso, A.M.; Beleboni, R.O. Typical monoterpenes as insecticides and repellents against stored grain pests. Molecules 2016, 21, 258. [Google Scholar] [CrossRef] [PubMed]
- Langsi, J.D.; Nukenine, E.N.; Oumarou, K.M.; Moktar, H.; Fokunang, C.N.; Mbata, G.N. Evaluation of the insecticidal activities of α-pinene and 3-carene on Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae). Insects 2020, 11, 540. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Yu, Y.; Ge, J.; Xie, B.; Zhu, S.; Cheng, X. Effects of α-pinene on the pinewood nematode (Bursaphelenchus xylophilus) and its symbiotic bacteria. PLoS ONE 2019, 14, e0221099. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Hee, S.K.; Ho, S.H. Antifeedant and growth inhibitory effects of α-pinene on the stored-product insects, Tribolium castaneum (Herbst) and Sitophilus zeamais Motsch. Int. Pest. Control. 1998, 40, 18–20. [Google Scholar]
- Ruel, J.; Whitham, T.G. Fast-growing juvenile pinyons suffer greater herbivory when mature. Ecology 2002, 83, 2691–2699. [Google Scholar] [CrossRef]
- Croteau, R.; Martinkus, C. Metabolism of monoterpenes: Demonstration of (+)-neomenthyl-β-d-glucoside as a major metabolite of (−)-menthone in peppermint (Mentha piperita). Plant Physiol. 1979, 64, 169–175. [Google Scholar] [CrossRef] [PubMed]
- Croteau, R.; Sood, V.K. Metabolism of monoterpenes: Evidence for the function of monoterpene catabolism in peppermint (Mentha piperita) rhizomes. Plant Physiol. 1985, 77, 801–806. [Google Scholar] [CrossRef] [PubMed]
- Fairweather, M.L. Field Guide to Insects and Diseases of Arizona and New Mexico Forests; USDA Forest Service, Southwestern Region: Washington, DC, USA, 2006. [Google Scholar]
- Ramseyer, L.J.; Crawford, R.L. A survey of spiders found in fallen pine cones in eastern Washington State. West. N. Am. Nat. 2014, 74, 405–415. [Google Scholar] [CrossRef]
Date/Condition | Cone Weight (g) | Cone # | Avg. Seed Cone Weight (g) | Volatile Oil Weight (g) | Yield (%) | |
---|---|---|---|---|---|---|
January | resinous | 437.49 | 75 | 5.83 | 2.60 | 0.59 |
non-resinous | 194.98 | 45 | 4.33 | 0.01 | 0.01 | |
February | resinous | 384.36 | 68 | 5.65 | 1.83 | 0.48 |
non-resinous | 205.49 | 52 | 3.95 | 0.01 | <0.01 | |
March | resinous | 360.52 | 69 | 5.22 | 1.91 | 0.53 |
non-resinous | 191.70 | 51 | 3.76 | 0.01 | 0.01 | |
April | resinous | 384.39 | 74 | 5.19 | 1.55 | 0.40 |
non-resinous | 182.82 | 46 | 3.97 | 0.01 | 0.01 | |
