Long-Term Nitrogen Addition Accelerates Litter Decomposition in a Larix gmelinii Forest
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description and Experimental Design
2.2. Sample Collection and Analysis
2.3. Data Analysis
3. Results
3.1. Soil and Litter Property
3.2. Effects of N Addition on Decomposition of Needle and Mixed Leaf Litter
3.3. Relationship of Decomposition between Soil Animals and the Needle or Mixed Leaf Litter under N Addition
4. Discussion
4.1. Effect of N Addition on Decomposition Rate of Needle and Mixed Leaf Litter
4.2. Effects of N Addition and Small Soil Animals on Decomposition of Needle and Mixed Leaf Litter
4.3. Effects of N Addition on Nutrient Release from Needle and Mixed Leaf Litter
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sardans, J.; Alonso, R.; Janssens, I.A.; Carnicer, J.; Vereseglou, S.; Rillig, M.C.; Fernández-Martínez, M.; Sanders, T.G.M.; Peñuelas, J. Foliar and soil concentrations and stoichiometry of nitrogen and phosphorous across European Pinus sylvestris forests: Relationships with climate, N deposition and tree growth. Funct. Ecol. 2016, 30, 676–689. [Google Scholar] [CrossRef]
- Du, C.; Guo, Q.; Zhang, J. A review on moss nitrogen and isotope signatures evidence for atmospheric nitrogen deposition. Sci. Total Environ. 2022, 806, 150765. [Google Scholar] [CrossRef] [PubMed]
- Buettel, J.C.; Ringwaldt, E.M.; Hovenden, M.J.; Brook, B.W. Importance of the local environment on nutrient cycling and litter decomposition in a tall eucalypt forest. Forests 2019, 10, 340. [Google Scholar] [CrossRef]
- Hernández, E.; Questad, E.J.; Meyer, W.M., III; Suding, K.N. The effects of nitrogen deposition and invasion on litter fuel quality and decomposition in a Stipa pulchra grassland. J. Arid. Environ. 2019, 162, 35–44. [Google Scholar] [CrossRef]
- Lukina, N.V.; Kuznetsova, A.I.; Geraskina, A.P.; Smirnov, V.E.; Ivanova, V.N.; Teben’kova, D.N.; Gornov, A.V.; Shevchenko, N.E.; Tikhonova, E.V. Unaccounted Factors Determining Carbon Stocks in Forest Soils. Russ. Meteorol. Hydrol. 2022, 47, 791–803. [Google Scholar] [CrossRef]
- Wood, T.E.; Lawrence, D.; Clark, D.A. Determinants of leaf litter nutrient cycling in a tropical rain forest: Soil fertility versus topography. Ecosystems 2006, 9, 700–710. [Google Scholar] [CrossRef]
- Chen, F.S.; Feng, X.; Liang, C. Endogenous versus exogenous nutrient affects C, N, and P dynamics in decomposing litters in mid-subtropical forests of China. Ecol. Res. 2012, 27, 923–932. [Google Scholar] [CrossRef]
- Zhang, D.; Hui, D.; Luo, Y.; Zhou, G. Rates of litter decomposition in terrestrial ecosystems: Global patterns and controlling factors. J. Plant Ecol. 2008, 1, 85–93. [Google Scholar] [CrossRef]
- Penner, J.F.; Frank, D.A. Litter Decomposition in Yellowstone Grasslands: The Roles of Large Herbivores, Litter Quality, and Climate. Ecosystems 2019, 22, 929–937. [Google Scholar] [CrossRef]
- Jabiol, J.; Lecerf, A.; Lamothe, S.; Gessner, M.O.; Chauvet, E. Litter Quality Modulates Effects of Dissolved Nitrogen on Leaf Decomposition by Stream Microbial Communities. Microb. Ecol. 2019, 77, 959–966. [Google Scholar] [CrossRef]
