Impacts of Deforestation and Climate Variability on Terrestrial Evapotranspiration in Subarctic China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources and Data Pre-Processing
2.3. Semi-Empirical Penman ET Algorithm
2.4. Evaluation Method and Spatio-Temporal Analysis
3. Results
3.1. ET Validation
3.2. Local Effects of Deforestation on ET
3.3. Regional Effects of Deforestation and Climate Change on ET
4. Discussion
4.1. Errors in the ET Estimates
4.2. Impacts of Deforestation and Climate Change on ET
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Liang, S.; Wang, K.; Zhang, X.; Wild, M. Review of estimation of land surface radiation and energy budgets from ground measurements, remote sensing and model simulation. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2010, 3, 225–240. [Google Scholar] [CrossRef]
- Mu, Q.; Zhao, M.; Running, S. Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens. Environ. 2011, 115, 1781–1800. [Google Scholar] [CrossRef]
- Trenberth, K.; Fasullo, J.; Kiehl, J. Earth’s global energy budget. Bull. Am. Meteor. Soc. 2009, 90, 311–323. [Google Scholar] [CrossRef]
- Yao, Y.; Liang, S.; Cheng, J.; Liu, S.; Fisher, J.; Zhang, X.; Jia, K.; Zhao, X.; Qin, Q.; Zhao, B.; et al. MODIS-driven estimation of terrestrial latent heat flux in China based on a modified Priestly-Taylor algorithm. Agric. For. Meteorol. 2013, 171–172, 187–202. [Google Scholar] [CrossRef]
- Yao, Y.; Liang, S.; Li, X.; Hong, Y.; Fisher, J.; Zhang, N.; Chen, J.; Cheng, J.; Zhao, S.; Zhang, X.; et al. Bayesian multimodel estimation of global terrestrial latent heat flux from eddy covariance, meteorological, and satellite observations. J. Geophys. Res. 2014, 119, 4521–4545. [Google Scholar] [CrossRef]
- Yao, Y.; Liang, S.; Zhao, S.; Zhang, Y.; Qin, Q.; Cheng, J.; Jia, K.; Xie, X.; Zhang, N.; Liu, M. Validation and application of the modified satellite-based Priestley-Taylor algorithm for mapping terrestrial evapotranspiration. Remote Sens. 2014, 6, 880–904. [Google Scholar] [CrossRef]
- Zeng, Z.; Wang, T.; Zhou, F.; Ciais, P.; Mao, J.; Shi, X.; Piao, S. A worldwide analysis of spatiotemporal changes in water balance-based evapotranspiration from 1982 to 2009. J. Geophys. Res. 2014, 119, 1186–1202. [Google Scholar] [CrossRef]
- Fisher, J.; Tu, K.; Baldocchi, D. Global estimates of the land-atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites. Remote Sens. Environ. 2008, 112, 901–919. [Google Scholar] [CrossRef]
- Wang, K.; Dickinson, R. A review of global terrestrial evapotranspiration: Observation, modeling, climatology, and climatic variability. Rev. Geophys. 2012, 50. [Google Scholar] [CrossRef]
- Wang, K.; Dickinson, R.; Wild, M.; Liang, S. Evidence for decadal variation in global terrestrial evapotranspiration between 1982 and 2002. Part 1: Model development. J. Geophys. Res. 2010, 115. [Google Scholar] [CrossRef]
- Wang, K.; Dickinson, R.; Wild, M.; Liang, S. Evidence for decadal variation in global terrestrial evapotranspiration between 1982 and 2002. Part 2: Results. J. Geophys. Res. 2010, 115. [Google Scholar] [CrossRef]
- Nemani, R.R.; Keeling, C.D.; Hashimoto, H.; Jolly, W.M.; Piper, S.C.; Tucker, C.J.; Myneni, R.B.; Running, S.W. Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 2003, 300, 1560–1563. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Dickinson, R.E.; Liang, S. Global atmospheric evaporative demand over land from 1973 to 2008. J. Clim. 2012, 25, 8353–8361. [Google Scholar] [CrossRef]
- Yao, Y.; Liang, S.; Xie, X.; Cheng, J.; Jia, K.; Li, Y.; Liu, R. Estimation of the terrestrial water budget over northern China by merging multiple datasets. J. Hydrol. 2014, 519, 50–68. [Google Scholar] [CrossRef]