May | resinous | 572.46 | 71 | 8.06 | 1.78 | 0.31 |
non-resinous | 263.91 | 49 | 5.39 | 0.02 | 0.01 | |
June | resinous | 380.99 | 77 | 4.95 | 1.71 | 0.45 |
non-resinous | 138.43 | 43 | 3.22 | 0.01 | 0.01 | |
July | resinous | 363.85 | 69 | 5.27 | 1.75 | 0.48 |
non-resinous | 167.46 | 51 | 3.28 | 0.01 | 0.01 | |
August | resinous | 369.89 | 72 | 5.14 | 1.48 | 0.40 |
non-resinous | 195.3 | 48 | 4.07 | 0.02 | 0.01 | |
September | resinous | 366.58 | 75 | 4.89 | 1.32 | 0.36 |
non-resinous | 164.49 | 45 | 3.66 | 0.02 | 0.01 | |
October | resinous | 354.99 | 68 | 5.22 | 1.33 | 0.37 |
non-resinous | 183.21 | 52 | 3.52 | 0.04 | 0.02 | |
November | resinous | 395.01 | 70 | 5.64 | 1.04 | 0.26 |
non-resinous | 195.08 | 50 | 3.90 | 0.01 | 0.01 | |
December | resinous | 318.52 | 62 | 5.14 | 0.98 | 0.31 |
non-resinous | 213.63 | 58 | 3.68 | 0.05 | 0.02 |
Compound Name | KI | Resinous Cones | Non-Resinous Cones | ||
---|---|---|---|---|---|
January | July | January | July | ||
hexanal | 801 | tr | nd | nd | nd |
tricyclene | 921 | 0.2 | 0.2 | nd | tr |
α-thujene | 924 | 0.2 | 0.2 | nd | tr |
α-pinene | 932 | 75.2 | 76.1 | 3.6 | 2.7 |
camphene | 946 | 0.9 | 1.0 | tr | tr |
thuja-2,4(10)diene | 953 | 0.4 | 0.9 | tr | 0.3 |
3,7,7-trimethyl-1,3,5-cycloheptatriene | 966 | 0.5 | 0.7 | tr | 0.2 |
sabinene | 969 | 2.2 | 1.5 | tr | 0.1 |
β-pinene | 974 | 2.5 | 2.9 | tr | 0.3 |
myrcene | 988 | 0.6 | 0.5 | nd | 0.5 |
δ-2-carene | 1001 | tr | tr | nd | nd |
δ-3-carene | 1008 | 8.8 | 7.4 | 0.6 | 1.7 |
α-terpinene | 1014 | 0.1 | 0.1 | nd | 0.1 |
p-cymene | 1020 | 0.1 | 0.1 | tr | tr |
1-p-menthene | 1021 | tr | tr | nd | nd |
o-cymene | 1022 | 0.3 | 0.4 | 0.6 | 1.0 |
limonene | 1024 | 1.6 | 1.7 | 0.5 | 0.6 |
β-phellandrene | 1025 | tr | tr | nd | tr |
1,8-cineole | 1026 | 0.1 | 0.1 | nd | nd |
(Z)-β-ocimene | 1032 | 0.2 | 0.1 | nd | 0.1 |
(E)-β-ocimene | 1044 | tr | tr | nd | nd |
γ-terpinene | 1054 | 0.1 | 0.1 | tr | 0.4 |
cis-sabinene hydrate | 1065 | tr | tr | nd | nd |
m-cymenene | 1082 | nd | tr | nd | nd |
terpinolene | 1086 | 0.4 | 0.3 | 0.9 | 2.4 |
linalool | 1095 | tr | tr | nd | nd |
n-nonanal | 1100 | nd | nd | nd | 0.2 |
α-campholenal | 1122 | 0.2 | 0.3 | 1.5 | 3.3 |
trans-pinocarveol | 1135 | 0.2 | 0.1 | 1.4 | 0.8 |
cis-verbenol | 1137 | 0.1 | 0.1 | nd | nd |
trans-verbenol | 1140 | 0.3 | 0.3 | 0.7 | 0.3 |
unknown compound #1 | 1154 | 0.1 | 0.1 | 0.6 | 0.6 |