- Jiang, X.; Cao, L.; Zhang, R.; Yan, L.; Mao, Y.; Yang, Y. Effects of nitrogen addition and litter properties on litter decomposition and enzyme activities of individual fungi. Appl. Soil Ecol. 2014, 80, 108–115. [Google Scholar] [CrossRef]
- Zhang, W.; Chao, L.; Yang, Q.; Wang, Q.; Fang, Y.; Wang, S. Litter quality mediated nitrogen effect on plant litter decomposition regardless of soil fauna presence. Ecology 2016, 97, 2834–2843. [Google Scholar] [CrossRef]
- Almagro, M.; Maestre, F.T.; Martínez-López, J.; Valencia, E.; Rey, A. Climate change may reduce litter decomposition while enhancing the contribution of photodegradation in dry perennial Mediterranean grasslands. Soil Biol. Biochem. 2015, 90, 214–223. [Google Scholar] [CrossRef]
- Song, Y.; Song, C.; Ren, J.; Tan, W.; Jin, S.; Jiang, L. Influence of nitrogen additions on litter decomposition, nutrient dynamics, and enzymatic activity of two plant species in a peatland in Northeast China. Sci. Total Environ. 2018, 625, 640–646. [Google Scholar] [CrossRef] [PubMed]
- Janssens, I.A.; Dieleman, W.; Luyssaert, S.; Subke, J.A.; Reichstein, M.; Ceulemans, R.; Ciais, P.; Dolman, A.J.; Grace, J.; Matteucci, G.; et al. Reduction of forest soil respiration in response to nitrogen deposition. Nat. Geosci. 2010, 3, 315. [Google Scholar] [CrossRef]
- Gong, S.; Guo, R.; Zhang, T.; Guo, J. Warming and nitrogen addition increase litter decomposition in a temperate meadow ecosystem. PLoS ONE 2015, 10, e0116013. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.S.; Wang, G.G.; Fang, X.M.; Wan, S.Z.; Zhang, Y.; Liang, C. Nitrogen deposition effect on forest litter decomposition is interactively regulated by endogenous litter quality and exogenous resource supply. Plant Soil 2019, 437, 413–426. [Google Scholar] [CrossRef]
- Knorr, M.; Frey, S.D.; Curtis, P.S. Nitrogen additions and litter decomposition: A meta-analysis. Ecology 2005, 86, 3252–3257. [Google Scholar] [CrossRef]
- Tu, L.H.; Hu, H.L.; Chen, G.; Peng, Y.; Xiao, Y.L.; Hu, T.X.; Zhang, J.; Li, X.W.; Liu, L.; Tang, Y. Nitrogen Addition Significantly Affects Forest Litter Decomposition under High Levels of Ambient Nitrogen Deposition. PLoS ONE 2014, 9, e88752. [Google Scholar] [CrossRef]
- Hobbie, S.E. Nitrogen effects on decomposition: A five-year experiment in eight temperate sites. Ecology 2008, 89, 2633–2644. [Google Scholar] [CrossRef]
- Keiblinger, K.M.; Hall, E.K.; Wanek, W.; Szukics, U.; Hämmerle, I.; Ellersdorfer, G.; Böck, S.; Strauss, J.; Sterflinger, K.; Richter, A.; et al. The effect of resource quantity and resource stoichiometry on microbial carbon-use-efficiency. FEMS Microbiol. Ecol. 2010, 73, 430–440. [Google Scholar] [CrossRef]
- Gartner, T.B.; Cardon, Z.G. Decomposition dynamics in mixed-species leaf litter. Oikos 2004, 104, 230–246. [Google Scholar] [CrossRef]
- Wang, J.; Bu, W.; Zhao, B.; Zhao, X.; Zhang, C.; Fan, J.; Gadow, K.V. Effects of Nitrogen Addition on Leaf Decomposition of Single-Species and Litter Mixture in Pinus tabulaeformis Forests. Forests 2015, 6, 4462–4476. [Google Scholar] [CrossRef]
- Eisenhauer, N.; Partsch, S.; Parkinson, D.; Scheu, S. Invasion of a deciduous forest by earthworms: Changes in soil chemistry, microflora, microarthropods and vegetation. Soil Biol. Biochem. 2007, 39, 1099–1110. [Google Scholar] [CrossRef]
