How Much Visual Greenery Can Street Trees Generate from a Humanistic Perspective? An Attempt to Quantify the Canopy Green View Index Based on Tree Morphology
Abstract
:1. Introduction
1.1. Overview of the Significance of Street Trees in Cities
1.2. Quantifying the Visible Greenery from Street Tree Canopies Can Promote GVI Application in Urban Planning
1.3. The Inspiration from Tree Morphology to Quantify the GVI of Street Trees
1.4. Study Aims
- There is a difference between three-dimensional greenery volume and visible greenery quantity.
- The canopy GVI of each street tree species needed to be quantified from the pedestrian perspective.
- The tree morphology studies may need to extend the measurable aspects.
- The practical application of evaluable GVI is needed in future urban planning and construction.
- (1)
- The GVI level provided by a single canopy and unilateral street trees from a pedestrian perspective.
- (2)
- Intergroup differences in the GVI among the three tree species and their morphological factors.
- (3)
- The canopy morphology characteristics that can produce a higher GVI and the degree of influence and interpretability of morphological factors on GVI.
- (4)
- The impact of specifications on the GVI of different street tree species.
2. Materials and Methods
2.1. Sample Selection of Street Tree Species
2.2. Contents and Methods of Measurement
2.2.1. Factors and Parameters of Street Trees
2.2.2. Calculation of GVI
2.3. Data Analysis
3. Results
3.1. The Effect of Tree Morphology Factors on Canopy GVI
3.2. Quantification of the GVI Provided by Three Street Tree Species
3.3. Street Tree Specifications and GVIc of Individual Trees
3.4. Display Efficiency of Single-Street-Tree GVI
4. Discussion
4.1. New Parameters of Tree Morphology Used in This Study
4.2. GVI Application from the Perspectives of Pedestrians
4.3. Keep a Balance between Visible Greenery Quantity and Ecoservices of Urban Street Greening
4.4. How GVIc Can Improve the Planning and Management of Urban Street Greening
- It is different between three-dimensional greenery volume and visible greenery quantity.
- Inspirations of urban greening management cost from the perspective of tree selection.
- The establishment of the GVI database for each city.
- Utilizing the canopy GVI to improve the GVI application in the urban planning stage.
4.5. Strengths and Prospects
5. Conclusions
- (1)
- Visible greenery quantification of three species of street trees
- (a)
- Street trees can provide a large amount of visible green volume:
- Unilateral street trees can provide approximately 20% of the GVI.
- A single tree canopy can provide approximately 13% of the GVI.
- (b)
- The proportion sequence of visible greenery in the overall GVI in three species of street trees’ canopies:
- Camphor trees and Chinese privet can produce similar levels of the GVI.
- Chinese privet has the highest proportion of global GVI, while Southern magnolia provides the lowest levels and proportions of the GVI.
- (2)
- Factors of canopy morphology relate to the GVI
- (a)
- A flat oval crown with a wider CW is more effective in providing GVI than a long oval crown with a higher CW, and a CW with a higher CHc highlights this advantage.
- (b)
- The new parameters related to the central crown (CHc and R2) have a significant impact on GVI and can be applied to tree morphology research.
- (3)
- Significance of DBH for tree specification and visible greenness
- (a)
- DBHs of 30 and 40 can be used as grading indicators for Camphor trees.
- (b)
- DBH of 30 can be used as a grading indicator for Southern magnolia and Chinese privet in the specification division.
- (c)
- The relationship between GVIc and tree specifications of Southern magnolia and Chinese privet is not obvious, which can reduce the specification requirements for both, thereby saving the cost of future seedling cultivation.
