Carpathian Forests: Past and Recent Developments
Abstract
:1. Introduction
Czech Republic | Hungary | Poland | Romania | Serbia | Slovakia | Ukraine | |
---|---|---|---|---|---|---|---|
Portion of Carpathian forests in 2007 (% of total Carpathian forest area) | 3.1 | 4.0 | 7.7 | 46.4 | 0.4 | 20.2 | 18.1 |
Proportion of Carpathian forests to national forests in 2007 (% of Carpathian forest out of total national forest area) | 11.7 | 20.1 | 8.4 | 71.6 | 1.9 | 100.0 | 16.7 |
Wood production in 2020 | |||||||
Forest area (103 ha) | 2304 | 1871 | 8331 | 5586 | - | 1796 | 5016 |
Forest area, mean annual change (%, since 2010) | −0.0 | −0.3 | 0.2 | 0.8 | - | 0.1 | −0.2 |
Growing stock (106 m3) | 791 | 397 | 2730 | 2355 | - | 538 | 2280 |
Roundwood (106 m3) | 33.4 | 5.8 | 40.6 | 18.1 | 8.2 | 7.5 | 16.8 |
Roundwood, mean annual change (%, since 2010) | 9.9 | −1.3 | 1.4 | 3.8 | 0.1 | −2.2 | 0.3 |
2. Methods
3. Results of the Bibliographical Analysis
4. Past Developments of Carpathian Forests
4.1. From the Holocene to the Anthropocene
4.2. Recent Developments
5. Climate Change
5.1. Changes in Climate Variables
5.2. Impact of Climate Change on Forests
6. Recent and Future Forest Management
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Millennium Ecosystem Assessment. Ecosystems and Human Well-Being: Synthesis; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Costanza, R.; d’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Global Forest Resources Assessment 2020; FAO: Rome, Italy, 2020. [CrossRef]
- Orsi, F.; Ciolli, M.; Primmer, E.; Varumo, L.; Geneletti, D. Mapping hotspots and bundles of forest ecosystem services across the European Union. Land Use Policy 2020, 99, 104840. [Google Scholar] [CrossRef]
- Prăvălie, R. Major perturbations in the Earth’s forest ecosystems. Possible implications for global warming. Earth-Science Rev. 2018, 185, 544–571. [Google Scholar] [CrossRef]
- Favero, A.; Daigneault, A.; Sohngen, B. Forests: Carbon sequestration, biomass energy, or both? Sci. Adv. 2020, 6, eaay6792. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, M.; Schaap, B. Forest Ecosystem Services—Background Analytical Study; United Nations Forum on Forests: New York, NY, USA, 2018. [Google Scholar]
- Schaich, H.; Milad, M. Forest biodiversity in a changing climate: Which logic for conservation strategies? Biodivers. Conserv. 2013, 22, 1107–1114. [Google Scholar] [CrossRef]
- FOREST EUROPE. State of Europe’s Forests 2020; FOREST EUROPE: Hoofddorp, The Netherlands, 2020. [Google Scholar]
- Moos, C.; Bebi, P.; Schwarz, M.; Stoffel, M.; Sudmeier-Rieux, K.; Dorren, L. Ecosystem-based disaster risk reduction in mountains. Earth-Sci. Rev. 2018, 177, 497–513. [Google Scholar] [CrossRef]
- Sarvašová, Z.; Cienciala, E.; Beranová, J.; Vančo, M.; Ficko, A.; Pardos, M. Analysis of governance systems applied in multifunctional forest management in selected European mountain regions. For. J. 2014, 60, 159–167. [Google Scholar] [CrossRef]
- Malek, Ž.; Zumpano, V.; Hussin, H. Forest management and future changes to ecosystem services in the Romanian Carpathians. Environ. Dev. Sustain. 2018, 20, 1275–1291. [Google Scholar] [CrossRef]
- IPCC Report, I. Climate Change 2022: Impacts, Adaptation and Vulnerability. Summary for Policymakers. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. United Nations Environment Programme UNEP 2022, AR6. Available online: https://www.ipcc.ch/report/sixth-assessment-report-working-group-ii/ (accessed on 12 May 2023).
- Report on Current State of Forest Resources in the Carpathians. INTERREG III B CADSES Programme Carpathian Project. 2008. Available online: http://www.carpathianconvention.org/tl_files/carpathiancon/Downloads/02%20Activities/Forest/Current%20state%20of%20Forest%20Resources%20in%20the%20Carpathians%20(1).pdf (accessed on 11 January 2023).
- Protocol on Sustainable Forest Management. Carpathian Convention May 2011. Available online: http://www.carpathianconvention.org/tl_files/carpathiancon/Downloads/01%20The%20Convention/Protocols%20in%20pdf/Protocol%20on%20Sustainable%20Forest%20Management_adopted%20.pdf (accessed on 10 March 2023).
- Mráz, P.; Ronikier, M. Biogeography of the Carpathians: Evolutionary and spatial facets of biodiversity. Biol. J. Linn. Soc. 2016, 119, 528–559. [Google Scholar] [CrossRef]
- Marín, A.I.; Malak, D.A.; Bastrup-Birk, A.; Chirici, G.; Barbati, A.; Kleeschulte, S. Mapping forest condition in Europe: Methodological developments in support to forest biodiversity assessments. Ecol. Indic. 2021, 128, 107839. [Google Scholar] [CrossRef]
- Nechita, C.; Popa, I.; Eggertsson, O. Climate response of oak (Quercus spp.), an evidence of a bioclimatic boundary induced by the Carpathians. Sci. Total. Environ. 2017, 599–600, 1598–1607. [Google Scholar] [CrossRef] [PubMed]
- Feurdean, A.; Florescu, G.; Vannière, B.; Tanţău, I.; O‘Hara, R.B.; Pfeiffer, M.; Hutchinson, S.M.; Gałka, M.; Moskal-del Hoyo, M.; Hickler, T. Fire has been an important driver of forest dynamics in the Carpathian Mountains during the Holocene. For. Ecol. Manag. 2017, 389, 15–26. [Google Scholar] [CrossRef]
- Gałka, M.; Loisel, J.; Knorr, K.; Diaconu, A.; Obremska, M.; Teickner, H.; Feurdean, A. How degraded are the peatland and forest ecosystems in the Bieszczady Mountains (Central Europe)? An assessment using long-term records. Land Degrad. Dev. 2023, 34, 1246–1262. [Google Scholar] [CrossRef]
- Wiezik, M.; Jamrichová, E.; Máliš, F.; Beláňová, E.; Hrivnák, R.; Hájek, M.; Hájková, P. Transformation of West-Carpathian primeval woodlands into high-altitude grasslands from as early as the Bronze Age. Veg. Hist. Archaeobot. 2023, 32, 205–220. [Google Scholar] [CrossRef]
- Reif, A.; Schneider, E.; Oprea, A.; Rakosy, L.; Luick, R. Romania’s Natural Forest Types—A Biogeographic and Phytosocio-logical Overview in the Context of Politics and Conservation [Die Natürlichen Waldtypen Rumäniens—Eine Biogeogra-phische Und Vegetationskundliche Übersicht Im Kontext von Politik Und Naturschutz]. Tuexenia 2022, 42, 9–34. [Google Scholar] [CrossRef]
- Kuemmerle, T.; Kozak, J.; Radeloff, V.C.; Hostert, P. Differences in forest disturbance among land ownership types in Poland during and after socialism. J. Land Use Sci. 2009, 4, 73–83. [Google Scholar] [CrossRef]
- Vasile, M.; Iordăchescu, G. Forest crisis narratives: Illegal logging, datafication and the conservation frontier in the Romanian Carpathian Mountains. Politi Geogr. 2022, 96, 102600. [Google Scholar] [CrossRef]
- Alberton, M.; Andresen, M.; Citadino, F.; Egerer, H.; Fritsch, U.; Götsch, H.; Hoffmann, C.; Klemm, J.; Mitrofanenko, A.; Musco, E.; et al. Outlook on Climate Change Adaptation in the Carpathian Mountains. United Nations Environment Programme, GRID-Arendal and Eurac Research, Nairobi, Vienna, Arendal and Bolzano. 2017. Available online: https://www.grida.no/publications/381 (accessed on 15 June 2023).
- FAOSTAT. FAOSTAT Online Database. Food and Agriculture Organization of the United Nations. Available online: https://www.fao.org/faostat/ (accessed on 5 November 2023).