- Lee, X.; Goulden, M.; Hollinger, D.; Barr, A.; Andrew Black, T.; Bohrer, G.; Bracho, R.; Drake, B.; Goldstein, A.; Gu, L.; et al. Observed increase in local cooling effect of deforestation at higher latitudes. Nature 2011, 479, 384–387. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liang, S. Surface radiative forcing of forest disturbances over northeastern China. Environ. Res. Lett. 2014, 9. [Google Scholar] [CrossRef]
- Werth, D.; Avissar, R. The local and global effects of Amazon deforestation. J. Geophys. Res. 2002, 107. [Google Scholar] [CrossRef]
- Findell, K.L.; Knutson, T.R. Weak simulated extratropical responses to complete tropical deforestation. J. Clim. 2006, 19, 2835–2850. [Google Scholar] [CrossRef]
- Medvigy, D.; Walko, R.L.; Otte, M.J.; Avissar, R. Simulated changes in northwest US climate in response to Amazon deforestation. J. Clim. 2013, 26, 9115–9136. [Google Scholar] [CrossRef]
- Gao, J.; Liu, Y. De(re)forestation and climate warming in subarctic China. Appl. Geogr. 2012, 32, 281–290. [Google Scholar] [CrossRef]
- IPCC. The physical scientific basis. In Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Kanae, S.; Oki, T.; Musiake, K. Impact of deforestation on regional precipitation over the Indochina peninsula. J. Hydrometeorol. 2001, 2, 51–70. [Google Scholar] [CrossRef]
- Gedney, N.; Valdes, P. Effect of Amazonian deforestation on the northern hemisphere circulation and climate. Geophys. Res. Lett. 2000, 27, 3053–3056. [Google Scholar] [CrossRef]
- Bala, G.; Caldeira, K.; Wickett, M.; Phillips, T.; Lobell, D.; Delire, C.; Mirin, A. Combined climate and carbon-cycle effects of large-scale deforestation. Proc. Natl. Acad. Sci. USA 2007, 104, 6550–6555. [Google Scholar] [CrossRef] [PubMed]
- Sampaio, G.; Nobre, C.; Costa, M.; Satyamurty, P.; Soares-Filho, S.; Cardoso, M. Regional climate change over eastern Amazonia caused by pasture and soybean cropland expansion. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef]
- Peng, S.; Piao, S.; Zeng, Z.; Ciais, P.; Zhou, L.; Li, L.; Myneni, R.; Yin, Y.; Zeng, H. Afforestation in China cools local land surface temperature. Proc. Natl. Acad. Sci. USA 2014, 111, 2915–2919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jackson, R.; Randerson, J.; Canadell, J.; Anderson, R.; Avissar, R.; Baldocchi, D.; Bonan, G.; Caldeira, K.; Diffenbaugh, N.; Field, C.; et al. Protecting climate with forests. Environ. Res. Lett. 2008, 3. [Google Scholar] [CrossRef]
- Gao, J.; Liu, Y. Climate warming and land use change in Heilongjiang Province, Northeast China. Appl. Geogr. 2011, 31, 476–482. [Google Scholar] [CrossRef]
- Zhang, S. Northeast timber-the pillar of new China. Chin. Natl. Geogr. 2008, 576, 240–247. [Google Scholar]
- Yu, G.; Wen, X.; Sun, X.; Tanner, B.; Lee, X.; Chen, J. Overview of ChinaFLUX and evaluation of its eddy covariance measurement. Agric. For. Meteorol. 2006, 137, 125–137. [Google Scholar] [CrossRef]
- Yu, G.; Fu, Y.; Sun, X.; Wen, X.; Zhang, L. Recent progress and future direction of ChinaFLUX. Sci. China Ser. D. 2006, 49 (Supp. II), 1–23. [Google Scholar]
- Yu, G.; Zhang, L.; Sun, X.; Fu, Y.; Wen, X.; Wang, Q.; Li, S.; Ren, C.; Song, X.; Liu, Y.; et al. Environmental controls over carbon exchange of three forest ecosystems in eastern China. Glob. Chang. Biol. 2008, 14, 2555–2571. [Google Scholar] [CrossRef]
- Yu, G.; Zhu, X.; Fu, Y.; He, H.; Wang, Q.; Wen, X.; Li, X.; Zhang, L.; Zhang, J.; Yan, J.; et al. Spatial patterns and climate drivers of carbon fluxes in terrestrial ecosystems of China. Glob. Chang. Biol. 2013, 19, 798–810. [Google Scholar] [CrossRef] [PubMed]