trans-pinocamphone | 1158 | tr | 0.1 | tr | 0.5 |
cis-pinocamphone | 1172 | 0.1 | 0.1 | tr | 0.7 |
terpinen-4-ol | 1174 | tr | tr | tr | 0.1 |
p-cymen-8-ol | 1179 | tr | tr | tr | tr |
α-terpineol | 1186 | tr | tr | nd | nd |
myrtenal | 1195 | 0.1 | 0.2 | 1.6 | 1.4 |
ethyl octanoate | 1196 | 0.5 | 0.5 | 4.4 | 3.4 |
verbenone | 1204 | tr | tr | 0.6 | 0.3 |
trans-carveol | 1215 | nd | tr | nd | nd |
thymol methyl ether | 1232 | tr | tr | tr | 0.3 |
cumin aldehyde | 1238 | nd | nd | nd | 0.1 |
carvone | 1239 | nd | tr | nd | nd |
(E)-anethole | 1282 | nd | nd | 0.7 | 0.1 |
bornyl acetate | 1284 | 0.2 | 0.2 | 6.1 | 4.4 |
ethyl nonanoate | 1286 | nd | nd | nd | tr |
thymol | 1289 | nd | nd | tr | nd |
α-terpinyl acetate | 1346 | 0.1 | 0.1 | 1.1 | 0.6 |
α-cubebene | 1348 | tr | tr | tr | 0.3 |
α-longipinene | 1350 | tr | tr | tr | 0.9 |
α-ylangene | 1373 | nd | nd | nd | 0.3 |
α-copaene | 1374 | 0.4 | 0.3 | 6.5 | 4.5 |
ethyl(4E)-decenoate | 1380 | tr | tr | 0.5 | 0.7 |
β-bourbonene | 1387 | 0.7 | 0.6 | 11.3 | 3.3 |
sativene | 1390 | 0.1 | tr | 1.1 | 0.1 |
ethyl decenoate | 1395 | tr | tr | tr | tr |
longifolene | 1407 | 0.4 | 0.4 | 13.3 | 8.9 |
(E)-caryophyllene | 1417 | tr | tr | 0.3 | 0.5 |
β-ylangene | 1419 | 0.1 | 0.1 | 0.5 | 0.7 |
β-copaene | 1430 | 0.1 | 0.1 | 1.4 | 0.6 |
isogermacrene D | 1445 | tr | tr | 0.9 | 0.3 |
α-humulene | 1452 | nd | nd | tr | 0.4 |
γ-muurolene | 1478 | tr | tr | 1.3 | 1.0 |
germacrene D | 1480 | 0.2 | 0.1 | 0.7 | 9.9 |
epi-cubebol | 1493 | tr | tr | 0.8 | 0.7 |
α-muurolene | 1500 | 0.1 | 0.1 | 3.8 | 2.8 |
γ-cadinene | 1513 | tr | tr | 0.1 | 0.8 |
cubebol | 1514 | tr | tr | 0.1 | 0.8 |
δ-cadinene | 1522 | 0.1 | 0.1 | 3.3 | 2.4 |
α-calacorene | 1544 | nd | nd | 0.3 | 0.3 |
longicamphenylone | 1562 | nd | nd | tr | 0.3 |
unknown compound #2 | 1564 | nd | nd | 1.1 | 1.0 |
caryophyllene oxide | 1582 | nd | nd | 1.0 | 1.2 |
6,10-epoxy-7(14)-isodaucene | 1586 | nd | nd | tr | 0.3 |
β-copaen-4α-ol | 1590 | nd | nd | tr | 0.6 |
unknown compound #3 | 1594 | nd | nd | 0.6 | 0.5 |
salvial-4(14)en-1-one | 1594 | nd | nd | 0.7 | 0.8 |
cedrol | 1600 | nd | nd | 0.6 | 0.4 |
unknown compound #4 | 1624 | nd | nd | 0.9 | 0.9 |
unknown compound #5 | 1667 | nd | nd | 0.6 | 0.9 |
unknown compound #6 | 1691 | nd | nd | nd | 0.5 |
ent-germacra-4(15),5,10(14)trien-β-ol | 1699 | nd | nd | 1.0 | 0.8 |
unknown compound #7 | 1901 | nd | nd | 2.6 | 1.0 |
unknown compound #8 | 1935 | nd | nd | 1.2 | 0.9 |