- Brus, D.J.; Hengeveld, G.M.; Walvoort, D.J.J.; Goedhart, P.W.; Heidema, A.H.; Nabuurs, G.J.; Gunia, K. Statistical mapping of tree species over Europe. Eur. J. For. Res. 2012, 131, 145–157. [Google Scholar] [CrossRef]
- Sayre, R.; Frye, C.; Karagulle, D.; Krauer, J.; Breyer, S.; Aniello, P.; Wright, D.J.; Payne, D.; Adler, C.; Warner, H.; et al. A New High-Resolution Map of World Mountains and an Online Tool for Visualizing and Comparing Characterizations of Global Mountain Distributions. Mt. Res. Dev. 2018, 38, 240–249. [Google Scholar] [CrossRef]
- Allen, C.D.; Macalady, A.K.; Chenchouni, H.; Bachelet, D.; McDowell, N.; Vennetier, M.; Kitzberger, T.; Rigling, A.; Breshears, D.D.; Hogg, E.H.; et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manag. 2010, 259, 660–684. [Google Scholar] [CrossRef]
- Hereş, A.-M.; Petritan, I.C.; Bigler, C.; Curtu, A.L.; Petrea, Ş.; Petritan, A.M.; Polanco-Martínez, J.M.; Rigling, A.; Curiel Yuste, J. Legacies of past forest management determine current responses to severe drought events of conifer species in the Romanian Carpathians. Sci. Total. Environ. 2021, 751, 141851. [Google Scholar] [CrossRef] [PubMed]
- Richardson, A.D.; Hufkens, K.; Milliman, T.; Aubrecht, D.M.; Furze, M.E.; Seyednasrollah, B.; Krassovski, M.B.; Latimer, J.M.; Nettles, W.R.; Heiderman, R.R.; et al. Ecosystem warming extends vegetation activity but heightens vulnerability to cold temperatures. Nature 2018, 560, 368–371. [Google Scholar] [CrossRef] [PubMed]
- García-Duro, J.; Ciceu, A.; Chivulescu, S.; Badea, O.; Tanase, M.A.; Aponte, C. Shifts in Forest Species Composition and Abundance under Climate Change Scenarios in Southern Carpathian Romanian Temperate Forests. Forests 2021, 12, 1434. [Google Scholar] [CrossRef]
- Stanturf, J.A.; Palik, B.J.; Williams, M.I.; Dumroese, R.K.; Madsen, P. Forest Restoration Paradigms. J. Sustain. For. 2014, 33, S161–S194. [Google Scholar] [CrossRef]
- Kruhlov, I.; Thom, D.; Chaskovskyy, O.; Keeton, W.S.; Scheller, R.M. Future forest landscapes of the Carpathians: Vegetation and carbon dynamics under climate change. Reg. Environ. Chang. 2018, 18, 1555–1567. [Google Scholar] [CrossRef]
- Pepin, N.C.; Arnone, E.; Gobiet, A.; Haslinger, K.; Kotlarski, S.; Notarnicola, C.; Palazzi, E.; Seibert, P.; Serafin, S.; Schöner, W.; et al. Climate Changes and Their Elevational Patterns in the Mountains of the World. Rev. Geophys. 2022, 60, 730. [Google Scholar] [CrossRef]
- Lindner, M.; Maroschek, M.; Netherer, S.; Kremer, A.; Barbati, A.; Garcia-Gonzalo, J.; Seidl, R.; Delzon, S.; Corona, P.; Kolström, M.; et al. Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. For. Ecol. Manag. 2010, 259, 698–709. [Google Scholar] [CrossRef]
- Vacek, Z.; Vacek, S.; Cukor, J. European forests under global climate change: Review of tree growth processes, crises and management strategies. J. Environ. Manag. 2023, 332, 117353. [Google Scholar] [CrossRef]
- Aznar-Sánchez, J.A.; Belmonte-Ureña, L.J.; López-Serrano, M.J.; Velasco-Muñoz, J.F. Forest Ecosystem Services: An Analysis of Worldwide Research. Forests 2018, 9, 453. [Google Scholar] [CrossRef]
- Van Eck, N.J.; Waltman, L. Visualizing bibliometric networks. In Measuring Scholarly Impact: Methods and Practice; Ding, Y., Rousseau, R., Wolfram, D., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 285–320. [Google Scholar]
- Czajka, B.; Łajczak, A.; Kaczka, R.J.; Nicia, P. Timberline in the Carpathians: An overview. Geogr. Pol. 2015, 88, 7–34. [Google Scholar] [CrossRef]
- Vincze, I.; Orbán, I.; Birks, H.H.; Pál, I.; Finsinger, W.; Hubay, K.; Marinova, E.; Jakab, G.; Braun, M.; Biró, T.; et al. Holocene treeline and timberline changes in the South Carpathians (Romania): Climatic and anthropogenic drivers on the southern slopes of the Retezat Mountains. Holocene 2017, 27, 1613–1630. [Google Scholar] [CrossRef]
- Dudová, L.; Szabó, P. Holocene history of Larix in the Jeseníky Mts, Czech Republic [Holocénní Historie Modřínu v Jeseníkách (Česká Republika)]. Preslia 2022, 94, 233–253. [Google Scholar] [CrossRef]
- Feurdean, A.; Tanţău, I.; Fărcaş, S. Holocene variability in the range distribution and abundance of Pinus, Picea abies, and Quercus in Romania; implications for their current status. Quat. Sci. Rev. 2011, 30, 3060–3075. [Google Scholar] [CrossRef]
- Ravazzi, C. Late Quaternary history of spruce in southern Europe. Rev. Palaeobot. Palynol. 2002, 120, 131–177. [Google Scholar] [CrossRef]
- Fărcaș, S.; Tanțău, I.; Turtureanu, P.D. Larix Decidua Mill. in Romania: Current and Past Distribution, Coenotic Prefer-ences, and Conservation Status. Contrib. Bot. 2013, 48, 1333–1342. [Google Scholar]
- Wilczyński, J.; Krajcarz, M.T.; Moskal-del Hoyo, M.; Alexandrowicz, W.P.; Miękina, B.; Pereswiet-Soltan, A.; Wertz, K.; Lipecki, G.; Marciszak, A.; Lõugas, L.; et al. Late Glacial and Holocene paleoecology and paleoenvironmental changes in the northern Carpathians foreland: The Żarska Cave (southern Poland) case study. Holocene 2020, 30, 905–922. [Google Scholar] [CrossRef]
- Pató, Z.A.; Standovár, T.; Gałka, M.; Jakab, G.; Molnár, M.; Szmorad, F.; Magyari, E. Exposure matters: Forest dynamics reveal an early Holocene conifer refugium on a north facing slope in Central Europe. Holocene 2020, 30, 1833–1848. [Google Scholar] [CrossRef]
- Moskal-del Hoyo, M. Open canopy forests of the loess regions of southern Poland: A review based on wood charcoal assemblages from Neolithic and Bronze Age archaeological sites. Quat. Int. 2021, 593–594, 204–223. [Google Scholar] [CrossRef]
- Bodnariuc, A.; Bouchette, A.; Dedoubat, J.; Otto, T.; Fontugne, M.; Jalut, G. Holocene vegetational history of the Apuseni mountains, central Romania. Quat. Sci. Rev. 2002, 21, 1465–1488. [Google Scholar] [CrossRef]
- Lestienne, M.; Jamrichová, E.; Kuosmanen, N.; Diaconu, A.; Schafstall, N.; Goliáš, V.; Kletetschka, G.; Šulc, V.; Kuneš, P. Development of high diversity beech forest in the eastern Carpathians. J. Biogeogr. 2023, 50, 699–714. [Google Scholar] [CrossRef]
- Carter, V.A.; Bobek, P.; Moravcová, A.; Šolcová, A.; Chiverrell, R.C.; Clear, J.L.; Finsinger, W.; Feurdean, A.; Tanţău, I.; Magyari, E.; et al. The role of climate-fuel feedbacks on Holocene biomass burning in upper-montane Carpathian forests. Glob. Planet. Chang. 2020, 193, 103264. [Google Scholar] [CrossRef]
- Czerwiński, S.; Margielewski, W.; Gałka, M.; Kołaczek, P. Late Holocene transformations of lower montane forest in the Beskid Wyspowy Mountains (Western Carpathians, Central Europe): A case study from Mount Mogielica. Palynology 2020, 44, 355–368. [Google Scholar] [CrossRef]
- Diaconu, A.-C.; Tanţău, I.; Knorr, K.-H.; Borken, W.; Feurdean, A.; Panait, A.; Gałka, M. A multi-proxy analysis of hydroclimate trends in an ombrotrophic bog over the last millennium in the Eastern Carpathians of Romania. Palaeogeogr. Palaeoclim. Palaeoecol. 2020, 538, 109390. [Google Scholar] [CrossRef]
- Fărcaş, S.; Tanţău, I.; Mîndrescu, M.; Hurdu, B. Holocene vegetation history in the Maramureş Mountains (Northern Romanian Carpathians). Quat. Int. 2013, 293, 92–104. [Google Scholar] [CrossRef]
- Feurdean, A.; Willis, K.J. The usefulness of a long-term perspective in assessing current forest conservation management in the Apuseni Natural Park, Romania. For. Ecol. Manag. 2008, 256, 421–430. [Google Scholar] [CrossRef]
- Feurdean, A.; Gałka, M.; Tanţău, I.; Geantă, A.; Hutchinson, S.M.; Hickler, T. Tree and timberline shifts in the northern Romanian Carpathians during the Holocene and the responses to environmental changes. Quat. Sci. Rev. 2016, 134, 100–113. [Google Scholar] [CrossRef]
- Florescu, G.; Hutchinson, S.M.; Kern, Z.; Mîndrescu, M.; Cristea, I.; Mihăilă, D.; Łokas, E.; Feurdean, A. Last 1000 years of environmental history in Southern Bucovina, Romania: A high resolution multi-proxy lacustrine archive. Palaeogeogr. Palaeoclim. Palaeoecol. 2017, 473, 26–40. [Google Scholar] [CrossRef]
- Finsinger, W.; Fevre, J.; Orbán, I.; Pál, I.; Vincze, I.; Hubay, K.; Birks, H.H.; Braun, M.; Tóth, M.; Magyari, E.K. Holocene fire-regime changes near the treeline in the Retezat Mts. (Southern Carpathians, Romania). Quat. Int. 2018, 477, 94–105. [Google Scholar] [CrossRef]
- Jamrichová, E.; Petr, L.; Jiménez-Alfaro, B.; Jankovská, V.; Dudová, L.; Pokorný, P.; Kołaczek, P.; Zernitskaya, V.; Čierniková, M.; Břízová, E.; et al. Pollen-inferred millennial changes in landscape patterns at a major biogeographical interface within Europe. J. Biogeogr. 2017, 44, 2386–2397. [Google Scholar] [CrossRef]
- Kapcia, M.; Mueller-Bieniek, A. An insight into Bronze Age subsistence strategy in forested Carpathian foothills, based on plant macro-remains. Archaeol. Anthr. Sci. 2019, 11, 2879–2895. [Google Scholar] [CrossRef]
- Kołaczek, P.; Margielewski, W.; Gałka, M.; Apolinarska, K.; Płóciennik, M.; Gąsiorowski, M.; Buczek, K.; Karpińska-Kołaczek, M. Five centuries of the Early Holocene forest development and its interactions with palaeoecosystem of small landslide lake in the Beskid Makowski Mountains (Western Carpathians, Poland)—High resolution multi-proxy study. Rev. Palaeobot. Palynol. 2017, 244, 113–127. [Google Scholar] [CrossRef]
- Kołaczek, P.; Karpińska-Kołaczek, M.; Madeja, J.; Kalinovych, N.; Szczepanek, K.; Gębica, P.; Harmata, K. Interplay of climate-human-vegetation on the north-eastern edge of the Carpathians (Western Ukraine) between 7500 and 3500 calibrated years BP. Biol. J. Linn. Soc. 2016, 119, 609–629. [Google Scholar] [CrossRef]
- Kołaczek, P.; Buczek, K.; Margielewski, W.; Gałka, M.; Rycerz, A.; Woszczyk, M.; Karpińska-Kołaczek, M.; Marcisz, K. Development and degradation of a submontane forest in the Beskid Wyspowy Mountains (Polish Western Carpathians) during the Holocene. Holocene 2021, 31, 1716–1732. [Google Scholar] [CrossRef]