- Wong, M.K.; Tsukamoto, J.; Yusuyin, Y.; Tanaka, S.; Iwasaki, K.; Tan, N.P. Comparison of soil macro-invertebrate communities in Malaysian oil palm plantations with secondary forest from the viewpoint of litter decomposition. For. Ecol. Manag. 2016, 381, 63–73. [Google Scholar] [CrossRef]
- Yarwood, S.A. The role of wetland microorganisms in plant-litter decomposition and soil organic matter formation: A critical review. FEMS Microbiol. Ecol. 2018, 94, fiy175. [Google Scholar] [CrossRef]
- García-Palacios, P.; Maestre, F.T.; Kattge, J.; Wall, D.H. Climate and litter quality differently modulate the effects of soil fauna on litter decomposition across biomes. Ecol. Lett. 2013, 16, 1045–1053. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Holmstrup, M.; Schmidt, I.K.; Bachega, L.R.; Schelfhout, S.; Zheng, H.; Heděnec, P.; Yue, K.; Vesterdal, L. Tree species identity is the predominant modulator of the effects of soil fauna on leaf litter decomposition. For. Ecol. Manag. 2022, 520, 120396. [Google Scholar] [CrossRef]
- Xu, G.L.; Mo, J.M.; Fu, S.L.; Gundersen, P.E.R.; Zhou, G.Y.; Jing-Hua, X.U.E. Response of soil fauna to simulated nitrogen deposition: A nursery experiment in subtropical China. J. Environ. Sci. 2007, 19, 603–609. [Google Scholar] [CrossRef]
- Coulis, M.; Hättenschwiler, S.; Fromin, N.; David, J.F. Macroarthropod-microorganism interactions during the decomposition of Mediterranean shrub litter at different moisture levels. Soil Biol. Biochem. 2013, 64, 114–121. [Google Scholar] [CrossRef]
- Manning, P.; Saunders, M.; Bardgett, R.D.; Bonkowski, M.; Bradford, M.A.; Ellis, R.J.; Kandeler, E.; Marhan, S.; Tscherko, D. Direct and indirect effects of nitrogen deposition on litter decomposition. Soil Biol. Biochem. 2008, 40, 688–698. [Google Scholar] [CrossRef]
- Chapin, F.S.; Sala, O.E.; Huber-Sannwald, E. (Eds.) Global Biodiversity in a Changing Environment: Scenarios for the 21st Century (Vol. 152); Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Liu, X.; Zhang, Y.; Han, W.; Tang, A.; Shen, J.; Cui, Z.; Vitousek, P.; Erisman, J.W.; Goulding, K.; Christie, P.; et al. Enhanced nitrogen deposition over China. Nature 2013, 494, 459. [Google Scholar] [CrossRef]
- Yin, W. China Pictorial Keys to Soil Animals; Science Press: Beijing, China, 1998. [Google Scholar]
- Olson, J.S. Energy storage and the balance of producers and decomposers in ecological systems. Ecology 1963, 44, 322–331. [Google Scholar] [CrossRef]
- Hobbie, S.E.; Eddy, W.C.; Buyarski, C.R.; Adair, E.C.; Ogdahl, M.L.; Weisenhorn, P. Response of decomposing litter and its microbial community to multiple forms of nitrogen enrichment. Ecol. Monogr. 2012, 82, 389–405. [Google Scholar] [CrossRef]
- Xu, Y.; Fan, J.; Ding, W.; Bol, R.; Chen, Z.; Luo, J.; Bolan, N. Stage-specific response of litter decomposition to N and S amendments in a subtropical forest soil. Biol. Fertil. Soils 2016, 52, 711–724. [Google Scholar] [CrossRef]
- Su, Y.; Le, J.; Han, W.; Wang, C.; Li, K.; Liu, X. Long-term nitrogen addition consistently decreased litter decomposition rates in an alpine grassland. Plant Soil 2022, 479, 495–509. [Google Scholar] [CrossRef]