- Twine, T.E.; Kustas, W.P.; Norman, J.M.; Cook, D.R.; Houser, P.R.; Meyers, T.P.; Prueger, J.H.; Starks, P.J.; Wesely, M.L. Correcting eddy-covariance flux underestimates over a grassland. Agric. For. Meteorol. 2000, 103, 279–300. [Google Scholar] [CrossRef]
- Yang, K.; He, J.; Tang, W.; Qin, J.; Cheng, C. On downward shortwave and longwave radiations over high altitude regions: Observation and modeling in the Tibetan Plateau. Agric. For. Meteorol. 2010, 150, 38–46. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, K.; He, J.; Qin, J.; Shi, J.; Du, J.; He, Q. Improving land surface temperature modeling for dry land of China. J. Geophys. Res. 2011, 116. [Google Scholar] [CrossRef]
- He, J.; Yang, K. China Meteorological Forcing Dataset. Cold and Arid Regions Science Data Center at Lanzhou 2011. [Google Scholar] [CrossRef]
- Liang, S.; Zhao, X.; Yuan, W.; Liu, S.; Cheng, X.; Xiao, Z.; Zhang, X.; Liu, Q.; Cheng, J.; Tang, H.; et al. A Long-term Global LAnd Surface Satellite (GLASS) Dataset for Environmental Studies. Int. J. Digit. Earth. 2013, 6, 5–33. [Google Scholar] [CrossRef]
- Tucker, C.J.; Pinzon, J.E.; Brown, M.E.; Slayback, D.A.; Pak, E.W.; Mahoney, R.; Vermote, E.F.; Saleous, N. An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. Int. J. Remote Sens. 2005, 26, 4485–4498. [Google Scholar] [CrossRef]
- Wolter, K.; Timlin, M. El Niño/Southern Oscillation behaviour since 1871 as diagnosed in an extended multivariate ENSO index (MEI.ext). Int. J. Climatol. 2011, 31, 1074–1087. [Google Scholar] [CrossRef]
- Pinker, R.; Zhang, B.; Dutton, E. Do satellites detect trends in surface solar radiation? Science 2005, 308, 850–854. [Google Scholar] [CrossRef]
- Jiang, H.; Liu, S.; Sun, P.; An, S.; Zhou, G.; Li, C.; Wang, J.; Yu, H.; Tian, X. The influence of vegetation type on the hydrological process at the landscape scale. Can. J. Remote Sens. 2004, 30, 743–763. [Google Scholar] [CrossRef]
- Fisher, J.; Malhi, Y.; Bonal, D.; da Rocha, H.; de Araújo, A.; Gamo, M.; Goulden, M.; Hirano, T.; Huete, A.; Kondo, T.; et al. The land–atmosphere water flux in the tropics. Glob. Chang. Biol. 2009, 15, 2694–2714. [Google Scholar] [CrossRef]
- Miralles, D.; Holmes, T.; de Jeu, R.; Gash, J.; Meesters, A.; Dolman, A. Global land-surface evaporation estimated from satellite-based observations. Hydrol. Earth Syst. Sci. 2011, 15, 453–469. [Google Scholar] [CrossRef]
- Zhang, K.; Kimball, J.S.; Mu, Q.; Jones, L.A.; Goetz, S.J.; Running, S.W. Satellite based analysis of northern ET trends and associated changes in the regional water balance from 1983 to 2005. J. Hydrol. 2009, 379, 92–110. [Google Scholar] [CrossRef]
- Zhang, K.; Kimball, J.S.; Nemani, R.R.; Running, S.W. A continuous satellite-derived global record of land surface evapotranspiration from 1983 to 2006. Water Resour. Res. 2010, 46. [Google Scholar] [CrossRef]
- Miralles, D.; van den Berg, M.; Gash, J.; Parinussa, R.; de Jeu, R.; Beck, H.; Holmes, T.; Jiménez, C.; Verhoest, N.; Dorigo, W.; et al. El Niño-La Niña cycle and recent trends in continental evaporation. Nat. Clim. Chang. 2014, 4, 122–126. [Google Scholar] [CrossRef]
- Trenberth, K.; Dai, A.; van der Schrier, G.; Jones, P.; Barichivich, J.; Briffa, K.; Sheffield, J. Global warming and changes in drought. Nat. Clim. Chang. 2014, 4, 17–22. [Google Scholar] [CrossRef]
- Zhang, K.; Kimball, J.; McDonald, K.; Cassano, J.; Running, S. Impacts of large-scale oscillations on pan-Arctic terrestrial net primary production. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef]
- Kim, H.; Hwang, K.; Mu, Q.; Lee, S.; Choi, M. Validation of MODIS 16 global terrestrial evapotranspiration products in various climates and land cover types in Asia. KSCE J. Civil Eng. 2012, 16, 229–238. [Google Scholar]