- Magyari, E.; Vincze, I.; Orbán, I.; Bíró, T.; Pál, I. Timing of major forest compositional changes and tree expansions in the Retezat Mts during the last 16,000 years. Quat. Int. 2018, 477, 40–58. [Google Scholar] [CrossRef]
- Orbán, I.; Birks, H.H.; Vincze, I.; Finsinger, W.; Pál, I.; Marinova, E.; Jakab, G.; Braun, M.; Hubay, K.; Bíró, T.; et al. Treeline and timberline dynamics on the northern and southern slopes of the Retezat Mountains (Romania) during the late glacial and the Holocene. Quat. Int. 2018, 477, 59–78. [Google Scholar] [CrossRef]
- Peters, M.; Friedmann, A.; Stojakowits, P.; Metzner-Nebelsick, C. Holocene vegetation history and environmental change in the Lăpuş Mountains, north-west Romania. Palynology 2020, 44, 441–452. [Google Scholar] [CrossRef]
- Popa, I.; Kern, Z. Long-term summer temperature reconstruction inferred from tree-ring records from the Eastern Carpathians. Clim. Dyn. 2009, 32, 1107–1117. [Google Scholar] [CrossRef]
- Rybníčková, E.; Rybníček, K. Pollen and macroscopic analyses of sediments from two lakes in the High Tatra mountains, Slovakia. Veg. Hist. Archaeobot. 2006, 15, 345–356. [Google Scholar] [CrossRef]
- Tanţǎu, I.; Geantǎ, A.; Feurdean, A.; Tǎmaş, T. Pollen Analysis from a High Altitude Site in Rodna Mountains (Romania). Carpathian J. Earth Environ. Sci. 2014, 9, 23–30. [Google Scholar]
- Tanţău, I.; Feurdean, A.; de Beaulieu, J.-L.; Reille, M.; Fărcaş, S. Holocene vegetation history in the upper forest belt of the Eastern Romanian Carpathians. Palaeogeogr. Palaeoclim. Palaeoecol. 2011, 309, 281–290. [Google Scholar] [CrossRef]
- Wacnik, A.; Nalepka, D.; Granoszewski, W.; Walanus, A.; Madeyska, E.; Cywa, K.; Szczepanek, K.; Cieślak, E. Development of modern forest zones in the Beskid Niski Mts. and adjacent area (Western Carpathians) in the late Holocene: A palaeobotanical perspective. Quat. Int. 2016, 415, 303–324. [Google Scholar] [CrossRef]
- Wiezik, M.; Petr, L.; Jankovská, V.; Hájková, P.; Jamrichová, E.; Hrivnák, R.; Hillayová, M.K.; Jarčuška, B.; Máliš, F.; Hájek, M. Western-Carpathian mountain spruce woodlands at their southern margin: Natural or Anthropogenic Origin? Preslia 2020, 92, 115–135. [Google Scholar] [CrossRef]
- Kapustová, V.; Pánek, T.; Hradecký, J.; Zernitskaya, V.; Hutchinson, S.M.; Mulková, M.; Sedláček, J.; Bajer, V. Peat bog and alluvial deposits reveal land degradation during 16th- and 17th-century colonisation of the Western Carpathians (Czech Republic). Land Degrad. Dev. 2018, 29, 894–906. [Google Scholar] [CrossRef]
- Kozak, J.; Troll, M.; Widacki, W. Semi-Natural Landscapes of the Western Beskidy Mts. Ekol. Bratisl. 1999, 18, 53–62. [Google Scholar]
- Árvai, M.; Popa, I.; Mîndrescu, M.; Nagy, B.; Kern, Z. Dendrochronology and radiocarbon dating of subfossil conifer logs from a peat bog, Maramureş Mts, Romania. Quat. Int. 2016, 415, 6–14. [Google Scholar] [CrossRef]
- Kukulak, J. Charcoal in alluvium of mountain streams in the Bieszczady Mountains (Polish Carpathians) as a carrier of information on the local palaeoenvironment. Geochronometria 2014, 41, 294–305. [Google Scholar] [CrossRef]
- Sâvulescu, I.; Mihai, B. Mapping forest landscape change in Iezer Mountains, Romanian Carpathians. AGIS approach based on cartographic heritage, forestry data and remote sensing imagery. J. Maps 2011, 7, 429–446. [Google Scholar] [CrossRef]
- Bałazy, R. Forest dieback process in the Polish mountains in the past and nowadays—Literature review on selected topics. Folia For. Pol. Ser. A 2020, 62, 184–198. [Google Scholar] [CrossRef]
- Kukulak, J. Sedimentary record of early wood burning in alluvium of mountain streams in the Bieszczady range, Polish Carpathians. Palaeogeogr. Palaeoclim. Palaeoecol. 2000, 164, 167–175. [Google Scholar] [CrossRef]
- Šamonil, P.; Vrška, T. Trends and cyclical changes in natural fir-beech Forests at the north-western edge of the Carpathians. Folia Geobot. 2007, 42, 337–361. [Google Scholar] [CrossRef]
- Volařík, D.; Hédl, R. Expansion to abandoned agricultural land forms an integral part of silver fir dynamics. For. Ecol. Manag. 2013, 292, 39–48. [Google Scholar] [CrossRef]
- Vrška, T.; Adam, D.; Hort, L.; Kolář, T.; Janík, D. European beech (Fagus sylvatica L.) and silver fir (Abies alba Mill.) rotation in the Carpathians—A developmental cycle or a linear trend induced by man? For. Ecol. Manag. 2009, 258, 347–356. [Google Scholar] [CrossRef]
- Mihai, B.; Savulescu, I.; Sandric, I. Change Detection Analysis (1986–2002) of Vegetation Cover in Romania: A Study of Al-pine, Subalpine, and Forest Landscapes in the Iezer Mountains, Southern Carpathians. Mt. Res. Dev. 2007, 27, 250–258. [Google Scholar] [CrossRef]
- Price, B.; Kaim, D.; Szwagrzyk, M.; Ostapowicz, K.; Kolecka, N.; Schmatz, D.R.; Wypych, A.; Kozak, J. Legacies, socio-economic and biophysical processes and drivers: The case of future forest cover expansion in the Polish Carpathians and Swiss Alps. Reg. Environ. Chang. 2017, 17, 2279–2291. [Google Scholar] [CrossRef]
- Kozak, J.; Ziółkowska, E.; Vogt, P.; Dobosz, M.; Kaim, D.; Kolecka, N.; Ostafin, K. Forest-Cover Increase Does Not Trigger Forest-Fragmentation Decrease: Case Study from the Polish Carpathians. Sustainability 2018, 10, 1472. [Google Scholar] [CrossRef]
- Munteanu, C.; Kuemmerle, T.; Keuler, N.S.; Müller, D.; Balázs, P.; Dobosz, M.; Griffiths, P.; Halada, L.; Kaim, D.; Király, G.; et al. Legacies of 19th century land use shape contemporary forest cover. Glob. Environ. Chang. 2015, 34, 83–94. [Google Scholar] [CrossRef]
- Vasile, M. Formalizing commons, registering rights: The making of the forest and pasture commons in the Romanian Carpathians from the 19th century to post-socialism. Int. J. Commons 2018, 12, 170–201. [Google Scholar] [CrossRef]
- Trotsiuk, V.; Svoboda, M.; Janda, P.; Mikolas, M.; Bace, R.; Rejzek, J.; Samonil, P.; Chaskovskyy, O.; Korol, M.; Myklush, S. A mixed severity disturbance regime in the primary Picea abies (L.) Karst. forests of the Ukrainian Carpathians. For. Ecol. Manag. 2014, 334, 144–153. [Google Scholar] [CrossRef]
- Schurman, J.S.; Trotsiuk, V.; Bače, R.; Čada, V.; Fraver, S.; Janda, P.; Kulakowski, D.; Labusova, J.; Mikoláš, M.; Nagel, T.A.; et al. Large-scale disturbance legacies and the climate sensitivity of primary Picea abies forests. Glob. Chang. Biol. 2018, 24, 2169–2181. [Google Scholar] [CrossRef]
- Frankovič, M.; Janda, P.; Mikoláš, M.; Čada, V.; Kozák, D.; Pettit, J.L.; Nagel, T.A.; Buechling, A.; Matula, R.; Trotsiuk, V.; et al. Natural dynamics of temperate mountain beech-dominated primary forests in Central Europe. For. Ecol. Manag. 2021, 479, 118522. [Google Scholar] [CrossRef]
- Koutecký, T.; Ujházy, K.; Volařík, D.; Ujházyová, M.; Máliš, F.; Gömöryová, E.; Bače, R.; Ehrenbergerová, L.; Glončák, P.; Hofmeister, J.; et al. Disturbance history drives current compositional and diversity patterns of primary Picea abies (L.) Karst. forest vegetation. For. Ecol. Manag. 2022, 520, 120387. [Google Scholar] [CrossRef]
- Zielonka, T.; Holeksa, J.; Fleischer, P.; Kapusta, P. A tree-ring reconstruction of wind disturbances in a forest of the Slovakian Tatra Mountains, Western Carpathians. J. Veg. Sci. 2010, 21, 31–42. [Google Scholar] [CrossRef]
- Després, T.; Vítková, L.; Bače, R.; Čada, V.; Janda, P.; Mikoláš, M.; Schurman, J.S.; Trotsiuk, V.; Svoboda, M. Past disturbances and intraspecific competition as drivers of spatial pattern in primary spruce forests. Ecosphere 2017, 8, e02037. [Google Scholar] [CrossRef]
- Spînu, A.P.; Petrițan, I.C.; Mikoláš, M.; Janda, P.; Vostarek, O.; Čada, V.; Svoboda, M. Moderate- to High-Severity Disturbances Shaped the Structure of Primary Picea Abies (L.) Karst. Forest in the Southern Carpathians. Forests 2020, 11, 1315. [Google Scholar] [CrossRef]
- Kuemmerle, T.; Olofsson, P.; Chaskovskyy, O.; Baumann, M.; Ostapowicz, K.; Woodcock, C.E.; Houghton, R.A.; Hostert, P.; Keeton, W.S.; Radeloff, V.C. Post-Soviet farmland abandonment, forest recovery, and carbon sequestration in western Ukraine. Glob. Chang. Biol. 2011, 17, 1335–1349. [Google Scholar] [CrossRef]
- Ramankutty, N. Global Cropland and Pasture Data from 1700–2007; LUGE (Land Use and the Global Environment) Laboratory, Department of Geography, McGill University: Montreal, QC, Canada, 2012; Available online: http://www.geog.mcgill.ca/nramankutty/Datasets/Datasets.html (accessed on 25 April 2023).
- Caudullo, G.; Welk, E.; San-Miguel-Ayanz, J. Chorological maps for the main European woody species. Data Brief 2017, 12, 662–666. [Google Scholar] [CrossRef] [PubMed]
- Munteanu, C.; Kuemmerle, T.; Boltiziar, M.; Butsic, V.; Gimmi, U.; Halada, L.; Kaim, D.; Király, G.; Konkoly-Gyuró, É.; Kozak, J.; et al. Forest and agricultural land change in the Carpathian region—A meta-analysis of long-term patterns and drivers of change. Land Use Policy 2014, 38, 685–697. [Google Scholar] [CrossRef]
- Kozak, J. Forest Cover Change in the Western Carpathians in the Past 180 Years: A Case Study in the Orawa Region in Poland. Mt. Res. Dev. 2003, 23, 369–375. [Google Scholar] [CrossRef]
- Sobala, M. Determinants of marginal area reforestation in the Western Carpathians in the light of consecutive aerial photographs. Appl. Geomatics 2022, 14, 135–145. [Google Scholar] [CrossRef]
- Kroczak, R.; Fidelus-Orzechowska, J.; Bucała-Hrabia, A.; Bryndal, T. Land use and land cover changes in small Carpathian catchments between the mid-19th and early 21st centuries and their record on the land surface. J. Mt. Sci. 2018, 15, 2561–2578. [Google Scholar] [CrossRef]
- Sobala, M.; Rahmonov, O.; Myga-Piatek, U. Historical and contemporary forest ecosystem changes in the Beskid Mountains (southern Poland) between 1848 and 2014. iForest 2017, 10, 939–947. [Google Scholar] [CrossRef]
- Kędra, M.; Szczepanek, R. Land cover transitions and changing climate conditions in the Polish Carpathians: Assessment and management implications. Land Degrad. Dev. 2019, 30, 1040–1051. [Google Scholar] [CrossRef]