manool oxide | 1987 | nd | nd | 1.8 | 0.9 |
unknown compound #9 | 1998 | nd | nd | 1.2 | 0.6 |
18-norabieta-8,11,13-triene | 2036 | tr | tr | 4.9 | 2.8 |
unknown compound #10 | 2061 | nd | nd | 0.5 | 0.2 |
unknown compound #11 | 2064 | nd | nd | 1.3 | 0.9 |
abietadiene | 2087 | nd | nd | 1.1 | 1.4 |
unknown compound #12 | 2106 | nd | nd | 0.9 | 0.6 |
unknown compound #13 | 2160 | nd | nd | 0.6 | 0.5 |
unknown compound #14 | 2201 | nd | nd | 0.9 | 0.9 |
unknown compound #15 | 2239 | nd | nd | 0.4 | 0.8 |
unknown compound #16 | 2280 | nd | nd | nd | 0.5 |
unknown compound #17 | 2291 | nd | nd | 0.4 | 0.5 |
neoabietal | 2319 | nd | nd | 1.2 | 0.9 |
Compound Name | KI | Jan. | Feb. | Mar. | Apr. | May | Jun. | Jul. | Aug. | Sept. | Oct. | Nov. | Dec. |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
α-pinene | 932 | 75.2 | 77.4 | 77.4 | 72.0 | 77.0 | 75.1 | 76.1 | 76.6 | 76.0 | 75.0 | 75.5 | 74.4 |
camphene | 946 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 1.0 | 1.0 | 1.0 | 1.0 | 1.1 | 1.0 |
thuja-2,4(10)diene | 953 | 0.4 | 0.5 | 0.5 | 0.8 | 0.5 | 0.8 | 0.9 | 1.1 | 1.4 | 1.2 | 1.4 | 1.4 |
3,7,7-trimethyl-1,3,5-cycloheptatriene | 966 | 0.5 | 0.5 | 0.5 | 0.6 | 0.5 | 0.6 | 0.7 | 0.8 | 0.8 | 1.0 | 0.9 | 1.0 |
sabinene | 969 | 2.2 | 1.8 | 1.4 | 1.9 | 2.0 | 1.7 | 1.5 | 1.5 | 1.4 | 1.3 | 1.3 | 1.3 |
β-pinene | 974 | 2.5 | 3.2 | 2.9 | 3.2 | 2.8 | 2.9 | 2.9 | 2.7 | 3.0 | 2.5 | 2.7 | 2.6 |
myrcene | 988 | 0.6 | 0.4 | 0.4 | 0.7 | 0.4 | 0.6 | 0.5 | 0.8 | 0.3 | 0.3 | 0.2 | 0.2 |
δ-3-carene | 1008 | 8.8 | 7.5 | 8.0 | 9.2 | 7.4 | 7.6 | 7.4 | 6.8 | 6.1 | 7.5 | 5.8 | 7.2 |
limonene | 1024 | 1.6 | 1.8 | 1.7 | 2.0 | 1.9 | 2.0 | 1.7 | 1.7 | 1.4 | 1.7 | 1.8 | 2.2 |
β-bourbonene | 1387 | 0.7 | 0.6 | 0.5 | 0.8 | 0.5 | 0.6 | 0.6 | 0.5 | 0.7 | 0.6 | 0.7 | 0.7 |
Compound Name | KI | Jan. | Feb. | Mar. | Apr. | May | Jun. | Jul. | Aug. | Sept. | Oct. | Nov. | Dec. |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
α-pinene | 932 | 3.6 | 0.0 | 2.6 | 0.0 | 0.3 | 0.0 | 2.7 | 20.8 | 23.9 | 47.6 | 15.5 | 58.8 |
thuja-2,4(10)diene | 953 | 0.0 | nd | 0.3 | nd | nd | nd | 0.3 | 2.3 | 2.6 | 2.2 | 2.1 | 3.3 |
β-pinene | 974 | 0.0 | nd | 0.2 | nd | nd | nd | 0.3 | 1.5 | 1.2 | 2.9 | 0.9 | 2.1 |
δ-3-carene | 1008 | 0.6 | nd | 0.6 | nd | nd | 0.0 | 1.7 | 4.7 | 4.3 | 11.8 | 9.5 | 7.0 |
limonene | 1024 | 0.5 | nd | 0.3 | 0.7 | 0.3 | 0.0 | 0.6 | 1.9 | 3.4 | 3.2 | 2.7 | 1.5 |