- (4)
- The new concept of GVI display efficiency
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mullaney, J.; Lucke, T.; Trueman, S.J. A review of benefits and challenges in growing street trees in paved urban environments. Landsc. Urban Plan. 2015, 134, 157–166. [Google Scholar] [CrossRef]
- Im, J. Green streets to serve urban sustainability: Benefits and typology. Sustainability 2019, 11, 22. [Google Scholar] [CrossRef]
- Wu, D.; Gong, J.H.; Liang, J.M.; Sun, J.; Zhang, G.Y. Analyzing the influence of urban street greening and street buildings on summertime air pollution based on street view image data. ISPRS Int. J. Geo-Inf. 2020, 9, 16. [Google Scholar] [CrossRef]
- Vailshery, L.S.; Jaganmohan, M.; Nagendra, H. Effect of street trees on microclimate and air pollution in a tropical city. Urban For. Urban Green. 2013, 12, 408–415. [Google Scholar] [CrossRef]
- Gillner, S.; Vogt, J.; Tharang, A.; Dettmann, S.; Roloff, A. Role of street trees in mitigating effects of heat and drought at highly sealed urban sites. Landsc. Urban Plan. 2015, 143, 33–42. [Google Scholar] [CrossRef]
- Sanusi, R.; Johnstone, D.; May, P.; Livesley, S.J. Microclimate benefits that different street tree species provide to sidewalk pedestrians relate to differences in Plant Area Index. Landsc. Urban Plan. 2017, 157, 502–511. [Google Scholar] [CrossRef]
- Tan, Z.; Lau, K.K.L.; Ng, E. Urban tree design approaches for mitigating daytime urban heat island effects in a high-density urban environment. Energy Build. 2016, 114, 265–274. [Google Scholar] [CrossRef]
- Emmanuel, R.; Rosenlund, H.; Johansson, E. Urban shading—A design option for the tropics? A study in Colombo, Sri Lanka. Int. J. Climatol. 2007, 27, 1995–2004. [Google Scholar] [CrossRef]
- Klemm, W.; Heusinkveld, B.G.; Lenzholzer, S.; van Hove, B. Street greenery and its physical and psychological impact on thermal comfort. Landsc. Urban Plan. 2015, 138, 87–98. [Google Scholar] [CrossRef]
- Yoshida, A.; Hisabayashi, T.; Kashihara, K.; Kinoshita, S.; Hashida, S. Evaluation of effect of tree canopy on thermal environment, thermal sensation, and mental state. Urban Clim. 2015, 14, 240–250. [Google Scholar] [CrossRef]
- Jia, S.; Wang, Y. Effect of heat mitigation strategies on thermal environment, thermal comfort, and walkability: A case study in Hong Kong. Build. Environ. 2021, 201, 107988. [Google Scholar] [CrossRef]
- Hendra, S.; Imam, B.; Anang, W. Green infrastructure modelling for UHI control to urban thermal comfort: A case study of Temanggung urban area. Int. J. Urban Sci. 2023. [Google Scholar] [CrossRef]
- Omar, M.; Schneider-Maunoury, L.; Barr, K.; Sayed, N.A.; Halwani, J.; Machon, N. Colonization and extinction dynamics among the plant species at tree bases in Paris (France). Ecol. Evol. 2019, 9, 8414–8428. [Google Scholar] [CrossRef] [PubMed]
- Geary, M.; Brailsford, C.J.; Hough, L.I.; Baker, F.; Guerrero, S.; Leon, Y.M.; Collar, N.J.; Marsden, S.J. Street-level green spaces support a key urban population of the threatened Hispaniolan parakeet Psittacara chloropterus. Urban Ecosyst. 2021, 24, 1371–1378. [Google Scholar] [CrossRef]
- Gomes, I.N.; Bosenbecker, C.; Silva, V.H.; Cardoso, J.C.; Pena, J.C.; Maruyama, P.K. Spatiotemporal availability of pollinator attractive trees in a tropical streetscape: Unequal distribution for pollinators and people. Urban For. Urban Green. 2023, 83, 127900. [Google Scholar] [CrossRef]
- Seok, Y.; Yim, H.; Moon, T.; Chon, J. Street tree planning to improve public health and ecosystem resilience in urban areas: A scenario analysis using a system dynamics model. Int. J. Environ. Res. Public Health 2022, 19, 1625. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Meili, N.; Fatichi, S.; Hang, J.; Tan, P.Y.; Yuan, C. Effects of tree plantings with varying street aspect ratios on the thermal environment using a mechanistic urban canopy model. Build. Environ. 2023, 246, 111006. [Google Scholar] [CrossRef]
- de Quadros, B.M.; Mizgier, M.G.O. Urban green infrastructures to improve pedestrian thermal comfort: A systematic review. Urban For. Urban Green. 2023, 88, 128091. [Google Scholar] [CrossRef]