- Affek, A.N.; Wolski, J.; Zachwatowicz, M.; Ostafin, K.; Radeloff, V.C. Effects of post-WWII forced displacements on long-term landscape dynamics in the Polish Carpathians. Landsc. Urban Plan. 2021, 214, 104164. [Google Scholar] [CrossRef]
- Kozak, J.; Estreguil, C.; Troll, M. Forest cover changes in the northern Carpathians in the 20th century: A slow transition. J. Land Use Sci. 2007, 2, 127–146. [Google Scholar] [CrossRef]
- Kozak, J.; Estreguil, C.; Vogt, P. Forest cover and pattern changes in the Carpathians over the last decades. Eur. J. For. Res. 2007, 126, 77–90. [Google Scholar] [CrossRef]
- Bucała, A. The impact of human activities on land use and land cover changes and environmental processes in the Gorce Mountains (Western Polish Carpathians) in the past 50 years. J. Environ. Manag. 2014, 138, 4–14. [Google Scholar] [CrossRef]
- Tudoran, G.M.; Zotta, M. Adapting the planning and management of Norway spruce forests in mountain areas of Romania to environmental conditions including climate change. Sci. Total. Environ. 2020, 698, 133761. [Google Scholar] [CrossRef]
- Mohytych, V.; Sułkowska, M.; Klisz, M. Reproduction of silver fir (Abies alba Mill) forests in the Ukrainian Carpathians. Folia For. Pol. Ser. A 2019, 61, 156–158. [Google Scholar] [CrossRef]
- Bucała-Hrabia, A. Land use changes and their catchment-scale environmental impact in the Polish Western Carpathians during transition from centrally planned to free-market economics. Geogr. Pol. 2018, 91, 171–196. [Google Scholar] [CrossRef]
- Ortyl, B.; Kasprzyk, I. Land abandonment and restoration in the Polish Carpathians after accession to the European Union. Environ. Sci. Policy 2022, 132, 160–170. [Google Scholar] [CrossRef]
- Kolecka, N.; Kozak, J.; Kaim, D.; Dobosz, M.; Ostafin, K.; Ostapowicz, K.; Wężyk, P.; Price, B. Understanding farmland abandonment in the Polish Carpathians. Appl. Geogr. 2017, 88, 62–72. [Google Scholar] [CrossRef]
- Kozak, J.; Ostapowicz, K.; Szablowska-Midor, A.; Widacki, W. Land Abandonment in the Western Beskidy Mts and Its En-vironmental Background. Ekol. Bratisl. 2004, 23 (Suppl. S1), 116–126. [Google Scholar]
- Griffiths, P.; Müller, D.; Kuemmerle, T.; Hostert, P. Agricultural land change in the Carpathian ecoregion after the breakdown of socialism and expansion of the European Union. Environ. Res. Lett. 2013, 8, 045024. [Google Scholar] [CrossRef]
- Kolecka, N.; Kozak, J. Wall-to-wall parcel-level mapping of agricultural land abandonment in the Polish Carpathians. Land 2019, 8, 129. [Google Scholar] [CrossRef]
- Kucsicsa, G.; Bălteanu, D. The influence of man-induced land-use change on the upper forest limit in the Romanian Carpathians. Eur. J. For. Res. 2020, 139, 893–914. [Google Scholar] [CrossRef]
- Dinca, L.; Nita, M.; Hofgaard, A.; Alados, C.; Broll, G.; Borz, S.; Wertz, B.; Monteiro, A. Forests dynamics in the montane–alpine boundary: A comparative study using satellite imagery and climate data. Clim. Res. 2017, 73, 97–110. [Google Scholar] [CrossRef]
- Łajczak, A.; Spyt, B. Differentiation of vertical limit of forest at the Babia Góra Mt., the Western Carpathian Mountains. Geogr. Pol. 2018, 91, 217–242. [Google Scholar] [CrossRef]
- Kucsicsa, G.; Bălteanu, D. The effects of biophysical and anthropogenic factors on the recent upper forest-cover upward shift in the Romanian Carpathians. J. Veg. Sci. 2023, 34, 13176. [Google Scholar] [CrossRef]
- Skrobala, V.M.; Popovych, V.V.; Bosak, P.V.; Shuplat, T.I. Prediction of changes in the vegetation cover of Ukraine due to climate warming. Natsional'nyi Hirnychyi Universytet. Nauk. Visnyk 2022, 4, 96–105. [Google Scholar] [CrossRef]
- Sitko, I.; Troll, M. Timberline Changes in Relation to Summer Farming in the Western Chornohora (Ukrainian Carpathians). Mt. Res. Dev. 2008, 28, 263–271. [Google Scholar] [CrossRef]
- Weisberg, P.; Shandra, O.; Becker, M. Landscape Influences on Recent Timberline Shifts in the Carpathian Mountains: Abiotic Influences Modulate Effects of Land-Use Change. Arct. Antarct. Alp. Res. 2013, 45, 404–414. [Google Scholar] [CrossRef]
- Kucsicsa, G.; Dumitrică, C. Spatial modelling of deforestation in Romanian Carpathian Mountains using GIS and Logistic Regression. J. Mt. Sci. 2019, 16, 1005–1022. [Google Scholar] [CrossRef]
- Ciobotaru, A.-M.; Andronache, I.; Ahammer, H.; Radulovic, M.; Peptenatu, D.; Pintilii, R.-D.; Drăghici, C.-C.; Marin, M.; Carboni, D.; Mariotti, G.; et al. Application of Fractal and Gray-Level Co-Occurrence Matrix Indices to Assess the Forest Dynamics in the Curvature Carpathians—Romania. Sustainability 2019, 11, 6927. [Google Scholar] [CrossRef]
- Sobala, M.; Rahmonov, O. The Human Impact on Changes in the Forest Range of the Silesian Beskids (Western Carpathians). Resources 2020, 9, 141. [Google Scholar] [CrossRef]
- Kuemmerle, T.; Hostert, P.; Radeloff, V.C.; Perzanowski, K.; Kruhlov, I. Post-socialist forest disturbance in the Carpathian border region of Poland, Slovakia, and Ukraine. Ecol. Appl. 2007, 17, 1279–1295. [Google Scholar] [CrossRef]
- Lozynskyy, R.; Zubyk, A. Transformation of the Rural Settlement Network in the Carpathian Region of Ukraine (1989–2020). Eur. Countrys. 2022, 14, 281–301. [Google Scholar] [CrossRef]
- Drăghici, C.C.; Andronache, I.; Ahammer, H.; Peptenatu, D.; Pintilii, R.-D.; Ciobotaru, A.-M.; Simion, A.G.; Dobrea, R.C.; Diaconu, D.C.; Vișan, M.-C.; et al. Spatial Evolution of Forest Areas in the Northern Carpathian Mountains of Romania. Acta Montan. Slovaca 2017, 22, 95–106. [Google Scholar]
- Vasile, M. The other frontier: Forest rush and small-scale timbermen of postsocialist Transylvania. J. Peasant. Stud. 2022, 49, 429–454. [Google Scholar] [CrossRef]
- Ciobotaru, A.-M.; Andronache, I.; Ahammer, H.; Jelinek, H.F.; Radulovic, M.; Pintilii, R.-D.; Peptenatu, D.; Drăghici, C.-C.; Simion, A.-G.; Papuc, R.-M.; et al. Recent Deforestation Pattern Changes (2000–2017) in the Central Carpathians: A Gray-Level Co-Occurrence Matrix and Fractal Analysis Approach. Forests 2019, 10, 308. [Google Scholar] [CrossRef]
- Mihai, B.; Săvulescu, I.; Rujoiu-Mare, M.; Nistor, C. Recent forest cover changes (2002–2015) in the Southern Carpathians: A case study of the Iezer Mountains, Romania. Sci. Total. Environ. 2017, 599–600, 2166–2174. [Google Scholar] [CrossRef]
- Griffiths, P.; Kuemmerle, T.; Kennedy, R.E.; Abrudan, I.V.; Knorn, J.; Hostert, P. Using annual time-series of Landsat images to assess the effects of forest restitution in post-socialist Romania. Remote Sens. Environ. 2012, 118, 199–214. [Google Scholar] [CrossRef]
- Haliuc, A.; Feurdean, A.; Mîndrescu, M.; Frantiuc, A.; Hutchinson, S.M. Impacts of forest loss in the eastern Carpathian Mountains: Linking remote sensing and sediment changes in a mid-altitude catchment (Red Lake, Romania). Reg. Environ. Chang. 2019, 19, 461–475. [Google Scholar] [CrossRef]
- Griffiths, P.; Kuemmerle, T.; Baumann, M.; Radeloff, V.C.; Abrudan, I.V.; Lieskovsky, J.; Munteanu, C.; Ostapowicz, K.; Hostert, P. Forest disturbances, forest recovery, and changes in forest types across the Carpathian ecoregion from 1985 to 2010 based on Landsat image composites. Remote Sens. Environ. 2014, 151, 72–88. [Google Scholar] [CrossRef]
- Falťan, V.; Petrovič, F.; Gábor, M.; Šagát, V.; Hruška, M. Mountain Landscape Dynamics after Large Wind and Bark Beetle Disasters and Subsequent Logging—Case Studies from the Carpathians. Remote Sens. 2021, 13, 3873. [Google Scholar] [CrossRef]
- Konôpka, B.; Šebeň, V.; Merganičová, K. Forest Regeneration Patterns Differ Considerably between Sites with and without Windthrow Wood Logging in the High Tatra Mountains. Forests 2021, 12, 1349. [Google Scholar] [CrossRef]
- Fleischer, P.; Pichler, V.; Flaische, P.; Holko, L.; Máli, F.; Gömöryová, E.; Cudlín, P.; Holeksa, J.; Michalová, Z.; Homolová, Z.; et al. Forest ecosystem services affected by natural disturbances, climate and land-use changes in the Tatra Mountains. Clim. Res. 2017, 73, 57–71. [Google Scholar] [CrossRef]
- Badea, O.; Tanase, M.; Georgeta, J.; Anisoara, L.; Peiov, A.; Uhlirova, H.; Pajtik, J.; Wawrzoniak, J.; Shparyk, Y. Forest health status in the Carpahian Mountains over the period 1997. Environ. Pollut. 2004, 130, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Bytnerowicz, A.; Badea, O.; Barbu, I.; Fleischer, P.; Frączek, W.; Gancz, V.; Godzik, B.; Grodzińska, K.; Grodzki, W.; Karnosky, D.; et al. New international long-term ecological research on air pollution effects on the Carpathian Mountain forests, Central Europe. Environ. Int. 2003, 29, 367–376. [Google Scholar] [CrossRef]
- Muzika, R.M.; Guyette, R.P.; Zielonka, T.; Liebhold, A.M. The influence of O3, NO2 and SO2 on growth of Picea abies and Fagus sylvatica in the Carpathian Mountains. Environ. Pollut. 2004, 130, 65–71. [Google Scholar] [CrossRef]
- Modrzyński, J. Defoliation of older Norway spruce (Picea abies /L./ Karst.) stands in the Polish Sudety and Carpathian mountains. For. Ecol. Manag. 2003, 181, 289–299. [Google Scholar] [CrossRef]
- Bytnerowicz, A.; Godzik, S.; Poth, M.; Anderson, I.; Szdzuj, J.; Tobias, C.; Macko, S.; Kubiesa, P.; Staszewski, T.; Fenn, M. Chemical Composition of Air, Soil and Vegetation in Forests of the Silesian Beskid Moutains, Poland. Water Air Soil Pollut. 1999, 116, 141–150. [Google Scholar] [CrossRef]
- Bičárová, S.; Sitková, Z.; Pavlendová, H. Ozone phytotoxicity in the Western Carpathian Mountains in Slovakia. For. J. 2016, 62, 77–88. [Google Scholar] [CrossRef]
- Badea, O.; Neagu, S.; Bytnerowicz, A.; Silaghi, D.; Barbu, I.; Iacoban, C.; Popescu, F.; Andrei, M.; Preda, E.; Iacob, C.; et al. Long-term monitoring of air pollution effects on selected forest ecosystems in the Bucegi-Piatra Craiului and Retezat Mountains, southern Carpathians (Romania). iForest 2011, 4, 49–60. [Google Scholar] [CrossRef]
- Antoni, J.; Šomšák, L.; Jansk’y, L. Reversing the Decline of Secondary Spruce Forests in Slovakia’s Western Carpathians. Mt. Res. Dev. 2000, 20, 130–131. [Google Scholar] [CrossRef]