- Pérez-Suárez, M.; Arredondo-Moreno, J.T.; Huber-Sannwald, E. Early stage of single and mixed leaf-litter decomposition in semiarid forest pine-oak: The role of rainfall and microsite. Biogeochemistry 2012, 108, 245–258. [Google Scholar] [CrossRef]
- Britton, A.J.; Mitchell, R.J.; Fisher, J.M.; Riach, D.J.; Taylor, A.F. Nitrogen deposition drives loss of moss cover in alpine moss–sedge heath via lowered C: N ratio and accelerated decomposition. New Phytol. 2018, 218, 470–478. [Google Scholar] [CrossRef]
- Wardle, D.A.; Bonner, K.I.; Nicholson, K.S. Biodiversity and plant litter: Experimental evidence which does not support the view that enhanced species richness improves ecosystem function. Oikos 1997, 79, 247–258. [Google Scholar] [CrossRef]
- Schimel, J.P.; Hättenschwiler, S. Nitrogen transfer between decomposing leaf of different N status. Soil Biol. Biochem. 2007, 39, 1428–1436. [Google Scholar] [CrossRef]
- Kaneko, N.; Salamanca, E. Mixed leaf litter effects on decomposition rates and soil microarthropod communities in an oak–pine stand in Japan. Ecol. Res. 1999, 14, 131–138. [Google Scholar] [CrossRef]
- Carreiro, M.M.; Sinsabaugh, R.L.; Repert, D.A.; Parkhurst, D.F. Microbial enzyme shifts explain litter decay responses to simulated nitrogen deposition. Ecology 2000, 81, 2359–2365. [Google Scholar] [CrossRef]
- Wu, J.; Liu, W.; Zhang, W.; Shao, Y.; Duan, H.; Chen, B.; Wei, X.; Fan, H. Long-term nitrogen addition changes soil microbial community and litter decomposition rate in a subtropical forest. Appl. Soil Ecol. 2019, 142, 43–51. [Google Scholar] [CrossRef]
- Cornwell, W.K.; Cornelissen, J.H.; Amatangelo, K.; Dorrepaal, E.; Eviner, V.T.; Godoy, O.; Hobbie, S.E.; Hoorens, B.; Kurokawa, H.; Pérez-Harguindeguy, N.; et al. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol. Lett. 2008, 11, 1065–1071. [Google Scholar] [CrossRef]
- Fujii, S.; Mori, A.S.; Kominami, Y.; Tawa, Y.; Inagaki, Y.; Takanashi, S.; Takeda, H. Differential utilization of root-derived carbon among collembolan species. Pedobiologia 2016, 59, 225–227. [Google Scholar] [CrossRef]
- Phillips, H.R.; Bach, E.M.; Bartz, M.L.; Bennett, J.M.; Beugnon, R.; Briones, M.J.; Brown, G.G.; Ferlian, O.; Gongalsky, K.B.; Guerra, C.A.; et al. Global data on earthworm abundance, biomass, diversity and corresponding environmental properties. Sci. Data 2021, 8, 136. [Google Scholar] [CrossRef]
- Aupic-Samain, A.; Baldy, V.; Lecareux, C.; Fernandez, C.; Santonja, M. Tree litter identity and predator density control prey and predator demographic parameters in a Mediterranean litter-based multi-trophic system. Pedobiologia 2019, 73, 1–9. [Google Scholar] [CrossRef]
- Zheng, Z.; Mamuti, M.; Liu, H.; Shu, Y.; Hu, S.; Wang, X.; Li, B.; Lin, L.; Li, X. Effects of nutrient additions on litter decomposition regulated by phosphorus-induced changes in litter chemistry in a subtropical forest, China. For. Ecol. Manag. 2017, 400, 123–128. [Google Scholar] [CrossRef]