- Peluso, P.; Persichetti, G.; Moretti, L. Effectiveness of Road Cool Pavements, Greenery, and Canopies to Reduce the Urban Heat Island Effects. Sustainability 2022, 14, 16027. [Google Scholar] [CrossRef]
- Selbig, W.R.; Loheide, S.P.; Shuster, W.; Scharenbroch, B.C.; Coville, R.C.; Kruegler, J.; Avery, W.; Haefner, R.; Nowak, D. Quantifying the stormwater runoff volume reduction benefits of urban street tree canopy. Sci. Total Environ. 2022, 806, 151296. [Google Scholar] [CrossRef]
- Fernandes, C.O.; da Silva, I.M.; Teixeira, C.P.; Costa, L. Between tree lovers and tree haters. Drivers of public perception regarding street trees and its implications on the urban green infrastructure planning. Urban For. Urban Green. 2019, 37, 97–108. [Google Scholar] [CrossRef]
- Shah, A.M.; Liu, G.; Huo, Z.; Yang, Q.; Zhang, W.; Meng, F.; Yao, L.; Ulgiati, S. Assessing environmental services and disservices of urban street trees. an application of the emergy accounting. Resour. Conserv. Recycl. 2022, 186, 106563. [Google Scholar] [CrossRef]
- Baró, F.; Calderón-Argelich, A.; Langemeyer, J.; Connolly, J.J. Under one canopy? Assessing the distributional environmental justice implications of street tree benefits in Barcelona. Environ. Sci. Policy 2019, 102, 54–64. [Google Scholar] [CrossRef] [PubMed]
- Pistón, N.; Silva Filho, D.S.; Dias, A.T. Social inequality deeply affects people’s perception of ecosystem services and disservices provided by street trees. Ecosyst. Serv. 2022, 58, 101480. [Google Scholar] [CrossRef]
- Greene, C.S.; Robinson, P.J.; Millward, A.A. Canopy of advantage: Who benefits most from city trees? J. Environ. Manag. 2018, 208, 24–35. [Google Scholar] [CrossRef] [PubMed]
- Calvi, A. Does roadside vegetation affect driving performance?: Driving simulator study on the effects of trees on drivers’ speed and lateral position. Transp. Res. Rec. 2015, 2518, 1–8. [Google Scholar] [CrossRef]
- Fitzpatrick, C.D.; Samuel, S.; Knodler, M.A., Jr. Evaluating the effect of vegetation and clear zone width on driver behavior using a driving simulator. Transp. Res. Part F Traffic Psychol. Behav. 2016, 42, 80–89. [Google Scholar] [CrossRef]
- Jiang, B.; Chang, C.Y.; Sullivan, W.C. A dose of nature: Tree cover, stress reduction, and gender differences. Landsc. Urban Plan. 2014, 132, 26–36. [Google Scholar] [CrossRef]
- Jiang, B.; He, J.; Chen, J.; Larsen, L. Moderate is optimal: A simulated driving experiment reveals freeway landscape matters for driving performance. Urban For. Urban Green. 2021, 58, 126976. [Google Scholar] [CrossRef]
- Antonson, H.; Mårdh, S.; Wiklund, M.; Blomqvist, G. Effect of surrounding landscape on driving behaviour: A driving simulator study. J. Environ. Psychol. 2009, 29, 493–502. [Google Scholar] [CrossRef]
- Aoki, Y. Relationship between percieved greenery and width of visual fields. J. Jpn. Inst. Landsc. Archit. 1987, 51, 1–10. [Google Scholar] [CrossRef]
- Aoki, Y. Evaluation methods for landscapes with greenery. Landsc. Res. 1991, 16, 3–6. [Google Scholar] [CrossRef]
- Yu, S.; Yu, B.; Song, W.; Wu, B.; Zhou, J.; Huang, Y.; Wu, J.; Zhao, F.; Mao, W. View-based greenery: A three-dimensional assessment of city buildings’ green visibility using Floor Green View Index. Landsc. Urban Plan. 2016, 152, 13–26. [Google Scholar] [CrossRef]
- Labib, S.M.; Huck, J.J.; Lindley, S. Modelling and mapping eye-level greenness visibility exposure using multi-source data at high spatial resolutions. Sci. Total Environ. 2021, 755, 143050. [Google Scholar] [CrossRef]
- Li, T.; Zheng, X.; Wu, J.; Zhang, Y.; Fu, X.; Deng, H. Spatial relationship between green view index and normalized differential vegetation index within the Sixth Ring Road of Beijing. Urban For. Urban Green. 2021, 62, 127153. [Google Scholar] [CrossRef]
- Xiao, L.; Wang, W.; Ren, Z.; Fu, Y.; Lv, H.; He, X. Two-city street-view greenery variations and association with forest attributes and landscape metrics in NE China. Landsc. Ecol. 2021, 36, 1261–1280. [Google Scholar] [CrossRef]