terpinolene | 1086 | 0.9 | 0.7 | 0.8 | 0.0 | 0.9 | 0.3 | 2.4 | 3.6 | 3.7 | 2.2 | 3.8 | 1.5 |
α-campholenal | 1122 | 1.5 | 1.3 | 1.4 | 1.0 | 1.9 | 1.0 | 3.3 | 3.1 | 3.0 | 1.0 | 3.4 | 1.3 |
ethyl octanoate | 1196 | 4.4 | 1.1 | 6.0 | 0.7 | 1.1 | 0.8 | 3.4 | 3.8 | 4.6 | 1.2 | 4.4 | 0.7 |
bornyl acetate | 1284 | 6.1 | 4.9 | 10.1 | 2.2 | 4.5 | 3.0 | 4.4 | 3.7 | 3.9 | 1.1 | 3.4 | 1.1 |
α-copaene | 1374 | 6.5 | 2.9 | 5.8 | 2.7 | 3.2 | 2.3 | 4.5 | 3.1 | 2.8 | 1.6 | 2.9 | 1.0 |
β-bourbonene | 1387 | 11.3 | 5.5 | 11.5 | 5.8 | 3.8 | 5.0 | 3.3 | 4.6 | 3.8 | 1.8 | 4.4 | 0.9 |
longifolene | 1407 | 13.3 | 10.4 | 12.4 | 10.5 | 10.1 | 8.4 | 8.9 | 7.9 | 8.3 | 4.4 | 8.1 | 2.9 |
germacrene D | 1480 | 0.7 | 2.7 | 0.5 | 6.6 | 2.1 | 3.1 | 9.9 | 1.7 | 0.6 | 1.6 | 1.1 | 0.6 |
α-muurolene | 1500 | 3.8 | 3.8 | 3.4 | 3.7 | 2.5 | 2.6 | 2.8 | 1.3 | 1.1 | 0.5 | 1.3 | 0.4 |
δ-cadinene | 1522 | 3.3 | 3.8 | 2.2 | 3.8 | 2.5 | 2.4 | 2.4 | 1.1 | 0.9 | 0.4 | 1.1 | 0.4 |
unknown compound #7 | 1901 | 2.6 | 2.3 | 2.3 | 2.1 | 1.7 | 3.1 | 1.0 | 0.4 | 0.3 | 0.0 | 0.5 | 0.1 |
18-norabieta-8,11,13-triene | 2036 | 4.9 | 5.0 | 3.7 | 4.9 | 5.1 | 6.3 | 2.8 | 1.0 | 0.6 | 0.1 | 1.1 | 0.3 |
Taxa | Taxonomic Resolution | Order | Notes |
---|---|---|---|
Conophthorus | Genus | Coleoptera | Often damage whole cones |
Megastigmus | Genus | Hymenoptera | Develops in seeds |
Cecidomyiidae | Family | Diptera | Many species reported; develops in seeds |
Eucosma | Genus | Lepidoptera | Diverse group; larvae damages whole cones |
Spiders | Order | Araneae | Likely using cones for shelter and foraging |
Unknown | Unranked | Various | Rare in study (6 individuals); likely prey remains or, in one case, a hyperparasitoid |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wilson, T.M.; Rotter, M.C.; Ziebarth, E.A.; Carlson, R.E. Volatile Compound Chemistry and Insect Herbivory: Pinus edulis Engelm. (Pinaceae) Seed Cone Resin. Forests 2023, 14, 1862. https://doi.org/10.3390/f14091862
Wilson TM, Rotter MC, Ziebarth EA, Carlson RE. Volatile Compound Chemistry and Insect Herbivory: Pinus edulis Engelm. (Pinaceae) Seed Cone Resin. Forests. 2023; 14(9):1862. https://doi.org/10.3390/f14091862
Chicago/Turabian StyleWilson, Tyler M., Michael C. Rotter, Emma A. Ziebarth, and Richard E. Carlson. 2023. "Volatile Compound Chemistry and Insect Herbivory: Pinus edulis Engelm. (Pinaceae) Seed Cone Resin" Forests 14, no. 9: 1862. https://doi.org/10.3390/f14091862