- Main-Knorn, M.; Hostert, P.; Kozak, J.; Kuemmerle, T. How pollution legacies and land use histories shape post-communist forest cover trends in the Western Carpathians. For. Ecol. Manag. 2009, 258, 60–70. [Google Scholar] [CrossRef]
- Gazda, A.; Kościelniak, P.; Hardy, M.; Muter, E.; Kędra, K.; Bodziarczyk, J.; Frączek, M.; Chwistek, K.; Różański, W.; Szwagrzyk, J. Upward expansion of distribution ranges of tree species: Contrasting results from two national parks in Western Carpathians. Sci. Total. Environ. 2019, 653, 920–929. [Google Scholar] [CrossRef]
- Maňkovská, B.; Godzik, B.; Badea, O.; Shparyk, Y.; Moravčík, P. Chemical and morphological characteristics of key tree species of the Carpathian Mountains. Environ. Pollut. 2004, 130, 41–54. [Google Scholar] [CrossRef]
- Bytnerowicz, A.; Frączek, W. Large-scale monitoring of air pollution in remote and ecologically important areas. Geogr. Pol. 2012, 85, 25–38. [Google Scholar] [CrossRef]
- Michel, A.; Prescher, A.-K.; Schwärzel, K. Forest Condition in Europe: 2019 Technical Report of ICP Forests; Report under the UNECE Convention on Long-Range Transboundary Air Pollution (Air Convention); UNECE: Geneva, Switzerland, 2019. [Google Scholar]
- Holeksa, J.; Zielonka, T.; Żywiec, M.; Fleischer, P. Identifying the disturbance history over a large area of larch–spruce mountain forest in Central Europe. For. Ecol. Manag. 2016, 361, 318–327. [Google Scholar] [CrossRef]
- Hroššo, B.; Mezei, P.; Potterf, M.; Majdák, A.; Blaženec, M.; Korolyova, N.; Jakuš, R. Drivers of Spruce Bark Beetle (Ips typographus) Infestations on Downed Trees after Severe Windthrow. Forests 2020, 11, 1290. [Google Scholar] [CrossRef]
- Synek, M.; Janda, P.; Mikoláš, M.; Nagel, T.A.; Schurman, J.S.; Pettit, J.L.; Trotsiuk, V.; Morrissey, R.C.; Bače, R.; Čada, V.; et al. Contrasting patterns of natural mortality in primary Picea forests of the Carpathian Mountains. For. Ecol. Manag. 2020, 457, 117734. [Google Scholar] [CrossRef]
- Spinoni, J.; Szalai, S.; Szentimrey, T.; Lakatos, M.; Bihari, Z.; Nagy, A.; Németh, Á.; Kovács, T.; Mihic, D.; Dacic, M.; et al. Climate of the Carpathian Region in the period 1961-2010: Climatologies and trends of 10 variables. Int. J. Clim. 2015, 35, 1322–1341. [Google Scholar] [CrossRef]
- Baranowski, J.; Kędzia, S. Air temperature as a determinant of the forest line in the Tatras. Folia For. Pol. Ser. A 2021, 63, 203–213. [Google Scholar] [CrossRef]
- Micu, D.M.; Dumitrescu, A.; Cheval, S.; Nita, I.; Birsan, M. Temperature changes and elevation-warming relationships in the Carpathian Mountains. Int. J. Clim. 2021, 41, 2154–2172. [Google Scholar] [CrossRef]
- Krzyżewska, A.; Dyer, J. Local-scale analysis of temperature patterns over Poland during heatwave events. Theor. Appl. Clim. 2019, 135, 261–277. [Google Scholar] [CrossRef]
- Lukasová, V.; Škvareninová, J.; Bičárová, S.; Sitárová, Z.; Hlavatá, H.; Borsányi, P.; Škvarenina, J. Regional and altitudinal aspects in summer heatwave intensification in the Western Carpathians. Theor. Appl. Clim. 2021, 146, 1111–1125. [Google Scholar] [CrossRef]
- Korená Hillayová, M.; Holécy, J.; Korísteková, K.; Bakšová, M.; Ostrihoň, M.; Škvarenina, J. Ongoing climatic change increases the risk of wildfires. Case study: Carpathian spruce forests. J. Environ. Manag. 2023, 337, 117620. [Google Scholar] [CrossRef] [PubMed]
- Kholiavchuk, D.; Cebulska, M. The highest monthly precipitation in the area of the Ukrainian and the Polish Carpathian Mountains in the period from 1984 to 2013. Theor. Appl. Clim. 2019, 138, 1615–1628. [Google Scholar] [CrossRef]
- Onderka, M.; Pecho, J. On how precipitation-temperature coupling affects drought severity in the western Carpathians and the adjacent northern part of the Pannonian Plain. Theor. Appl. Clim. 2023, 152, 681–692. [Google Scholar] [CrossRef]
- Antofie, T.; Naumann, G.; Spinoni, J.; Vogt, J. Estimating the water needed to end the drought or reduce the drought severity in the Carpathian region. Hydrol. Earth Syst. Sci. 2015, 19, 177–193. [Google Scholar] [CrossRef]
- Spinoni, J.; Vogt, J.V.; Naumann, G.; Barbosa, P.; Dosio, A. Will drought events become more frequent and severe in Europe? Int. J. Climatol. 2018, 38, 1718–1736. [Google Scholar] [CrossRef]
- Cebulska, M.; Kholiavchuk, D. Variability of meteorological droughts in the polish and the Ukrainian Carpathians, 1984–2015. Meteorol. Atmospheric Phys. 2022, 134, 1–18. [Google Scholar] [CrossRef]
- Bucha, T.; Koren, M. Phenology of the beech forests in the Western Carpathians from MODIS for 2000–2015. iForest 2017, 10, 537–546. [Google Scholar] [CrossRef]
- Schieber, B.; Kubov, M.; Janík, R. Effects of Climate Warming on Vegetative Phenology of the Common Beech Fagus sylvatica in a Submontane Forest of the Western Carpathians: Two-Decade Analysis. Pol. J. Ecol. 2017, 65, 339–351. [Google Scholar] [CrossRef]
- Popescu, R.; Șofletea, N. Spring and autumn phenology in sub-mesothermal beech stands from the southwestern extremity of the Carpathians. Not. Bot. Horti Agrobot. Cluj Napoca 2020, 48, 1057–1069. [Google Scholar] [CrossRef]
- Barka, I.; Bucha, T.; Molnár, T.; Móricz, N.; Somogyi, Z.; Koreň, M. Suitability of MODIS-based NDVI index for forest monitoring and its seasonal applications in Central Europe. Cent. Eur. For. J. 2019, 65, 206–217. [Google Scholar] [CrossRef]
- Bosela, M.; Štefančík, I.; Petráš, R.; Vacek, S. The effects of climate warming on the growth of European beech forests depend critically on thinning strategy and site productivity. Agric. For. Meteorol. 2016, 222, 21–31. [Google Scholar] [CrossRef]
- Prăvălie, R.; Sîrodoev, I.; Nita, I.-A.; Patriche, C.; Dumitraşcu, M.; Roşca, B.; Tişcovschi, A.; Bandoc, G.; Săvulescu, I.; Mănoiu, V.; et al. NDVI-based ecological dynamics of forest vegetation and its relationship to climate change in Romania during 1987–2018. Ecol. Indic. 2022, 136, 108629. [Google Scholar] [CrossRef]
- Páscoa, P.; Gouveia, C.M.; Russo, A.C.; Bojariu, R.; Vicente-Serrano, S.M.; Trigo, R.M. Drought Impacts on Vegetation in Southeastern Europe. Remote Sens. 2020, 12, 2156. [Google Scholar] [CrossRef]
- Lukasová, V.; Vido, J.; Škvareninová, J.; Bičárová, S.; Hlavatá, H.; Boršányi, P.; Škvarenina, J. Autumn Phenological Response of European Beech to Summer Drought and Heat. Water 2020, 12, 2610. [Google Scholar] [CrossRef]
- Primicia, I.; Camarero, J.J.; Janda, P.; Čada, V.; Morrissey, R.C.; Trotsiuk, V.; Bače, R.; Teodosiu, M.; Svoboda, M. Age, competition, disturbance and elevation effects on tree and stand growth response of primary Picea abies forest to climate. For. Ecol. Manag. 2015, 354, 77–86. [Google Scholar] [CrossRef]
- Solár, J.; Solár, V. Land-cover change in the Tatra Mountains, with a particular focus on vegetation. J. Prot. Mt. Areas Res. 2020, 12, 15–26. [Google Scholar] [CrossRef]
- Máliš, F.; Kopecký, M.; Petřík, P.; Vladovič, J.; Merganič, J.; Vida, T. Life stage, not climate change, explains observed tree range shifts. Glob. Chang. Biol. 2016, 22, 1904–1914. [Google Scholar] [CrossRef] [PubMed]
- Mezei, P.; Blaženec, M.; Grodzki, W.; Škvarenina, J.; Jakuš, R. Influence of different forest protection strategies on spruce tree mortality during a bark beetle outbreak. Ann. For. Sci. 2017, 74, 65. [Google Scholar] [CrossRef]
- Sproull, G.J.; Bukowski, M.; Mcnutt, N.; Zwijacz-Kozica, T.; Szwagrzyk, J. Landscape-Level Spruce Mortality Patterns and Topographic Forecasters of Bark Beetle Outbreaks in Managed and Unmanaged Forests of the Tatra Mountains. Pol. J. Ecol. 2017, 65, 24–37. [Google Scholar] [CrossRef]
- Mezei, P.; Jakuš, R.; Pennerstorfer, J.; Havašová, M.; Škvarenina, J.; Ferenčík, J.; Slivinský, J.; Bičárová, S.; Bilčík, D.; Blaženec, M.; et al. Storms, temperature maxima and the Eurasian spruce bark beetle Ips typographus—An infernal trio in Norway spruce forests of the Central European High Tatra Mountains. Agric. For. Meteorol. 2017, 242, 85–95. [Google Scholar] [CrossRef]
- Crişan, V.-E.; Dincă, L.; Bragă, C.; Murariu, G.; Tupu, E.; Mocanu, G.D.; Drasovean, R. The Configuration of Romanian Carpathians Landscape Controls the Volume Diversity of Picea abies (L.) Stands. Land 2023, 12, 406. [Google Scholar] [CrossRef]
- Bouriaud, O.; Popa, I. Comparative dendroclimatic study of Scots pine, Norway spruce, and silver fir in the Vrancea Range, Eastern Carpathian Mountains. Trees Struct. Funct. 2009, 23, 95–106. [Google Scholar] [CrossRef]
- Schurman, J.S.; Babst, F.; Björklund, J.; Rydval, M.; Bače, R.; Čada, V.; Janda, P.; Mikolas, M.; Saulnier, M.; Trotsiuk, V.; et al. The climatic drivers of primary Picea forest growth along the Carpathian arc are changing under rising temperatures. Glob. Chang. Biol. 2019, 25, 3136–3150. [Google Scholar] [CrossRef]
- Vakula, J.; Zúbrik, M.; Galko, J.; Gubka, A.; Kunca, A.; Nikolov, C.; Bošeľa, M. Influence of selected factors on bark beetle outbreak dynamics in the Western Carpathians. For. J. 2015, 61, 149–156. [Google Scholar] [CrossRef]
- Fora, C.G.; Balog, A. The Effects of the Management Strategies on Spruce Bark Beetles Populations (Ips typographus and Pityogenes chalcographus), in Apuseni Natural Park, Romania. Forests 2021, 12, 760. [Google Scholar] [CrossRef]
- Butsic, V.; Munteanu, C.; Griffiths, P.; Knorn, J.; Radeloff, V.C.; Lieskovský, J.; Mueller, D.; Kuemmerle, T. The effect of protected areas on forest disturbance in the Carpathian Mountains 1985. Conserv. Biol. 2017, 31, 570–580. [Google Scholar] [CrossRef] [PubMed]
- Grodzki, W.; Ambroży, S.; Gil, W. The growth and biodiversity of spruce stands in variable climate conditions—Radziejowa case study. Folia For. Pol. Ser. A 2013, 55, 146–156. [Google Scholar] [CrossRef]
- Şofletea, N.; Curtu, A.L.; Daia, M.L.; Budeanu, M. The Dynamics and Variability of Radial Growth in Provenance Trials of Norway Spruce (Picea abies (L.) Karst.) Within and Beyond the Hot Margins of its Natural Range. Not. Bot. Horti Agrobot. Cluj Napoca 2015, 43, 265–271. [Google Scholar] [CrossRef]