- Hu, T.; Wei, D.; Su, Y.; Wang, X.; Zhang, J.; Sun, X.; Liu, Y.; Guo, Q. Quantifying the shape of urban street trees and evaluating its influence on their aesthetic functions based on mobile lidar data. ISPRS J. Photogramm. Remote Sens. 2022, 184, 203–214. [Google Scholar] [CrossRef]
- Zhu, H.; Nan, X.; Yang, F.; Bao, Z. Utilizing the green view index to improve the urban street greenery index system: A statistical study using road patterns and vegetation structures as entry points. Landsc. Urban Plan. 2023, 237, 104780. [Google Scholar] [CrossRef]
- Gu, W.; Chen, Y.; Dai, M. Measuring community greening merging multi-source geo-data. Sustainability 2019, 11, 1104. [Google Scholar] [CrossRef]
- Cui, Q.; Huang, Y.; Yang, G.; Chen, Y. Measuring green exposure levels in communities of different economic levels at different completion periods: Through the lens of social equity. Int. J. Environ. Res. Public Health 2022, 19, 9611. [Google Scholar] [CrossRef]
- Luo, J.; Zhai, S.; Song, G.; He, X.; Song, H.; Chen, J.; Liu, H.; Feng, Y. Assessing inequity in green space exposure toward a “15-minute city” in Zhengzhou, China: Using deep learning and urban big data. Int. J. Environ. Res. Public Health 2022, 19, 5798. [Google Scholar] [CrossRef] [PubMed]
- Xue, C.; Jin, C.; Xu, J. Inequality in urban green space benefits: Combining street greenery and park greenery. PLoS ONE 2022, 17, e0273191. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Wang, Y.T.; Guo, X.H.; Wang, L.F. Equity evaluation of urban green space in the main urban area of Wuhan based on green view index. J. Appl. Ecol. 2023, 34, 1083–1090. [Google Scholar] [CrossRef]
- Zhu, H.; Yang, F.; Bao, Z.; Nan, X. A study on the impact of Visible Green Index and vegetation structures on brain wave change in residential landscape. Urban For. Urban Green. 2021, 64, 127299. [Google Scholar] [CrossRef]
- Huang, S.; Zhu, J.; Zhai, K.; Wang, Y.; Wei, H.; Xu, Z.; Gu, X. Do emotional perceptions of visible greeneries rely on the largeness of green space? A verification in Nanchang, China. Forests 2022, 13, 1192. [Google Scholar] [CrossRef]
- Lu, S.; Oh, W.; Ooka, R.; Wang, L. Effects of environmental features in small public urban green spaces on older adults’ mental restoration: Evidence from Tokyo. Int. J. Environ. Res. Public Health 2022, 19, 5477. [Google Scholar] [CrossRef] [PubMed]
- Llaguno-Munitxa, M.; Edwards, M.; Grade, S.; Meulen, M.V.; Letesson, C.; Sierra, E.A.; Altomonte, S.; Lacroix, E.; Bogosian, B.; Kris, M.; et al. Quantifying stress level reduction induced by urban greenery perception. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2022; Volume 1122, p. 012021. [Google Scholar] [CrossRef]
- Peng, F.; Zheng, H.; Lu, S.; Shi, Z.; Liu, X.; Li, L. Growth model and visualization of a virtual jujube tree. Comput. Electron. Agric. 2019, 157, 146–153. [Google Scholar] [CrossRef]
- Shoda, T.; Imanishi, J.; Shibata, S. Growth characteristics and growth equations of the diameter at breast height using tree ring measurements of street trees in Kyoto City, Japan. Urban For. Urban Green. 2020, 49, 126627. [Google Scholar] [CrossRef]
- Laubhann, D.; Sterba, H.; Reinds, G.J.; De Vries, W. The impact of atmospheric deposition and climate on forest growth in European monitoring plots: An individual tree growth model. For. Ecol. Manag. 2009, 258, 1751–1761. [Google Scholar] [CrossRef]
- Wang, H.; Hua, J.; Kang, M.; Wang, X.; Fan, X.R.; Fourcaud, T.; De Reffye, P. Stronger wind, smaller tree: Testing tree growth plasticity through a modeling approach. Front. Plant Sci. 2022, 13, 971690. [Google Scholar] [CrossRef]
- Hu, X.; Chen, W.; Xu, W. Adaptive mean shift-based identification of individual trees using airborne LiDAR data. Remote Sens. 2017, 9, 148. [Google Scholar] [CrossRef]
- Lin, Y.; Jiang, M.; Pellikka, P.; Heiskanen, J. Recruiting conventional tree architecture models into state-of-the-art LiDAR mapping for investigating tree growth habits in structure. Front. Plant Sci. 2018, 9, 220. [Google Scholar] [CrossRef] [PubMed]