- Baldocchi, D.; Falge, E.; Gu, L.; Olson, R.; Hollinger, D.; Running, S.; Anthoni, P.; Bernhofer, C.; Davis, K.; Fuentes, J.; et al. FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor and energy flux densities. Bull. Am. Meteorol. Soc. 2001, 82, 2415–2434. [Google Scholar] [CrossRef]
- Wilson, K.; Goldstein, A.; Falge, E.; Aubinet, M.; Baldocchi, D. Energy balance closure at FLUXNET sites. Agric. For. Meteorol. 2002, 113, 223–243. [Google Scholar] [CrossRef]
- Schmid, H. Experimental design for flux measurements: Matching scales of observations and fluxes. Agric. For. Meteorol. 1997, 87, 179–200. [Google Scholar] [CrossRef]
- McVicar, T.; Roderick, M.; Donohue, R.; Li, L.; Van Niel, T.; Thomas, A.; Grieser, J.; Jhajharia, D.; Himri, Y.; Mahowald, N.; et al. Global review and synthesis of trends in observed terrestrial near-surface wind speeds: Implications for evaporation. J. Hydrol. 2012, 416–417, 182–205. [Google Scholar] [CrossRef]
- Krishnan, P.; Black, T.; Grant, N.; Barr, A.; Hogg, E.; Jassal, R.; Morgenstern, K. Impact of changing soil moisture distribution on net ecosystem productivity of a boreal aspen forest during and following drought. Agric. For. Meteorol. 2006, 139, 208–223. [Google Scholar] [CrossRef]
- Skidmore, E.; Jacobs, H.; Powers, W. Potential evapotranspiration as influenced by wind. Agron. J. 1969, 61, 543–546. [Google Scholar] [CrossRef]
- Chen, Y.; Xia, J.; Liang, S.; Feng, J.; Fisher, J.; Li, X.; Li, X.L.; Liu, S.; Ma, Z.; Miyata, A.; et al. Comparison of satellite-based evapotranspirationmodels over terrestrial ecosystems in China. Remote Sens. Environ. 2013, 140, 279–293. [Google Scholar] [CrossRef]
- Peterson, T.; Golubev, V.; Groisman, P. Evaporation losing its strength. Nature 1995, 377, 687–688. [Google Scholar] [CrossRef]
- Yao, Y.; Liang, S.; Qin, Q.; Wang, K.; Liu, S.; Zhao, S. Satellite detection of increases in global land surface evapotranspiration during 1984–2007. Int. J. Digit. Earth. 2012, 5, 299–318. [Google Scholar] [CrossRef]
- Lawrence, D.; Thornton, P.; Oleson, K.; Bonan, G. The partitioning of evapotranspiration into transpiration, soil evaporation, and canopy evaporation in a GCM: Impacts on land-atmosphere interaction. J. Hydrometeorol. 2007, 8, 862–880. [Google Scholar] [CrossRef]
- Asanuma, J.; Ishikawa, H.; Tamagawa, I.; Ma, Y.; Hayashi, T.; Qi, Y.; Wang, J. Application of the band-pass covariance technique to portable flux measurements over the Tibetan Plateau. Water Resour. Res. 2005, 41. [Google Scholar] [CrossRef]
- Available online: http://www.cdc.noaa.gov/people/klaus.wolter/MEI/table.html (accessed on 26 June 2014).
- Available online: http://159.226.111.42/pingtai/LoginRe/opendata.jsp (accessed on 26 June 2014).
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, Y.; Liang, S.; Cheng, J.; Lin, Y.; Jia, K.; Liu, M. Impacts of Deforestation and Climate Variability on Terrestrial Evapotranspiration in Subarctic China. Forests 2014, 5, 2542-2560. https://doi.org/10.3390/f5102542
Yao Y, Liang S, Cheng J, Lin Y, Jia K, Liu M. Impacts of Deforestation and Climate Variability on Terrestrial Evapotranspiration in Subarctic China. Forests. 2014; 5(10):2542-2560. https://doi.org/10.3390/f5102542
Chicago/Turabian StyleYao, Yunjun, Shunlin Liang, Jie Cheng, Yi Lin, Kun Jia, and Meng Liu. 2014. "Impacts of Deforestation and Climate Variability on Terrestrial Evapotranspiration in Subarctic China" Forests 5, no. 10: 2542-2560. https://doi.org/10.3390/f5102542
APA StyleYao, Y., Liang, S., Cheng, J., Lin, Y., Jia, K., & Liu, M. (2014). Impacts of Deforestation and Climate Variability on Terrestrial Evapotranspiration in Subarctic China. Forests, 5(10), 2542-2560. https://doi.org/10.3390/f5102542