- Sidor, C.G.; Popa, I.; Vlad, R.; Cherubini, P. Different tree-ring responses of Norway spruce to air temperature across an altitudinal gradient in the Eastern Carpathians (Romania). Trees Struct. Funct. 2015, 29, 985–997. [Google Scholar] [CrossRef]
- Bošel’A, M.; Sedmák, R.; Sedmáková, D.; Marušák, R.; Kulla, L. Temporal shifts of climate–growth relationships of Norway spruce as an indicator of health decline in the Beskids, Slovakia. For. Ecol. Manag. 2014, 325, 108–117. [Google Scholar] [CrossRef]
- Parobeková, Z.; Sedmáková, D.; Kucbel, S.; Pittner, J.; Jaloviar, P.; Saniga, M.; Balanda, M.; Vencurik, J. Influence of disturbances and climate on high-mountain Norway spruce forests in the Low Tatra Mts., Slovakia. For. Ecol. Manag. 2016, 380, 128–138. [Google Scholar] [CrossRef]
- Bosela, M.; Tumajer, J.; Cienciala, E.; Dobor, L.; Kulla, L.; Marčiš, P.; Popa, I.; Sedmák, R.; Sedmáková, D.; Sitko, R.; et al. Climate warming induced synchronous growth decline in Norway spruce populations across biogeographical gradients since 2000. Sci. Total. Environ. 2021, 752, 141794. [Google Scholar] [CrossRef]
- Begović, K.; Schurman, J.S.; Svitok, M.; Pavlin, J.; Langbehn, T.; Svobodová, K.; Mikoláš, M.; Janda, P.; Synek, M.; Marchand, W.; et al. Large old trees increase growth under shifting climatic constraints: Aligning tree longevity and individual growth dynamics in primary mountain spruce forests. Glob. Chang. Biol. 2023, 29, 143–164. [Google Scholar] [CrossRef]
- Björklund, J.; Rydval, M.; Schurman, J.S.; Seftigen, K.; Trotsiuk, V.; Janda, P.; Mikoláš, M.; Dušátko, M.; Čada, V.; Bače, R.; et al. Disentangling the multi-faceted growth patterns of primary Picea abies forests in the Carpathian arc. Agric. For. Meteorol. 2019, 271, 214–224. [Google Scholar] [CrossRef]
- Gazol, A.; Camarero, J.J.; Gutiérrez, E.; Popa, I.; Andreu-Hayles, L.; Motta, R.; Nola, P.; Ribas, M.; Sangüesa-Barreda, G.; Urbinati, C.; et al. Distinct effects of climate warming on populations of silver fir (Abies alba) across Europe. J. Biogeogr. 2015, 42, 1150–1162. [Google Scholar] [CrossRef]
- Ježík, M.; Blaženec, M.; Mezei, P.; Sedmáková, D.; Sedmák, R.; Fleischer, P.; Bošeľa, M.; Kurjak, D.; Střelcová, K.; Ditmarová, Ľ. Influence of weather and day length on intra-seasonal growth of Norway spruce (Picea abies) and European beech (Fagus sylvatica) in a natural montane forest. Can. J. For. Res. 2021, 51, 1799–1810. [Google Scholar] [CrossRef]
- Hlásny, T.; Barka, I.; Kulla, L.; Bucha, T.; Sedmák, R.; Trombik, J. Sustainable forest management in a mountain region in the Central Western Carpathians, northeastern Slovakia: The role of climate change. Reg. Environ. Chang. 2017, 17, 65–77. [Google Scholar] [CrossRef]
- Petrik, P.; Petek-Petrik, A.; Konôpková, A.; Fleischer, P.; Stojnic, S.; Zavadilova, I.; Kurjak, D. Seasonality of PSII thermostability and water use efficiency of in situ mountainous Norway spruce (Picea abies). J. For. Res. 2023, 34, 197–208. [Google Scholar] [CrossRef]
- Schiop, S.T.; Al Hassan, M.; Sestras, A.F.; Boscaiu, M.; Sestras, R.E.; Vicente, O. Biochemical responses to drought, at the seedling stage, of several Romanian Carpathian populations of Norway spruce (Picea abies L. Karst). Trees Struct. Funct. 2017, 31, 1479–1490. [Google Scholar] [CrossRef]
- Saulnier, M.; Schurman, J.; Vostarek, O.; Rydval, M.; Pettit, J.; Trotsiuk, V.; Janda, P.; Bače, R.; Björklund, J.; Svoboda, M. Climatic drivers of Picea growth differ during recruitment and interact with disturbance severity to influence rates of canopy replacement. Agric. For. Meteorol. 2020, 287, 107981. [Google Scholar] [CrossRef]
- Svobodová, K.; Langbehn, T.; Björklund, J.; Rydval, M.; Trotsiuk, V.; Morrissey, R.C.; Čada, V.; Janda, P.; Begovič, K.; Ágh-Lábusová, J.; et al. Increased sensitivity to drought across successional stages in natural Norway spruce (Picea abies (L.) Karst.) forests of the Calimani Mountains, Romania. Trees 2019, 33, 1345–1359. [Google Scholar] [CrossRef]
- Popa, I.; Nechita, C.; Hofgaard, A. Stand structure, recruitment and growth dynamics in mixed subalpine spruce and Swiss stone pine forests in the Eastern Carpathians. Sci. Total. Environ. 2017, 598, 1050–1057. [Google Scholar] [CrossRef]
- Horodnic, S.A.; Roibu, C.C. Collective growth patterns reveal the high growing potential of older silver fir trees in a primeval forest in Romania’s Southern Carpathians. Not. Bot. Horti Agrobot. Cluj Napoca 2020, 48, 1085–1099. [Google Scholar] [CrossRef]
- Mihai, G.; Alexandru, A.M.; Stoica, E.; Birsan, M.V. Intraspecific Growth Response to Drought of Abies alba in the Southeastern Carpathians. Forests 2021, 12, 387. [Google Scholar] [CrossRef]
- Bosela, M.; Popa, I.; Gömöry, D.; Longauer, R.; Tobin, B.; Kyncl, J.; Kyncl, T.; Nechita, C.; Petráš, R.; Sidor, C.G.; et al. Effects of post-glacial phylogeny and genetic diversity on the growth variability and climate sensitivity of European silver fir. J. Ecol. 2016, 104, 716–724. [Google Scholar] [CrossRef]
- Kulla, L.; Roessiger, J.; Bošeľa, M.; Kucbel, S.; Murgaš, V.; Vencurik, J.; Pittner, J.; Jaloviar, P.; Šumichrast, L.; Saniga, M. Changing patterns of natural dynamics in old-growth European beech (Fagus sylvatica L.) forests can inspire forest management in Central Europe. For. Ecol. Manag. 2023, 529, 120633. [Google Scholar] [CrossRef]
- Gennaretti, F.; Ogée, J.; Sainte-Marie, J.; Cuntz, M. Mining ecophysiological responses of European beech ecosystems to drought. Agric. For. Meteorol. 2020, 280, 107780. [Google Scholar] [CrossRef]
- Budeanu, M.; Petritan, A.M.; Popescu, F.; Vasile, D.; Tudose, N.C. The Resistance of European Beech (Fagus sylvatica) From the Eastern Natural Limit of Species to Climate Change. Not. Bot. Horti Agrobot. Cluj-Napoca 2016, 44, 625–633. [Google Scholar] [CrossRef]
- Shvidenko, A.; Buksha, I.; Krakovska, S.; Lakyda, P. Vulnerability of Ukrainian Forests to Climate Change. Sustainability 2017, 9, 1152. [Google Scholar] [CrossRef]
- Bokwa, A.; Klimek, M.; Krzaklewski, P.; Kukułka, W. Drought Trends in the Polish Carpathian Mts. in the Years 1991–2020. Atmosphere 2021, 12, 1259. [Google Scholar] [CrossRef]
- Hlásny, T.; Trombik, J.; Dobor, L.; Barcza, Z.; Barka, I. Future climate of the Carpathians: Climate change hot-spots and implications for ecosystems. Reg. Environ. Chang. 2016, 16, 1495–1506. [Google Scholar] [CrossRef]
- Lavnyy, V.; Mazepa, V.G.; Shyshkanynets, I.F. Radial Increment of Beech (Fagus Sylvatica L.) in the Ukrainian Carpathi-ans. Ideas 2020, 26, 394–403. [Google Scholar]
- Doležal, J.; Mazůrek, P.; Klimešová, J. Oak Decline in Southern Moravia: The Association between Climate Change and Early and Late Wood Formation in Oaks. Preslia 2010, 82, 289–306. [Google Scholar]
- Danek, M.; Chuchro, M.; Walanus, A. Variability in Larch (Larix Decidua Mill.) Tree-Ring Growth Response to Climate in the Polish Carpathian Mountains. Forests 2017, 8, 354. [Google Scholar] [CrossRef]
- Foff, V.; Weiser, F.; Foffová, E.; Gömöry, D. Growth response of European larch (Larix decidua Mill.) populations to climatic transfer. Silvae Genet. 2014, 63, 67–75. [Google Scholar] [CrossRef]
- Danek, M.; Chuchro, M.; Danek, T. Extreme growth reaction of larch (Larix decidua Mill.) from the Polish Sudetes and Carpathians: Spatial distribution and climate impact. Trees Struct. Funct. 2021, 35, 211–229. [Google Scholar] [CrossRef]
- Izworska, K.; Muter, E.; Matulewski, P.; Zielonka, T. Tree rings as an ecological indicator of the reaction of Swiss stone pine (Pinus cembra L.) to climate change and disturbance regime in the extreme environment of cliff forests. Ecol. Indic. 2023, 148, 110102. [Google Scholar] [CrossRef]
- Horváth, A.; Lakatos, F.; Szűcs, P.; Patocskai, Z.; Végh, P.; Winkler, D.; Bidló, A.; Gálos, B. Climate Change Induced Tree Mortality in a Relict Scots Pine (Pinus sylvestris L.) Forest. [Klímaváltozás Okozta Fapusztulás Egy Reliktum Erdeifenyves (Pinus Sylvestris L.) Erdőben]. Acta Silv. Lignaria Hung. 2022, 18, 25–40. [Google Scholar] [CrossRef]
- Bouriaud, L.; Bouriaud, O.; Elkin, C.; Temperli, C.; Reyer, C.; Duduman, G.; Barnoaiea, I.; Nichiforel, L.; Zimmermann, N.; Bugmann, H. Age-class disequilibrium as an opportunity for adaptive forest management in the Carpathian Mountains, Romania. Reg. Environ. Chang. 2015, 15, 1557–1568. [Google Scholar] [CrossRef]
- Chivulescu, S.; García-Duro, J.; Pitar, D.; Leca, Ș.; Badea, O. Past and Future of Temperate Forests State under Climate Change Effects in the Romanian Southern Carpathians. Forests 2021, 12, 885. [Google Scholar] [CrossRef]
- Kjellstro¨m, E.; Nikulin, G.; Hansson, U.; Strandberg, G.; Ullerstig, A. 21st century changes in the European climate: Uncertainties derived from an ensemble of regional climate model simulations. Tellus A Dyn. Meteorol. Oceanogr. 2011, 63, 24. [Google Scholar] [CrossRef]
- van der Linden, P.; Mitchell, J.F.B. ENSEMBLES: Climate Change and Its Impacts: Summary of Research and Results from the ENSEMBLES Project; Met Office Hadley Centre: Exeter, UK, 2009; Volume 27. [Google Scholar]
- Bošeľa, M.; Petráš, R.; Šebeň, V.; Mecko, J.; Marušák, R. Evaluating competitive interactions between trees in mixed forests in the Western Carpathians: Comparison between long-term experiments and SIBYLA simulations. For. Ecol. Manag. 2013, 310, 577–588. [Google Scholar] [CrossRef]
- Fekete, I.; Berki, I.; Lajtha, K.; Trumbore, S.; Francioso, O.; Gioacchini, P.; Montecchio, D.; Várbíró, G.; Béni, Á.; Makádi, M.; et al. How will a drier climate change carbon sequestration in soils of the deciduous forests of Central Europe? Biogeochemistry 2021, 152, 13–32. [Google Scholar] [CrossRef]
- Dyderski, M.K.; Pawlik. Drivers of forest aboveground biomass and its increments in the Tatra Mountains after 15 years. CATENA 2021, 205, 105468. [Google Scholar] [CrossRef]