- Cheever, B.M.; Webster, J.R.; Bilger, E.E.; Thomas, S.A. The relative importance of exogenous and substrate-derived nitrogen for microbial growth during leaf decomposition. Ecology 2013, 94, 1614–1625. [Google Scholar] [CrossRef]
- Liu, G.; Xing, Y.; Wang, Q.; Wang, L.; Feng, Y.; Yin, Z.; Wang, X.; Liu, T. Long-term nitrogen addition regulates root nutrient capture and leaf nutrient resorption in Larix gmelinii in a boreal forest. Eur. J. For. Res. 2021, 140, 763–776. [Google Scholar] [CrossRef]
- Manzoni, S.; Jackson, R.B.; Trofymow, J.A.; Porporato, A. The global stoichiometry of litter nitrogen mineralization. Science 2008, 321, 684–686. [Google Scholar] [CrossRef] [PubMed]
- He, X.T.; Stevenson, F.J.; Mulvaney, R.L.; Kelley, K.R. Incorporation of newly immobilized 15N into stable organic forms in soil. Soil Biol. Biochem. 1988, 20, 75–81. [Google Scholar] [CrossRef]
- Kurokawa, H.; Peltzer, D.A.; Wardle, D.A. Plant traits, leaf palatability and litter decomposability for co-occurring woody. Funct. Ecol. 2010, 24, 513–523. [Google Scholar] [CrossRef]
- Sorensen, P.L.; Michelsen, A. Long-term warming and litter addition affects nitrogen fixation in a subarctic heath. Glob. Change Biol. 2011, 17, 528–537. [Google Scholar] [CrossRef]
Treatments | CK | LN | MN | HN |
---|---|---|---|---|
Needle litter C (g·kg−1) | 493.46 ± 32.83 a | 491.30 ± 16.44 a | 486.46 ± 35.78 a | 488.96 ± 13.29 a |
Needle litter N (g·kg−1) | 3.22 ± 0.11 b | 3.24 ± 0.11 b | 3.35 ± 0.11 b | 3.71 ± 0.10 a |
Needle litter P (g·kg−1) | 0.99 ± 0.08 a | 0.90 ± 0.05 ab | 0.83 ± 0.04 ab | 0.80 ± 0.01 b |
Needle litter C:N | 153.43 ± 15.52 a | 151.54 ± 1.71 a | 145.29 ± 10.80 ab | 131.79 ± 0.23 b |
Mixed leaf litter C(g·kg−1) | 515.11 ± 42.97 a | 528.92 ± 8.83 a | 532.08 ± 2.67 a | 524.52 ± 9.67 a |
Mixed leaf litter N (g·kg−1) | 3.64 ± 0.05 c | 4.38 ± 0.03 b | 4.50 ± 0.04 b | 4.80 ± 0.09 a |
Mixed leaf litter P (g·kg−1) | 1.14 ± 0.01 a | 1.11 ± 0.04 ab | 1.09 ± 0.05 ab | 1.03 ± 0.02 b |
Mixed leaf litter C:N | 141.58 ± 10.22 a | 120.82 ± 1.25 b | 118.24 ± 0.70 b | 109.36 ± 3.74 b |
Year | Treatment | T C (g kg−1) | T N (g kg−1) | T P (g kg−1) | C:N | C:P | N:P | pH |
---|---|---|---|---|---|---|---|---|
2017 | CK | 43.24 ± 5.52 a | 1.76 ± 0.09 b | 0.71 ± 0.06 ab | 24.75 ± 4.17 a | 60.74 ± 2.79 | 2.51 ± 0.34 b | 5.48 ± 0.14 a |
LN | 49.69 ± 3.47 a | 1.96 ± 0.19 ab | 0.79 ± 0.03 a | 25.77 ± 3.96 a | 62.67 ± 4.09 | 2.48 ± 0.33 b | 5.38 ± 0.13 a | |
MN | 47.64 ± 5.23 a | 2.30 ± 0.09 a | 0.70 ± 0.01 ab | 20.67 ± 1.69 a | 67.70 ± 7.92 | 3.27 ± 0.14 ab | 5.23 ± 0.05 ab | |
HN | 49.01 ± 2.79 a | 2.26 ± 0.07 a | 0.65 ± 0.03 b | 21.64 ± 0.72 a | 75.82 ± 6.44 | 3.50 ± 0.18 a | 5.01 ± 0.02 b | |
2018 | CK | 45.81 ± 6.89 a | 2.00 ± 0.32 c | 0.83 ± 0.14 a | 22.52 ± 1.08 a | 52.48 ± 2.6 a | 2.41 ± 0.03 b | 5.52 ± 0.12 a |
LN | 45.25 ± 2.36 a | 2.09 ± 0.17 bc | 0.79 ± 0.19 a | 21.81 ± 0.36 a | 56.96 ± 4.74 a | 2.77 ± 0.31 b | 5.41 ± 0.23 ab | |
MN | 45.80 ± 3.73 a | 2.54 ± 0.22 ab | 0.81 ± 0.17 a | 18.62 ± 0.31 b | 57.55 ± 5.00 a | 3.30 ± 0.17 a | 5.29 ± 0.06 ab | |
HN | 48.61 ± 5.72 a | 2.60 ± 0.27 a | 0.79 ± 0.11 a | 18.36 ± 0.87 b | 62.29 ± 3.07 a | 3.32 ± 0.21 a | 4.98 ± 0.05 b |
Treatments | a | Decomposition Coefficient (k) | Determinant Coefficients (R2) | Time Required to Decompose 50% | Time Required to Decompose 95% |