- Kobal, M.; Hladnik, D. Tree height growth modelling using LiDAR-derived topography information. ISPRS Int. J. Geo-Inf. 2021, 10, 419. [Google Scholar] [CrossRef]
- Tang, L.; He, J.; Peng, W.; Huang, H.; Chen, C.; Yu, C. Assessing the visibility of urban greenery using MLS LiDAR data. Landsc. Urban Plan. 2023, 232, 104662. [Google Scholar] [CrossRef]
- Liu, Y.; Pan, X.; Liu, Q.; Li, G. Establishing a Reliable Assessment of the Green View Index Based on Image Classification Techniques, Estimation, and a Hypothesis Testing Route. Land 2023, 12, 1030. [Google Scholar] [CrossRef]
- Berland, A. Urban tree growth models for two nearby cities show notable differences. Urban Ecosyst. 2020, 23, 1253–1261. [Google Scholar] [CrossRef]
- Vogt, J.M.; Watkins, S.L.; Mincey, S.K.; Patterson, M.S.; Fischer, B.C. Explaining planted-tree survival and growth in urban neighborhoods: A social–ecological approach to studying recently-planted trees in Indianapolis. Landsc. Urban Plan. 2015, 136, 130–143. [Google Scholar] [CrossRef]
- Qie, G.; Cao, L.; Liu, H.; Fan, X. The current situation and regional distribution characteristics of tree selection in urban areas of China. Sci. Silvae Sin. 2019, 55, 76–87. [Google Scholar]
- China Architectural Standards Design and Research Institute. Environmental Landscape Greening Planting Design; China Planning Press: Beijing, China, 2014. [Google Scholar]
- Weiskittel, A.R.; Hann, D.W.; Kershaw, J.A., Jr.; Vanclay, J.K. Forest Growth and Yield Modeling; Wiley: Hoboken, NJ, USA, 2011. [Google Scholar]
- Ki, D.; Lee, S. Analyzing the effects of Green View Index of neighborhood streets on walking time using Google Street View and deep learning. Landsc. Urban Plan. 2021, 205, 11. [Google Scholar] [CrossRef]
- Xia, Y.X.; Yabuki, N.; Fukuda, T. Development of a system for assessing the quality of urban street-level greenery using street view images and deep learning. Urban For. Urban Green. 2021, 59, 126995. [Google Scholar] [CrossRef]
- Zhou, B.; Zhao, H.; Puig, X.; Xiao, T.; Fidler, S.; Barriuso, A.; Torralba, A. Semantic understanding of scenes through the ade20k dataset. Int. J. Comput. Vis. 2019, 127, 302–321. [Google Scholar] [CrossRef]
- Osaka Prefecture. Survey Guideline of Green View Index. 2013. Available online: http://www.pref.osaka.lg.jp/attach/17426/00000000/guideline.pdf (accessed on 24 October 2023).
- National Health Commission of the People’s Republic of China. Text Transcript of the Press Conference of the National Health Commission on 27 June 2022. 2022. Available online: http://www.nhc.gov.cn/xcs/s3574/202206/f675fc2d35cd45968b9651a3bbff8950.shtml (accessed on 24 October 2023).
- Wang, A.; Guo, Y.; Fang, Y.; Lu, K. Research on the horizontal reduction effect of urban roadside green belt on atmospheric particulate matter in a semi-arid area. Urban For. Urban Green. 2022, 68, 127449. [Google Scholar] [CrossRef]
Factor | Standard Beta | Significance | VIF | DW | ANOVA |
---|---|---|---|---|---|
Constant | 0.000 *** | 1.577 | 0.000 *** | ||
CW | 1.203 | 0.000 *** | 5.579 | ||
CH | 0.093 | 0.040 * | 3.625 | ||
CHc | 0.542 | 0.000 *** | 3.353 | ||
TH | −0.517 | 0.000 *** | 10.366 | ||
DBH | 0.087 | 0.123 | 5.605 | ||
SD | −0.955 | 0.000 *** | 7.719 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, H.; Nan, X.; Kang, N.; Li, S. How Much Visual Greenery Can Street Trees Generate from a Humanistic Perspective? An Attempt to Quantify the Canopy Green View Index Based on Tree Morphology. Forests 2024, 15, 88. https://doi.org/10.3390/f15010088
Zhu H, Nan X, Kang N, Li S. How Much Visual Greenery Can Street Trees Generate from a Humanistic Perspective? An Attempt to Quantify the Canopy Green View Index Based on Tree Morphology. Forests. 2024; 15(1):88. https://doi.org/10.3390/f15010088
Chicago/Turabian StyleZhu, Huaizhen, Xinge Nan, Ning Kang, and Shuhua Li. 2024. "How Much Visual Greenery Can Street Trees Generate from a Humanistic Perspective? An Attempt to Quantify the Canopy Green View Index Based on Tree Morphology" Forests 15, no. 1: 88. https://doi.org/10.3390/f15010088