- Tudoran, G.-M.; Cicșa, A.; Boroeanu, M.; Dobre, A.-C.; Pascu, I.-S. Forest Dynamics after Five Decades of Management in the Romanian Carpathians. Forests 2021, 12, 783. [Google Scholar] [CrossRef]
- Parpan, T.; Kozak, I.; Shparyk, Y.; Mylenka, M.; Balaniuk, I. Simulation of Decline of Norway Spruce (Picea Abies L. Karst.) Forests in Gorgan Mountains (Ukrainian Carpathians): Case Study Using Forkome Model. Ekol. Bratisl. 2019, 38, 353–366. [Google Scholar] [CrossRef]
- Hlásny, T.; Barcza, Z.; Fabrika, M.; Balázs, B.; Churkina, G.; Pajtík, J.; Sedmák, R.; Turcáni, M. Climate change impacts on growth and carbon balance of forests in Central Europe. Clim. Res. 2011, 47, 219–236. [Google Scholar] [CrossRef]
- Buksha, I.F.; Pyvovar, T.S.; Buksha, M.I.; Pasternak, V.P.; Buksha, T.I. Modelling and Forecasting the Impact of Climate Change on Forests of Ukraine for 21st Century Time Horizon. Ideas 2021, 27, 470–482. [Google Scholar]
- Simpson, M.; Prots, B. Predicting the distribution of invasive plants in the Ukrainian Carpathians under climatic change and intensification of anthropogenic disturbances: Implications for biodiversity conservation. Environ. Conserv. 2013, 40, 167–181. [Google Scholar] [CrossRef]
- Šibíková, M.; Jarolímek, I.; Hegedüšová, K.; Májeková, J.; Mikulová, K.; Slabejová, D.; Škodová, I.; Zaliberová, M.; Medvecká, J. Effect of planting alien Robinia pseudoacacia trees on homogenization of Central European forest vegetation. Sci. Total. Environ. 2019, 687, 1164–1175. [Google Scholar] [CrossRef] [PubMed]
- Szelepcsényi, Z.; Breuer, H.; Kis, A.; Pongrácz, R.; Sümegi, P. Assessment of projected climate change in the Carpathian Region using the Holdridge life zone system. Theor. Appl. Clim. 2018, 131, 593–610. [Google Scholar] [CrossRef]
- Dzurenko, M.; Galko, J.; Kulfan, J.; Váľka, J.; Holec, J.; Saniga, M.; Zúbrik, M.; Vakula, J.; Ranger, C.M.; Skuhrovec, J.; et al. Can the invasive ambrosia beetle Xylosandrus germanus withstand an unusually cold winter in the West Carpathian forest in Central Europe? Folia Oecologica 2022, 49, 1–8. [Google Scholar] [CrossRef]
- Voicu, S.; Vasile, M. Grabbing the commons: Forest rights, capital and legal struggle in the Carpathian Mountains. Politi Geogr. 2022, 98, 102718. [Google Scholar] [CrossRef]
- Roșculeț, G.; Sorea, D. Commons as Traditional Means of Sustainably Managing Forests and Pastures in Olt Land (Romania). Sustainability 2021, 13, 8012. [Google Scholar] [CrossRef]
- Stăncioiu, P.T.; Niță, M.D.; Lazăr, G.E. Forestland connectivity in Romania—Implications for policy and management. Land Use Policy 2018, 76, 487–499. [Google Scholar] [CrossRef]
- Zahvoyska, L.; Pelyukh, O.; Maksymiv, L. Methodological Considerations; Their Application for Evaluation of Benefits from the Conversion of Even-Age Secondary Norway Spruce Stands into Mixed Uneven-Aged Woodlands with a Focus on the Ukrainian Carpathians. Austrian J. For. Sci. 2017, 2017, 251–281. [Google Scholar]
- European Comission. Guidelines on Closer-to-Nature Forest Management; Comission Staff Working Document; European Commission: St. John’s, NL, Canada, 2023. [Google Scholar]
- Vanonckelen, S.; Van Rompaey, A. Spatiotemporal Analysis of the Controlling Factors of Forest Cover Change in the Romanian Carpathian Mountains. Mt. Res. Dev. 2015, 35, 338–350. [Google Scholar] [CrossRef]
- Solár, J.; Janiga, M. World Heritage Beech Forests and Regional Socio-Economic Policy at the Slovak-Ukrainian Border. Pol. J. Environ. Stud. 2020, 29, 1869–1878. [Google Scholar] [CrossRef] [PubMed]
- Mikoláš, M.; Svitok, M.; Teodosiu, M.; Nagel, T.A.; Svoboda, M. Land use planning based on the connectivity of tree species does not ensure the conservation of forest biodiversity. Land Use Policy 2019, 83, 63–65. [Google Scholar] [CrossRef]
- Mikoláš, M.; Ujházy, K.; Jasík, M.; Wiezik, M.; Gallay, I.; Polák, P.; Vysoký, J.; Čiliak, M.; Meigs, G.W.; Svoboda, M.; et al. Primary forest distribution and representation in a Central European landscape: Results of a large-scale field-based census. For. Ecol. Manag. 2019, 449, 117466. [Google Scholar] [CrossRef]
- Žoncová, M.; Hronček, P.; Gregorová, B. Mapping of the Land Cover Changes in High Mountains of Western Carpathians between 1990–2018: Case Study of the Low Tatras National Park (Slovakia). Land 2020, 9, 483. [Google Scholar] [CrossRef]
- Spracklen, B.D.; Spracklen, D.V. Old-Growth Forest Disturbance in the Ukrainian Carpathians. Forests 2020, 11, 151. [Google Scholar] [CrossRef]
- Cristea, V.; Leca, S.; Ciceu, A.; Chivulescu, S.; Badea, O. Structural Features of Old Growth Forest from South Eastern Carpathians, Romania. South-East Eur. For. 2019, 10, 159–164. [Google Scholar] [CrossRef]
- Švajda, J. Mountain research in protected areas in the Carpathians—A brief overview. J. Prot. Mt. Areas Res. 2018, 10, 77–78. [Google Scholar] [CrossRef]
- European Protected Sites. European Environment Agency (EEA). 2023. Available online: https://www.eea.europa.eu/data-and-maps/explore-interactive-maps/european-protected-areas-1 (accessed on 20 April 2023).
- Hartup, J.; Ockendon, N.; Pettorelli, N. Active versus passive restoration: Forests in the southern Carpathian Mountains as a case study. J. Environ. Manag. 2022, 322, 116003. [Google Scholar] [CrossRef] [PubMed]
- Willim, K.; Stiers, M.; Annighöfer, P.; Ehbrecht, M.; Ammer, C.; Seidel, D. Spatial Patterns of Structural Complexity in Differently Managed and Unmanaged Beech-Dominated Forests in Central Europe. Remote Sens. 2020, 12, 1907. [Google Scholar] [CrossRef]
- Petráš, R.; Mecko, J.; Bošeľa, M.; Šebeň, V. Wood quality and value production in mixed fir-spruce-beech stands: Long-term research in the Western Carpathians. For. J. 2016, 62, 98–104. [Google Scholar] [CrossRef]
- Cicșa, A.; Tudoran, G.-M.; Cicșa, M.; Dobre, A.-C.; Spârchez, G. Effect of Species Composition on Growth and Yield in Mixed Beech–Coniferous Stands. Forests 2022, 13, 1651. [Google Scholar] [CrossRef]
- Štefančík, I.; Petráš, R.; Mecko, J.; Novák, J. Qualitative and value production of tree species in mixed spruce-fir-beech stands under the conditions of the Western Carpathians. Cent. Eur. For. J. 2021, 67, 155–165. [Google Scholar] [CrossRef]
- Gafta, D.; Schnitzler, A.; Closset-Kopp, D.; Cristea, V. Neighbourhood-based evidence of tree diversity promotion by beech in an old-growth deciduousconiferous mixed forest (Eastern Carpathians). Ann. For. Res. 2021, 64, 13–30. [Google Scholar] [CrossRef]
- Bosela, M.; Tobin, B.; Šebeň, V.; Petráš, R.; Larocque, G. Different mixtures of Norway spruce, silver fir, and European beech modify competitive interactions in central European mature mixed forests. Can. J. For. Res. 2015, 45, 1577–1586. [Google Scholar] [CrossRef]
- Szwagrzyk, J.; Gazda, A.; Zwijacz-Kozica, T.; Zięba, A.; Ciesielska, B.; Szewczyk, J.; Foremnik, K.; Muter, E.; Bodziarczyk, J. Role of environmental filtering and seed source availability in natural regeneration processes following large-scale disturbances in mountain forests. Eur. J. For. Res. 2021, 140, 835–845. [Google Scholar] [CrossRef]
- Chivulescu, S.; Ciceu, A.; Leca, S.; Apostol, B.; Popescu, O.; Badea, O. Development phases and structural characteristics of the Penteleu-Viforta virgin forest in the Curvature Carpathians. iForest 2020, 13, 389–395. [Google Scholar] [CrossRef]
- Orman, O.; Dobrowolska, D. Gap dynamics in the Western Carpathian mixed beech old-growth forests affected by spruce bark beetle outbreak. Eur. J. For. Res. 2017, 136, 571–581. [Google Scholar] [CrossRef]
- Janík, D.; Adam, D.; Hort, L.; Král, K.; Šamonil, P.; Unar, P.; Vrška, T. Tree spatial patterns of Abies alba and Fagus sylvatica in the Western Carpathians over 30 years. Eur. J. For. Res. 2014, 133, 1015–1028. [Google Scholar] [CrossRef]
- Jaloviar, P.; Saniga, M.; Kucbel, S.; Pittner, J.; Vencurik, J.; Dovciak, M. Seven decades of change in a European old-growth forest following a stand-replacing wind disturbance: A long-term case study. For. Ecol. Manag. 2017, 399, 197–205. [Google Scholar] [CrossRef]
- Saniga, M.; Balanda, M.; Kucbel, S.; Jaloviar, P. Cyclic Changes in Tree Species Composition of Mixed-Species Forest in Western Carpathians: Role of Disturbance and Tree Regeneration. Pol. J. Ecol. 2011, 59, 699–708. [Google Scholar]
- Stancioiu, P.T.; O’Hara, K.L. Morphological plasticity of regeneration subject to different levels of canopy cover in mixed-species, multiaged forests of the Romanian Carpathians. Trees Struct. Funct. 2006, 20, 196–209. [Google Scholar] [CrossRef]
- Stancioiu, P.T.; O’hara, K.L. Regeneration growth in different light environments of mixed species, multiaged, mountainous forests of Romania. Eur. J. For. Res. 2006, 125, 151–162. [Google Scholar] [CrossRef]
- Dinca, L.; Marin, M.; Radu, V.; Murariu, G.; Drasovean, R.; Cretu, R.; Georgescu, L.; Timiș-Gânsac, V. Which are the Best Site and Stand Conditions for Silver Fir (Abies alba Mill.) Located in the Carpathian Mountains? Diversity 2022, 14, 547. [Google Scholar] [CrossRef]
- Teodosiu, M.; Mihai, G.; Fussi, B.; Ciocîrlan, E. Genetic diversity and structure of Silver fir (Abies alba Mill.) at the south-eastern limit of its distribution range. Ann. For. Res. 2019, 62, 139–156. [Google Scholar] [CrossRef]
- Leuschner, C.; Feldmann, E.; Pichler, V.; Glatthorn, J.; Hertel, D. Forest management impact on soil organic carbon: A paired-plot study in primeval and managed European beech forests. For. Ecol. Manag. 2022, 512, 120163. [Google Scholar] [CrossRef]
- Glatthorn, J.; Feldmann, E.; Pichler, V.; Hauck, M.; Leuschner, C. Biomass Stock and Productivity of Primeval and Production Beech Forests: Greater Canopy Structural Diversity Promotes Productivity. Ecosystems 2018, 21, 704–722. [Google Scholar] [CrossRef]