---|---|---|---|---|---|
Needle litter CK | 0.987 | 0.156 ± 0.010 | 0.979 | 4.44 | 19.20 |
Needle litter LN | 0.967 | 0.190 ± 0.025 | 0.921 | 3.65 | 15.77 |
Needle litter MN | 0.933 | 0.203 ± 0.029 | 0.908 | 3.41 | 14.76 |
Needle litter HN | 0.915 | 0.228 ± 0.034 | 0.898 | 3.04 | 13.14 |
Mixed leaf litter CK | 0.938 | 0.176 ± 0.033 | 0.852 | 3.93 | 17.02 |
Mixed leaf litter LN | 0.925 | 0.181 ± 0.033 | 0.861 | 3.83 | 16.55 |
Mixed leaf litter MN | 0.919 | 0.227 ± 0.042 | 0.853 | 3.05 | 13.20 |
Mixed leaf litter HN | 0.935 | 0.178 ± 0.032 | 0.860 | 3.89 | 16.83 |
Factors | F(p) Value | ||
---|---|---|---|
Time | Treatments | Time × Treatments | |
Needle litter C | 271.704 (<0.001) | 126.478 (<0.001) | 5.808 (<0.001) |
Needle litter N | 17.248 (<0.001) | 13.904 (<0.001) | 2.793 (<0.001) |
Needle litter P | 10.612 (<0.001) | 21.119 (<0.001) | 8.396 (<0.001) |
Mixed leaf litter C | 9.843 (<0.001) | 3.250 (<0.05) | 1.597 (>0.05) |
Mixed leaf litter N | 12.396 (<0.001) | 11.158 (<0.001) | 2.949 (<0.05) |
Mixed leaf litter P | 9.171 (<0.001) | 11.459 (<0.001) | 5.706 (<0.001) |
Needle litter C:N | 25.949 (<0.001) | 90.288 (<0.001) | 1.505 (>0.05) |
Mixed leaf litter C:N | 15.628 (<0.001) | 8.848 (<0.001) | 3.126 (<0.001) |
Month | Treatment | Isotomidae | Onychiuridae | Entomobryidae | Hypogastruridae | Oribatida | Mesostigmata |
---|---|---|---|---|---|---|---|
5 | CK | 35 ± 5.31 b | 6 ± 1.25 a | 20 ± 5.72 a | 13 ± 6.13 a | 42 ± 3.26 b | 9 ± 1.25 b |
LN | 67 ± 13.47 a | 4 ± 1.25 a | 10 ± 2.45 ab | 10 ± 2.45 a | 57 ± 2.87 a | 25 ± 0.47 a | |
MN | 21 ± 2.05 bc | 4 ± 1.63 a | 15 ± 4.90 ab | 14 ± 7.35 a | 33 ± 3.68 c | 8 ± 2.87 b | |
HN | 10 ± 4.08 c | 5 ± 2.05 a | 6 ± 0.47 b | 17 ± 0.47 a | 32 ± 3.27 c | 9 ± 1.63 b | |
7 | CK | 105 ± 4.08 b | 12 ± 0.47 b | 13 ± 4.50 c | 9 ± 0.00 ab | 75 ± 5.72 b | 19 ± 3.67 a |
LN | 201 ± 9.39 a | 26 ± 0.82 a | 61 ± 3.27 a | 16 ± 5.31 a | 174 ± 5.31 a | 12 ± 2.05 ab | |
MN | 223 ± 18.78 a | 17 ± 2.45 b | 38 ± 8.98 b | 15 ± 0.00 a | 57 ± 10.61 ab | 7 ± 0.82 bc | |
HN | 57 ± 3.27 c | 7 ± 0.82 c | 15 ± 0.47 c | 6 ± 0.82 b | 44 ± 8.98 c | 4 ± 0.00 c | |
9 | CK | 37 ± 6.53 a | 4 ± 0.00 a | 7 ± 1.63 b | 6 ± 2.05 a | 39 ± 15.11 a | 9 ± 0.47 a |
LN | 17 ± 3.27 b | 5 ± 0.47 a | 12 ± 1.25 a | 5 ± 0.82 a | 19 ± 1.63 ab | 6 ± 2.05 a | |
MN | 3 ± 0.82 c | 3 ± 0.00 a | 3 ± 0.00 c | 3 ± 0.82 a | 25 ± 11.8 ab | 6 ± 2.05 a | |
HN | 12 ± 2.87 bc | 5 ± 1.63 a | 7 ± 0.00 b | 6 ± 1.63 a | 9 ± 0.81 b | 5 ± 1.63 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, M.; Liu, G.; Xing, Y.; Yan, G.; Wang, Q. Long-Term Nitrogen Addition Accelerates Litter Decomposition in a Larix gmelinii Forest. Forests 2024, 15, 372. https://doi.org/10.3390/f15020372
Wang M, Liu G, Xing Y, Yan G, Wang Q. Long-Term Nitrogen Addition Accelerates Litter Decomposition in a Larix gmelinii Forest. Forests. 2024; 15(2):372. https://doi.org/10.3390/f15020372
Chicago/Turabian StyleWang, Miao, Guancheng Liu, Yajuan Xing, Guoyong Yan, and Qinggui Wang. 2024. "Long-Term Nitrogen Addition Accelerates Litter Decomposition in a Larix gmelinii Forest" Forests 15, no. 2: 372. https://doi.org/10.3390/f15020372