- Roessiger, J.; Kulla, L.; Bošeľa, M. Finding equilibrium in continuous-cover forest management sensitive to interest rates using an advanced matrix transition model. J. For. Econ. 2018, 33, 83–94. [Google Scholar] [CrossRef]
- Brang, P.; Spathelf, P.; Larsen, J.B.; Bauhus, J.; Bončína, A.; Chauvin, C.; Drössler, L.; García-Güemes, C.; Heiri, C.; Kerr, G.; et al. Suitability of close-to-nature silviculture for adapting temperate European forests to climate change. For. Res. 2014, 87, 492–503. [Google Scholar] [CrossRef]
- Keeton, W.S.; Angelstam, P.K.; Bihun, Y.; Chernyavskyy, M.; Crow, S.M.; Deyneka, A.; Elbakidze, M.; Farley, J.; Ko-valyshyn, V.; Kruhlov, I.; et al. Sustainable Forest Management Alternatives for the Carpathian Mountains with a Focus on Ukraine. In Environmental Science and Engineering; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar] [CrossRef]
- Dincă, L.; Murariu, G.; Iticescu, C.; Budeanu, M.; Murariu, A. Norway Spruce (Picea abies (L.) Karst.) Smart Forests from the Southern Carpathians. Int. J. Conserv. Sci. 2019, 10, 781–790. [Google Scholar]
- Bowditch, E.; Santopuoli, G.; Binder, F.; del Río, M.; La Porta, N.; Kluvankova, T.; Lesinski, J.; Motta, R.; Pach, M.; Panzacchi, P.; et al. What is Climate-Smart Forestry? A definition from a multinational collaborative process focused on mountain regions of Europe. Ecosyst. Serv. 2020, 43, 101113. [Google Scholar] [CrossRef]
- Stiers, M.; Willim, K.; Seidel, D.; Ehbrecht, M.; Kabal, M.; Ammer, C.; Annighöfer, P. A quantitative comparison of the structural complexity of managed, lately unmanaged and primary European beech (Fagus sylvatica L.) forests. For. Ecol. Manag. 2018, 430, 357–365. [Google Scholar] [CrossRef]
- Stiers, M.; Willim, K.; Seidel, D.; Ammer, C.; Kabal, M.; Stillhard, J.; Annighöfer, P. Analyzing Spatial Distribution Patterns of European Beech (Fagus sylvatica L.) Regeneration in Dependence of Canopy Openings. Forests 2019, 10, 637. [Google Scholar] [CrossRef]
- Meigs, G.W.; Morrissey, R.C.; Bače, R.; Chaskovskyy, O.; Čada, V.; Després, T.; Donato, D.C.; Janda, P.; Lábusová, J.; Seedre, M.; et al. More ways than one: Mixed-severity disturbance regimes foster structural complexity via multiple developmental pathways. For. Ecol. Manag. 2017, 406, 410–426. [Google Scholar] [CrossRef]
- Seidl, R.; Schelhaas, M.-J.; Rammer, W.; Verkerk, P.J. Erratum: Corrigendum: Increasing forest disturbances in Europe and their impact on carbon storage. Nat. Clim. Chang. 2014, 4, 930. [Google Scholar] [CrossRef]
- Seidl, R.; Thom, D.; Kautz, M.; Martin-Benito, D.; Peltoniemi, M.; Vacchiano, G.; Wild, J.; Ascoli, D.; Petr, M.; Honkaniemi, J.; et al. Forest disturbances under climate change. Nat. Clim. Chang. 2017, 7, 395–402. [Google Scholar] [CrossRef]
- Rodrigo, R.; Pettit, J.L.; Matula, R.; Kozák, D.; Bače, R.; Pavlin, J.; Janda, P.; Mikoláš, M.; Nagel, T.A.; Schurman, J.; et al. Historical mixed-severity disturbances shape current diameter distributions of primary temperate Norway spruce mountain forests in Europe. For. Ecol. Manag. 2021, 503, 119772. [Google Scholar] [CrossRef]
- Ferenčík, M.; Svitok, M.; Mikoláš, M.; Hofmeister, J.; Majdanová, L.; Vostarek, O.; Kozák, D.; Bače, R.; Begovič, K.; Běťák, J.; et al. Spatial and temporal extents of natural disturbances differentiate deadwood-inhabiting fungal communities in spruce primary forest ecosystems. For. Ecol. Manag. 2022, 517, 120272. [Google Scholar] [CrossRef]
- Mikoláš, M.; Svitok, M.; Bollmann, K.; Reif, J.; Bače, R.; Janda, P.; Trotsiuk, V.; Čada, V.; Vítková, L.; Teodosiu, M.; et al. Mixed-severity natural disturbances promote the occurrence of an endangered umbrella species in primary forests. For. Ecol. Manag. 2017, 405, 210–218. [Google Scholar] [CrossRef]
- Janda, P.; Trotsiuk, V.; Mikoláš, M.; Bače, R.; Nagel, T.A.; Seidl, R.; Seedre, M.; Morrissey, R.C.; Kucbel, S.; Jaloviar, P.; et al. The historical disturbance regime of mountain Norway spruce forests in the Western Carpathians and its influence on current forest structure and composition. For. Ecol. Manag. 2017, 388, 67–78. [Google Scholar] [CrossRef] [PubMed]
- Durak, T. Long-term trends in vegetation changes of managed versus unmanaged Eastern Carpathian beech forests. For. Ecol. Manag. 2010, 260, 1333–1344. [Google Scholar] [CrossRef]
- Havašová, M.; Ferenčík, J.; Jakuš, R. Interactions between windthrow, bark beetles and forest management in the Tatra national parks. For. Ecol. Manag. 2017, 391, 349–361. [Google Scholar] [CrossRef]
- Jonášová, M.; Vávrová, E.; Cudlín, P. Western Carpathian mountain spruce forest after a windthrow: Natural regeneration in cleared and uncleared areas. For. Ecol. Manag. 2010, 259, 1127–1134. [Google Scholar] [CrossRef]
- Michalová, Z.; Morrissey, R.C.; Wohlgemuth, T.; Bače, R.; Fleischer, P.; Svoboda, M. Salvage-Logging after Windstorm Leads to Structural and Functional Homogenization of Understory Layer and Delayed Spruce Tree Recovery in Tatra Mts., Slovakia. Forests 2017, 8, 88. [Google Scholar] [CrossRef]
- Szwagrzyk, J.; Gratzer, G.; Stępniewska, H.; Szewczyk, J.; Veselinovic, B. High Reproductive Effort and Low Recruitment Rates of European Beech: Is There a Limit for the Superior Competitor? Pol. J. Ecol. 2015, 63, 198–212. [Google Scholar] [CrossRef]
- Chivulescu, Ș.; Pitar, D.; Apostol, B.; Leca, Ș.; Badea, O. Importance of Dead Wood in Virgin Forest Ecosystem Functioning in Southern Carpathians. Forests 2022, 13, 409. [Google Scholar] [CrossRef]
- Kozák, D.; Svitok, M.; Wiezik, M.; Mikoláš, M.; Thorn, S.; Buechling, A.; Hofmeister, J.; Matula, R.; Trotsiuk, V.; Bače, R.; et al. Historical Disturbances Determine Current Taxonomic, Functional and Phylogenetic Diversity of Saproxylic Beetle Communities in Temperate Primary Forests. Ecosystems 2021, 24, 37–55. [Google Scholar] [CrossRef]
- Schafstall, N.; Kuosmanen, N.; Kuneš, P.; Svobodová, H.S.; Svitok, M.; Chiverrell, R.C.; Halsall, K.; Fleischer, P.; Knížek, M.; Clear, J.L. Sub-fossil bark beetles as indicators of past disturbance events in temperate Picea abies mountain forests. Quat. Sci. Rev. 2022, 275, 107289. [Google Scholar] [CrossRef]
- Durak, T.; Bugno-Pogoda, A.; Durak, R. Impact of forest stand development on long-term changes in the herb layer of semi-natural Carpathian beech forests. For. Ecol. Manag. 2022, 518, 120233. [Google Scholar] [CrossRef]
- Banaś, J.; Zięba, S.; Bujoczek, L. An Example of Uneven-Aged Forest Management for Sustainable Timber Harvesting. Sustainability 2018, 10, 3305. [Google Scholar] [CrossRef]
- Roessiger, J.; Kulla, L.; Murgaš, V.; Sedliak, M.; Kovalčík, M.; Cienciala, E.; Šebeň, V. Funding for planting missing species financially supports the conversion from pure even-aged to uneven-aged mixed forests and climate change mitigation. Eur. J. For. Res. 2022, 141, 517–534. [Google Scholar] [CrossRef]
- Małek, S.; Barszcz, J.; Kędziora, B. Factors Influencing Silvicultural Value of Cultures of Silver Fir Abies Alba Mill. At Higher Altitudes in the Beskid Slaski and Beskid Zywiecki Mountains. Folia For. Pol. Ser. A 2012, 54, 145–152. [Google Scholar]
- S4C Research Agenda 2022–2030. Science for Carpathians (S4C) 2022. Available online: http://carpathianscience.org/documents/research-agenda/ (accessed on 15 April 2023).
- Nijnik, M.; Kluvánková, T.; Nijnik, A.; Kopiy, S.; Melnykovych, M.; Sarkki, S.; Barlagne, C.; Brnkaláková, S.; Kopiy, L.; Fizyk, I.; et al. Is There a Scope for Social Innovation in Ukrainian Forestry? Sustainability 2020, 12, 9674. [Google Scholar] [CrossRef]
- Egan, A.R.; Keeton, W.S.; Danks, C.M.; Soloviy, I.; Zia, A. Forest carbon projects in the Ukrainian Carpathians: An assessment of potential community impacts and benefits. Ann. For. Res. 2017, 60, 3–17. [Google Scholar] [CrossRef]
Steps | Description | Eligibility Criteria | Number of Articles |
---|---|---|---|
1 | Scopus and WoS database search | Search terms: (Carpath* AND (Forest* OR Afforestation)) Language: English; dates: January 1900 to March 2023 Sources type: articles, review Search within title, abstract, keywords | 1233 (WoS) 2112 (Scopus) |
2 | Database selection | Broader coverage | 2112 (Scopus) |
3 | Detection of clusters | Most frequently used terms relevant for forests in titles and abstracts (number of articles including respective terms) | 266 “Vegetation”234 “Landscape” 229 “Climate” 225 “Management” |
3 | Abstract screening for thematic relevance | Thematic clusters: “Land cover or/and land use change”, “Climate change”, “Forest management” | 689 |
4 | Content examination for evidence of change | At least one massif of the Carpathians | 276 |
5 | Exclusion of redundant content | Removal of specific case studies or similar studies providing the same evidence by the same authors | 251 |
Forest Indicators | Western Carpathians | Eastern Carpathians | Southern Carpathians |
---|---|---|---|
Forest composition | |||
Rotation period of harvesting | 95–140 years | 80–120 years | 100–200 years for beech, spruce, sessile oak, and fir, 70–160 years for other oaks |
Forestry practices | Mainly sanitary felling, uniform shelterwood regeneration in stands with fir and/or beech admixtures, support of larch or pine deadwood removal | Clear-cut logging, selective and clear-cut sanitary felling to 1100 m a.s.l. | Tree selection, shelterwood, and clear-cutting for small spruce areas and sanitary felling after windthrows and insect outbreaks |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kholiavchuk, D.; Gurgiser, W.; Mayr, S. Carpathian Forests: Past and Recent Developments. Forests 2024, 15, 65. https://doi.org/10.3390/f15010065
Kholiavchuk D, Gurgiser W, Mayr S. Carpathian Forests: Past and Recent Developments. Forests. 2024; 15(1):65. https://doi.org/10.3390/f15010065
Chicago/Turabian StyleKholiavchuk, Dariia, Wolfgang Gurgiser, and Stefan Mayr. 2024. "Carpathian Forests: Past and Recent Developments" Forests 15, no. 1: 65. https://doi.org/10.3390/f15010065